Ralph's Bayesian Accruals

Continue with the setting in Ralph's Optimal Accruals but build a frame beginning with m_{0}.

$$
m_{0}=\mu+\varepsilon_{0}, \quad \varepsilon_{0} \sim N\left(0, a \sigma^{2}\right)
$$

Then, cash flow information relates to m_{0} and the quantity of interest, m_{3}, as follows.

$$
\begin{aligned}
y_{1} & =\mu+\varepsilon_{0}+\varepsilon_{1}+e_{1} \\
y_{2} & =\mu+\varepsilon_{0}+\varepsilon_{1}+\varepsilon_{2}+e_{2} \\
y_{3} & =\mu+\varepsilon_{0}+\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+e_{3} \\
m_{3} & =\mu+\varepsilon_{0}+\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}
\end{aligned}
$$

where $\eta^{T}=\left[\begin{array}{lllllll}\varepsilon_{0} & \varepsilon_{1} & \varepsilon_{2} & \varepsilon_{3} & e_{1} & e_{2} & e_{3}\end{array}\right] \sim N(0, \Sigma), \Sigma=\left[\begin{array}{cc}a \sigma^{2} & 0 \\ 0 & \sigma^{2} I_{6}\end{array}\right]$.
This can be compactly written

$$
Y=\mu \iota+A \eta
$$

where $Y^{T}=\left[\begin{array}{llll}y_{1} & y_{2} & y_{3} & m_{3}\end{array}\right], \iota$ is a vector of ones, and

$$
A=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Let $\sigma^{2}=1$. The joint distribution is

$$
Y \sim N\left(\mu \iota, A \Sigma A^{T}\right)
$$

Suggested:

1. Utilize the Bayes' normal theorem to derive the posterior (updated) distribution for m_{3} conditional on y_{1}, y_{2}, and y_{3} simultaneously. (Hint: m_{3} continues to have a normal distribution but with potentially revised mean and variance.)
2. Utilize the Bayes' normal theorem to derive the posterior distribution (mean and variance) for y_{2}, y_{3}, and m_{3} conditional on y_{1}.
3. Utilize the result in 2 to derive the posterior distribution for y_{3} and m_{3} conditional on y_{1} and y_{2}.
4. Utilize the result in 3 to derive the posterior distribution for m_{3} conditional on y_{1}, y_{2}, and y_{3}. How does this compare with 1 ?
5. Suppose m_{0} is known, then $a=0$. Evaluate your expression in 1 or 4 .
6. Suppose m_{0} is equally uncertain as m_{t} for $t>0, a=1$. Evaluate your expression in 1 or 4.
7. Suppose m_{0} is extremely uncertain so as to be uninformative, $a \rightarrow \infty$. Evaluate your expression in 1 or 4.
