
Ralph’s back-door adjustment

Ralph wishes to nonparametrically assess the causal effect of X on Y . That
is, evaluate how setting X to x impacts the probability of Y .1 Ralph recognizes
this involves combining a thought experiment with data where the effect may
be confounded by other variables, Z. After pondering the causal connections
amongst the variables, Ralph envisions the following DAG (directed acyclic
graph), G, and its subgraphs, GX and GX .

DAG G and subgraphs

In other words, Z causes X and Y , and X causes Y (via some unknown and
unspecified functional relations) with all variables potentially impacted by un-
observables (not made explicit in the graphs).2

Ralph recognizes considerable work has been completed regarding DAGs in-
cluding the relation between d-separation (d denotes directional) and conditional
independence and the do-calculus theorems.

Definition 1 (d-separation) a path p is d-separated (blocked) by a set of
nodes Z (including the null set ∅) if and only if
1. p contains a chain i→ m→ j or fork i← m→ j such that the middle node
m is in Z, or
2. p contains an inverted fork (collider) i → m ← j such that the middle node
m is not in Z and no descendant of m is in Z.

A set Z d-separates X and Y if and only if Z blocks every path from X to
Y .

1Setting X to x iinvolves active intervention (as opposed to passive observation) and is
usually referred to by the operation do (X = x).

2 If the same unobservable is connected to two or more observables it’s typically important
to include the unobservable in the graph. See Ralph’s front-door adjustment for an illustration.
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Theorem 1 (d-separation and conditional independence) If sets X and
Y are d-separated by Z in a DAG G, then X is independent of Y conditional
on Z in every distribution consistent with G. Conversely, if X and Y are not
d-separated by Z in a DAG G, then X and Y are dependent conditional on Z
in at least one distribution consistent with G.

The converse part is actually much stronger. IfX and Y are not blocked then
they are dependent in almost all distributions consistent with G. Independence
of unblocked paths requires precise parameter tuning that is unlikely.

Theorem 2 (do-calculus) 3Let G be the DAG associated with a causal model
and let Pr (·) be the probability distribution induced by the model. For any dis-
joint set of variables X,Y, Z, and W the following rules apply.

Rule 1 (insertion/deletion of observations):

Pr (y | do (x) , z, w) = Pr (y | do (x) , w) if (Y ⊥ Z | X,W )GX

where ⊥ refers to stochastic independence or d-separation in the graph.

Rule 2 (action/observation exchange):

Pr (y | do (x) , do (z) , w) = Pr (y | do (x) , z, w) if (Y ⊥ Z | X,W )GXZ

Rule 3 (insertion/deletion of actions):

Pr (y | do (x) , do (z) , w) = Pr (y | do (x) , w) if (Y ⊥ Z | X,W )G
X,Z(W )

where Z (W ) is the set of Z-nodes that are not ancestors of any W -nodes in
GX .

Observation and action are fundamentally different, the former is passive
while the latter involves active intervention to set the value of a variable as in
do (X = x). Intervention effectively eliminates paths into the variable actively
set (if Z is a parent to X, Pr (do (x) | z) = 1). Algebraically, this alters the
Bayesian chain rule. For example,

Pr (Y = y, do (X = x) , Z = z) = Pr (y | do (x) , z) Pr (do (x) | z) Pr (z)
= Pr (y | do (x) , z) (1) Pr (z)

The action/observation distinction is essential to nonparametric identification
of causal effects.

Definition 2 (causal effect of X on Y ) The causal effect of X on Y is

Pr (Y = y | do (X = x))

3The proof is in the appendix to Pearl [1995], Biometrika, "Causal diagrams for empirical
research," December 82(4), 669-710.
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The causal effect is identified only when the quantity can be expressed en-
tirely in terms of observation (combining the thought experiment of the DAG
with data). When the causal effect is identified but confounded by Z, the causal
effect can often derived by conditioning on Z via the back-door adjustment.

Pr (y | do (x)) =
∑
z

Pr (y | x, z) Pr (z) (back-door adj)

Definition 3 (back-door) a set of variables Z is a back-door to the ordered
pair (X,Y ) if
(i) no node in Z is a descendant of X, and
(ii) Z blocks every path between X and Y that contains an arrow into X.

Suggested:

1. Is the causal effect of X on Y identified for the setting depicted by DAG
G? Explain by utilizing the Bayesian chain rule along with the do-calculus
theorem.

Suppose X,Y, and Z are binary with DGP (data generating process):

0 1
Pr (y | x = 0, z = 0) 0.95 0.05
Pr (y | x = 0, z = 1) 0.1 0.9
Pr (y | x = 1, z = 0) 0.05 0.95
Pr (y | x = 1, z = 1) 0.9 0.1
Pr (x | z = 0) 0.35 0.65
Pr (x | z = 1) 0.6 0.4

Pr (z) 0.4 0.6

2. Does the back-door adjustment apply? If so, derive the causal effects:
Pr (y = 1 | do (X = 0)) and Pr (y = 1 | do (X = 1)).

3. Compare action in 2 to observation: Pr (y = 1 | X = 0) and Pr (y = 1 | X = 1).
Hint: you may find it instructive to write out the joint distribution Pr (y, x, z).

4. Suppose there is no path from Z → X in G (G is GX). Does Z
confound the causal effect of X on Y ? (hint: explore rule 2 in this set-
ting.) For this setting, derive the causal effects, Pr (y = 1 | do (X = 0)) and
Pr (y = 1 | do (X = 1)), where the only change in the DGP is

0 1
Pr (x | z = 0) 0.475 0.525
Pr (x | z = 1) 0.475 0.525
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Hint: if Z is not confounding, you can still apply the back-door adjustment but
the conditioning variables are the null set, ∅, in place of Z. This changes

Pr (y | do (x)) =
∑
z

Pr (y | x, z) Pr (z)

to
Pr (y | do (x)) = Pr (y | x)
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