Ralph's Bayesian Accruals

Continue with the setting in Ralph's Optimal Accruals but build a frame beginning with m_0 .

$$m_0 = \mu + \varepsilon_0, \quad \varepsilon_0 \sim N(0, a\sigma^2)$$

Then, cash flow information relates to m_0 and the quantity of interest, m_3 , as follows.

$$y_1 = \mu + \varepsilon_0 + \varepsilon_1 + e_1$$

$$y_2 = \mu + \varepsilon_0 + \varepsilon_1 + \varepsilon_2 + e_2$$

$$y_3 = \mu + \varepsilon_0 + \varepsilon_1 + \varepsilon_2 + \varepsilon_3 + e_3$$

$$m_3 = \mu + \varepsilon_0 + \varepsilon_1 + \varepsilon_2 + \varepsilon_3$$

where $\eta^T = \begin{bmatrix} \varepsilon_0 & \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & e_1 & e_2 & e_3 \end{bmatrix} \sim N(0, \Sigma), \Sigma = \begin{bmatrix} a\sigma^2 & 0 \\ 0 & \sigma^2 I_6 \end{bmatrix}$. This can be compactly written

$$Y = \mu \iota + A\eta$$

where $Y^T = \begin{bmatrix} y_1 & y_2 & y_3 & m_3 \end{bmatrix}$, ι is a vector of ones, and

A =	1	1	0	0	1	0	0]
	1	1	1	0	0	1	0
	1	1	1	1	0	0	1
	1	1	1	1	0	0	0

Let $\sigma^2 = 1$. The joint distribution is

$$Y \sim N\left(\mu\iota, A\Sigma A^T\right)$$

Suggested:

1. Utilize the Bayes' normal theorem to derive the posterior (updated) distribution for m_3 conditional on y_1, y_2 , and y_3 simultaneously. (Hint: m_3 continues to have a normal distribution but with potentially revised mean and variance.)

2. Utilize the Bayes' normal theorem to derive the posterior distribution (mean and variance) for y_2 , y_3 , and m_3 conditional on y_1 .

3. Utilize the result in 2 to derive the posterior distribution for y_3 and m_3 conditional on y_1 and y_2 .

4. Utilize the result in 3 to derive the posterior distribution for m_3 conditional on y_1 , y_2 , and y_3 . How does this compare with 1?

5. Suppose m_0 is known, then a = 0. Evaluate your expression in 1 or 4.

6. Suppose m_0 is equally uncertain as m_t for t > 0, a = 1. Evaluate your expression in 1 or 4.

7. Suppose m_0 is extremely uncertain so as to be uninformative, $a \to \infty$. Evaluate your expression in 1 or 4.