
Quantum Entropy and Accounting

John Fellingham

Ohio State University

Haijin Lin

University of Houston

Doug Schroeder

Ohio State University

2018

1



1 Introduction

The double entry system of accounting has endured and even thrived for over

�ve centuries. There have been dramatic and profound changes in commerce

and technology, yet the system of double entry remains recognizable.

Double entry accounting tracks stocks and �ows through the march of time

and does so in an elegant fashion. It is this tracking of stocks and �ows we

wish to emphasize. Further the scholarly intent is to connect the double entry

accounting numbers to the concept of information in a fundamental way.

In recent decades many scienti�c disciplines have treated information as a

core concept. Physics, for example, asks "How much information is in a black

hole?" or "How much information is in the universe?". Biology, as well, asks

information questions, such as "How much information is contained in generic

material?"

In order to ask questions about the amount of information, an information

metric is required. That was supplied by Claude Shannon in 1948 (Shannon

1948). Shannon�s "entropy" can be treated as a measure of uncertainty and is

constructed as a function of probabilities, where p (y) is the probability of an

observation of a random variable Y ,

H (Y ) = �
X

p (y) ln p (y) ,

where ln is natural logarithm. Shannon�s entropy has a very useful additive

property,

H (X;Y ) = H (Y jX) +H (X) ,

where H (X;Y ) is the joint entropy and H (Y jX) is the conditional entropy
constructed using joint and conditional probabilities, respectively. Since en-

tropies can be added, they can also be subtracted yielding a useful de�nition of

information as whatever it is that decreases entropy,

I (X;Y ) = H (Y )�H (Y jX) .

I (X;Y ) is termed mutual information and is the reduction of entropy in random

variable Y if when a signal X is available.

Fellingham and Lin (2018) connect accounting numbers to information,

ln

�
1 +

income

assets

�
= rf + I (X;Y ) , (1)
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where rf is the risk free rate of returns. The accounting numbers, thus, provide

a measure of "how much information" the reporting entity possesses, similar

to other information sciences posing the "how much information?" question.

Further, the relationship is an equality implying any accounting question, in-

volving the assignment of numbers to income and assets, can be reframed as

an information question. And, as the equality goes both ways, any information

question can be reframed as an accounting question.

The basic accounting is done on an economic income basis; that is, assets are

valued at discounted cash �ow. Fellingham and Lin (2018) provide conditions

under which alternative accounting methods yield the same results.

The environmental assumptions for the equality (1) to hold are three:

� long run decision perspective;

� arbitrage free prices;

� complete markets; that is, there exists an Arrow-Debreu security for every
possible state realization.

It is the last assumption which is a bit problematic, as accountants are used to

operating in an environment in which not all states can be traded. A purpose

of this paper is to expand the domain of the relationship (1) to incomplete

market settings. The way this is done is to access the mathematics of quantum

processes and quantum information.

Since a risk free rate of return is a complete market concept, the equality

(1) can be reformulated as

ln

�
1 +

income

assets

�
= E [rjXp]�H (Y jX) , (2)

where E [rjXp] is the expected return attainable if the information is perfect

denoted by Xp (the reformulation is in Section 3). The main result of this

paper is to derive an equality that applies to incomplete markets, written as

ln

�
1 +

income

assets

�
= E [rjXp]� S (Y jX) . (3)

The notable distinction between (2) and (3) is quantum entropy denoted by

S (Y jX) replaces the Shannon entropy expression H (Y jX). Quantum entropy

was developed by John von Neumann (Nielsen and Chuang 2004). When mar-

kets are complete, Shannon entropy and Von Neumann entropy compute to
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the same number, and the quantum relationship (3) reduces to the classical

relationship (2).

Besides expanding the domain of the accounting information equivalence,

there are other advantages to bringing quantum information into view. One is

that quantum technological advances are occurring with increasing regularity.

Examples are quantum computation, quantum clocks, and incredibly powerful

quantum imaging techniques. It is reassuring that the power of the double entry

accounting is well positioned to survive another signi�cant technological change.

Another advantage is that quantum thinking brings into focus a powerful

information resource known as non-locality (or as discussed in Section 4, entan-

gled qubits). In the world of physics, non-locality is a troubling development.

Einstein, for example, was disturbed by "spooky action at a distance." In an

economic setting, however, non-locality is a natural and desirable phenomenon�

individuals separated by distance can share information as well as act cooper-

atively. The results are not nearly as mysterious as distant quantum objects

exhibiting non-local correlations.

The quantum mathematics illustrates the corrosive e¤ects of local measure-

ments of non-local objects. Local measurements strictly increases entropy which

in turn by the equality (3) decreases expected return.

The remainder of the paper is organized as follows. Section 2 provides some

preliminaries of the mathematics of quantum information and measurement in-

cluding quantum entropy. Section 3 formulates the quantum decision problem

and demonstrates the main result of the paper. Section 4 illustrates an applica-

tion of the main result� using quantum concept of non-locality in an economic

setting. The concluding remarks are in Section 5.

2 Quantum Preliminaries

2.1 Superposition

Quantum processes are generally considered "mysterious" related to the world

we observe, and superposition is one mysterious quantum property. Excerpted

from an article "Quantum Leaps; Subatomic Opportunities" (The Economists,

March 11, 2017),
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"Quantum mechanics...has a well-earned reputation for weirdness. That is

because the world as humanity sees it is not, in fact, how the world works."

A quantum unit can exist in a state of superposition when it is neither one

attribute nor another, but both at once. The quantum attributes are things like

positive or negative charge and both attributes can exist simultaneously.

A two element vector is required to represent a quantum unit (often referred

to as "qubit"). Two commonly used states for a qubit, written in Dirac notation,

are

j0i =
"
1

0

#
and j1i =

"
0

1

#
. (4)

A qubit, linearly combining the two states, can be written in superposition as

j i =
"
a

b

#
= a j0i+ b j1i , (5)

where the coe¢ cients a and b are called amplitudes; these amplitudes can be

positive or negative and scaled so that a2 + b2 = 1.1 Examples of qubits are

3

5
j0i+ 4

5
j1i =

"
3=5

4=5

#
; or

1p
2
j0i � 1p

2
j1i =

"
1=
p
2

�1=
p
2

#
.

Dirac notation for a transpose of qubit j i is written as

h j =
h
a b

i
=

"
a

b

#T
. (6)

It is important to do linear algebra operation. The inner product of two

qubits, j 1i =
"
a

b

#
and j 2i =

"
c

d

#
, is written as

h 1j j 2i = h 1j 2i =
h
a b

i "c
d

#
= ac+ bd; (7)

and the outer product is written as

j 1i h 2j =
"
a

b

# h
c d

i
=

"
ac ad

bc bd

#
. (8)

1The coe¢ cients a and b can be complex numbers. However, for our purpose in this paper,

we restrict our attention to real coe¢ cients.
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2.2 Measurement

The state of a qubit can not be observed directly; all that can be accomplished

directly is a quantum measurement. Quantum measurement is the use of two

measurement vectors. A straightforward illustration is called the standard basis

and consists of j0i and j1i (as de�ned by (4)).
When a qubit is measured, the post-measurement state is one of the measure-

ment vectors probabilistically. The probabilities are determined by the square

of the vector product of the measurement vector with the qubit. For exam-

ple, measurement of an qubit 3
5 j0i +

4
5 j1i by the standard basis results in a

post-measurement qubit state of j0i with probability�
h0j
�
3

5
j0i+ 4

5
j1i
��2

=

�
3

5

�2
=
9

25
,

and the probability the post-measurement qubit state is j1i is�
h1j
�
3

5
j0i+ 4

5
j1i
��2

=
16

25
.

Whenever the measurement vectors are orthogonal (termed projective mea-

surement), the post-measurement probabilities will sum to one.2 Any two or-

thogonal vectors can be used for projective measurements (this is true even for

a quantum system with more than two qubit states).

Example 1 Consider the two orthogonal vectors 1p
2
j0i + 1p

2
j1i and 1p

2
j0i �

1p
2
j1i and a qubit 35 j0i+

4
5 j1i. The post-measurement probability that the state

is 1p
2
j0i+ 1p

2
j1i is written as"�

1p
2
j0i+ 1p

2
j1i
�T �

3

5
j0i+ 4

5
j1i
�#2

=

��
1p
2
h0j+ 1p

2
h1j
��

3

5
j0i+ 4

5
j1i
��2

=

�
3

5
p
2
h0j 0i+ 4

5
p
2
h1j 1i

�2
=
49

50
.

2Two vectors are orthogonal if the inner product of the two vectors is zero. It is readily to

check that the states j0i and j1i are orthogonal.

h0j1i =
h
1 0

i "0
1

#
= 0.
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Similarly, the probability that the post-measurement state is 1p
2
j0i � 1p

2
j1i is

computed to be 1
50 .

3 ��
1p
2
h0j � 1p

2
h1j
��

3

5
j0i+ 4

5
j1i
��2

=

�
3

5
p
2
h0j 0i � 4

5
p
2
h1j 1i

�2
=
1

50

Density Operator

An useful qubit representation is an outer product, called density operator,

denoted by �. The density operator of a qubit j i is written as

� = j i h j . (9)

Density operator is an alternative but equivalent tool for quantum mechanics

including quantum measurement. Denote the measurement vectors by jm1i and
jm2i. Then the post-measurement probability of the state jm1i is written as

[hm1j i]2 = hm1j i hm1j i = h jm1i hm1j i = h jM1j i

= tr (M1 j ih j) = tr (M1�) , (10)

where M1 = jm1ihm1j is the outer product of the measurement vector jm1i.
The tr represents the trace of the matrix computed as the sum of the diagonals.

With density operator, the post-measurement probabilities are determined by

the trace of the product matrix between the density operator and the outer

product of the measurement vector.

Example 2 Continue Example 1. The density operator of qubit 35 j0i+
4
5 j1i is

computed as

� =

�
3

5
j0i+ 4

5
j1i
��

3

5
h0j+ 4

5
h1j
�

=
9

25
j0i h0j+ 12

25
j0i h1j+ 12

25
j1i h0j+ 16

25
j1i h1j

=
9

25

"
1 0

0 0

#
+
12

25

"
0 1

0 0

#
+
12

25

"
0 0

1 0

#
+
16

25

"
0 0

0 1

#

=

"
9
25

12
25

12
25

16
25

#
.

3The measurement computation can be thought of as the R2 (correlation) when the mea-

sured qubit is projected into one of the measurement qubits.
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The outer product of the measurement vectors jm1i = 1p
2
j0i+ 1p

2
j1i is computed

as

M1 = jm1ihm1j =
�
1p
2
j0i+ 1p

2
j1i
��

1p
2
h0j+ 1p

2
h1j
�

=

�
1

2
j0i h0j+ 1

2
j0i h1j+ 1

2
j1i h0j+ 1

2
j1i h1j

�
=

"
1
2

1
2

1
2

1
2

#
.

The post-measurement probability that the state is jm1i is again 49
50 calculated

based on (10).

tr (M1�) = tr

 "
1
2

1
2

1
2

1
2

#"
9
25

12
25

12
25

16
25

#!

= tr

 
1

50

"
21 28

21 28

#!
=
49

50

2.3 von Neumann Entropy

The density operator formulation can be quite illuminating conceptually. In

particular, quantum entropy, often called von Neumann entropy, is available

with the density operator formulation. Consider a system, described by an

ensemble fpi; j iig, can be in one of the qubit states j ii and the probability
of state j ii is pi. The density operator is generalized to a mixture of qubits by

� = �i pi�i, (11)

where �i = j ii h ij is density operator for qubit j ii (as de�ned in (9)). Let �j
be the eigenvalues of the density operator matrix � in (11). The von Neumann

entropy is then de�ned as

S (�) = ��j�j ln (�j) . (12)

von Neumann entropy incorporates the uncertainty inherent in quantum

objects, just in the same spirit as (classical) Shannon entropy. Classical entropy

as a measure of uncertainty was developed by Claude Shannon. The Shannon
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entropy of a random variable X, denoted by H (X), is de�ned as a function of

the probabilities associated with the possible realizations of the random variable.

H (X) = ��xp (x) ln [p (x)] (13)

For example, if a random variable has two possible realizations, each with prob-

ability one-half, the Shannon entropy is computed as

H (X) = �1
2
ln

�
1

2

�
� 1
2
ln

�
1

2

�
= ln 2 ' 0:6931.

In parallel, von Neumann entropy is based on eigenvalues which will be shown

(in the following example) to be the probabilities of projective measurements

with the eigenvectors. Example 3 is illustrative.

Example 3 A system contains a mixture of two qubits, j 1i =
"
1

0

#
and j 2i ="

3
5
4
5

#
, both with probability of one-half. The density operator is symmetric and

positive, computed as

� =
1

2

 "
1

0

# h
1 0

i!
+
1

2

 "
3
5
4
5

# h
3
5

4
5

i!

=
1

2

"
1 0

0 0

#
+
1

2

"
9
25

12
25

12
25

16
25

#
=
1

25

"
17 6

6 8

#
.

The eigenvalues of � are computed as �1 = 4
5 and �2 =

1
5 .
4 In general, the sum

of the eigenvalues of the density operator is always one as long as the length of

the qubits is normalized to one (h j i = 1). The corresponding eigenvectors

are orthogonal and computed as jv1i =
"
2p
5
1p
5

#
and jv2i =

"
1p
5

� 2p
5

#
.5

4The eigenvalues are calculated to ensure the characterisitc equation det (�� �I) = 0 holds.
More speci�cally,

det

 
1

25

"
17 6

6 8

#
�
"
� 0

0 �

#!
= 0;

det

 "
17
25
� � 6

25
6
25

8
25
� �

#!
= 0;�

17

25
� �

��
8

25
� �

�
� 36

625
= 0.

The solutions are �1 = 4
5
and �2 = 1

5
.

5The eigenvectors v are determined by (�� �I) v = 0. For example, jv1i is the eigenvector
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If � is measured based on the two eigenvectors jv1i and jv2i, the probability
that the post-measurement state is jvii is �i, that is, tr (jvii hvij �) = �i. For

state jv1i,

tr (jv1i hv1j �) = tr

 "
2p
5
1p
5

# h
2p
5

1p
5

i 1
25

"
17 6

6 8

#!

= tr

 "
4
5

2
5

2
5

1
5

#
1

25

"
17 6

6 8

#!

= tr

 "
16
25

8
25

8
25

4
25

#!
=
4

5
.

The density operator � has a spectral decomposition as the sum of the outer

products of the eigenvectors multiplied by the corresponding eigenvalues,

� =
4

5

 "
2p
5
1p
5

# h
2p
5

1p
5

i!
+
1

5

 "
1p
5

� 2p
5

# h
1p
5

� 2p
5

i!

=
4

5

"
4
5

2
5

2
5

1
5

#
+
1

5

"
1
5 � 2

5

� 2
5

4
5

#
=
1

25

"
17 6

6 8

#
.

This is remarkable as the spectral decomposition essentially reframes the ini-

tial ensemble f 12 ;
1
2 ; j 1i ; j 2ig into a new ensemble f 45 ;

1
5 ; jv1i ; jv2ig. In the

new ensemble, the eigenvalues are the probabilities of eigenvectors. The von

Neumann entropy is essentially the Shannon entropy, computed as

S (�) = �4
5
ln

�
4

5

�
� 1
5
ln

�
1

5

�
= ln(5)� 4

5
ln (4) ' 0:5004.

It is noted that the von Neumann entropy in Example 3 is less than the

Shannon entropy computed based on a variable with two equally likely realiza-

tions, S (�) ' 0:5004 < H (�) ' 0:6931. Lemma 1 formally compares the two

entropies.

Lemma 1 Shannon entropy always weakly exceeds von Neumann entropy.

associated with �1 = 4
5
.  

1

25

"
17 6

6 8

#
�
"
4
5

0

0 4
5

#!"
v11

v12

#
= 0

Solving the linear system subject to the length of the vector jv1i being one yields jv1i =

24 2p
5
1p
5

35.
The eigenvector jv2i associated with �2 = 1

5
can be solved following the same steps.
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Proof. Consider an ensemble fpi; j iig, its density operator can be written as

� = �i pi j ii h ij . (14)

Let �i be the eigenvalues of � and jvii be the respective eigenvectors. The

density operator has a spectral decomposition

� = �i �i jvii hvij . (15)

The von Neumann entropy is written as

S (�) = ��i �i ln (�i) . (16)

Treating the state of the system as a random variable, the Shannon entropy is

written as

H (j ii) = ��i pi ln (pi) . (17)

We prove that (16) is no more than (17) in two cases.

Suppose the states are orthogonal so that h ij ji = 0 for any i 6= j. We

show that (16) and (17) are equal. It is su¢ cient to show that pj = �j . That

is, for
�� j� nonzero, � �� j� = pj

�� j�. To see this,
�
�� j� = (�i pi j ii h ij)

�� j� (18)

= �i pi j ii h ij ji

= pj
�� j� 
 j�� ji

= pj
�� j� .

The third equality in (18) is ensured by the assumption that the states are

orthogonal; while the fourth equality is ensured by


 j j j

�
= 1. Since j ii are

orthogonal, then the density operator � has a spectral decomposition as

� = �i �i j ii h ij . (19)

Suppose the states are not orthogonal so that h ij ji 6= 0 for any i 6= j.

Denote the index K such that pK = maxi pi. Consider a set of orthonormal

measurement vectors jmji where j Ki = jmKi. Then fMj = jmji hmj jg is a
set of orthogonal projectors, each of which satis�es MT

j = Mj and �jMj = I.

The initial ensemble has qubit states so two orthonormal measurement vectors

are su¢ cient, say jmKi and jmN i, and MK +MN = I. The post-measurement

probability that the state is jmji is

p0j = tr (Mj�) = tr (Mj�i pi j ii h ij)

11



= �i pi tr (Mj j ii h ij) . (20)

The new density operator after measurement takes the following form (see

Nielsen and Chuang 2004, p101),

�0 =MK�MK +MN�MN . (21)

We proceed to show the following inequalities hold,

H (j ii) � �p0K ln (p0K)� (p0N ) ln (p0N ) > S (�) . (22)

(i) To show the left side of (22), it is noted that

H (j ii) = ��i pi ln (pi) � �pK ln (pK)� (1� pK) ln (1� pK) , (23)

where pK = maxi pi. From (20),

p0K = �i pi Tr (MK j ii h ij) (24)

= pK Tr (MK j Ki h K j) + �i 6=K pi Tr (MK j ii h ij)

= pK +�i 6=K pi Tr (MK j ii h ij) > pK ;

the last equality of (24) is implied by j Ki = jmKi and Tr (MK j Ki h K j) = 1;
while the inequality is ensured as Tr (MK j ii h ij) > 0 is the post-measurement
probability of the state jmKi. From the inequality in (24), it must be

p0N < 1� pK . (25)

Combining (23), (24), and (25) yields

H (j ii) � �pK ln (pK)� (1� pK) ln (1� pK) > �p0K ln (p0K)� p0N ln (p0N ) .
(26)

(ii) To show the right side of (22), the expression (21) can be further written as

�0 = �j Mj (�i pi j ii h ij)Mj = �i�j pi (Mj j ii h ijMj)

= �i�j pi (jmji hmj j ii h ijmji hmj j)

= �i�j pi (jmji h ijmji hmj j ii hmj j)

= �i�j pi (jmji h ijMj j ii hmj j)

= �j [�i pi h ijMj j ii] jmji hmj j

= p0K jmKi hmK j+ p0N jmN i hmN j , (27)

12



where p0j is de�ned in (20). The right side inequality of (22) is ensured by

Theorem 11.9 in Nielsen and Chuang (2004)�which states that the Shannon

entropy based on the post-measurement probabilities is the smallest as long as

the measurement vectors are the eigenvectors. (This result is formally proved

in Proposition 2.) Noted that � de�ned in (15) has the post-measurement

eigenvector state jvii with probability �i; while �0 de�ned in (27) has the post-
measurement state jmji with probability p0j .

Illustration

Consider a system with two qubits, j 1i = 1p
x2+1

"
�1
x

#
and j 2i = 1p

y2+1

"
y

1

#
and their respective probabilities are p1 and p2. The density operator is

� = p1

 
1

x2 + 1

"
�1
x

# h
�1 x

i!
+ p2

 
1

y2 + 1

"
y

1

# h
y 1

i!

=
p1

x2 + 1

"
1 �x
�x x2

#
+

p2
y2 + 1

"
y2 y

y 1

#

=

"
p1

x2+1 +
p2y

2

y2+1
�p1x
x2+1 +

p2y
y2+1

�p1x
x2+1 +

p2y
y2+1

p1x
2

x2+1 +
p2
y2+1

#
.

The eigenvalues of � can be calculated as follows,

det

 "
p1

x2+1 +
p2y

2

y2+1 � �
�p1x
x2+1 +

p2y
y2+1

�p1x
x2+1 +

p2y
y2+1

p1x
2

x2+1 +
p2
y2+1 � �

#!
= 0,

�
p1

x2 + 1
+

p2y
2

y2 + 1
� �
� �

p1x
2

x2 + 1
+

p2
y2 + 1

� �
�
�
�
�p1x
x2 + 1

+
p2y

y2 + 1

�2
= 0,

�2 � (p1 + p2)�+
p1p2 (xy + 1)

2

(x2 + 1) (y2 + 1)
= 0

which has the solutions

�1 =
p1 + p2 �

p
�

2
and �2 =

p1 + p2 +
p
�

2

where � = (p1 + p2)
2 � 4p1p2(xy+1)

2

(x2+1)(y2+1) . Note that �1 + �2 = 1 as p1 + p2 = 1.

Without loss of generality, we assume p2 > p1. It is readily shown that �1 � p1

and �2 � p2.

p1 + p2 �
p
�

2
� p1 ,

p
� � p2 � p1

13



, (p1 + p2)
2 � 4p1p2 (xy + 1)

2

(x2 + 1) (y2 + 1)
� (p2 � p1)2

,
�
x2 + 1

� �
y2 + 1

�
� (xy + 1)2

, (x� y)2 � 0

The equality holds as long as x = y which implies the two qubits are orthogonal.

Note that (x� y)2 � 0 also implies �2 � p2. Then comparing the two entropies,

H ( ) = ��ipi ln (pi) � ��i�i ln (�i) = S (�) ,

the equality holds as long as the two qubits are orthogonal.

Example 4 illustrates the proof of Lemma 1.

Example 4 Consider a system with three qubits, j 1i =
"
1

0

#
, j 2i =

"
3
5
4
5

#
, and

j 3i =
"
� 1p

2
1p
2

#
. Their respective probabilities are 0:1, 0:5, and 0:4. The density

operator is computed as

� = 0:1

 "
1 0

0 0

#!
+ 0:5

 "
9
25

12
25

12
25

16
25

#!
+ 0:4

 "
1
2 � 1

2

� 1
2

1
2

#!

=

"
12
25

1
25

1
25

13
25

#
.

This is the expression (14) in the proof of Lemma 1. The Shannon entropy for

this ensemble is

H (j i) = �0:1 ln (0:1)� 0:5 ln (0:5)� 0:4 ln (0:4) ' 0:9433.

The eigenvalues of � can be calculated as follows,

det

 "
12
25 � �

1
25

1
25

13
25 � �

#!
= 0,

�
12

25
� �
� �
13

25
� �
�
� 1

625
= 0,

which has the solutions

�1 =
25 +

p
5

50
and �2 =

25�
p
5

50
;

14



and the respective eigenvectors are jv1i =

264
q
10(5�

p
5)

10q
10(5+

p
5)

10

375 and jv2i =
264

q
10(5+

p
5)

10

�
q
10(5�

p
5)

10

375.
The spectral decomposition of � is then written as

� =

 
25 +

p
5

50

!
(jv1i hv1j) +

 
25�

p
5

50

!
(jv2i hv2j)

=

 
25 +

p
5

50

!"
5�
p
5

10

p
5
5p

5
5

5+
p
5

10

#
+

 
25�

p
5

50

!"
5+
p
5

10 �
p
5
5

�
p
5
5

5�
p
5

10

#

=

"
12
25

1
25

1
25

13
25

#
.

This is the expression (15). The von Neumann entropy is then computed as

S (�) = �
 
25 +

p
5

50

!
ln

 
25 +

p
5

50

!
�
 
25�

p
5

50

!
ln

 
25�

p
5

50

!
' 0:6891.

Consider two orthonormal measurement vectors, jm1i =
"
� 4
5
3
5

#
and jm2i =

j 2i =
"
3
5
4
5

#
. The post-measurement probability that the state is jm1i is

p01 = tr (jm1i hm1j �) = tr

 "
16
25 � 12

25

� 12
25

9
25

#"
12
25

1
25

1
25

13
25

#!

= tr

 "
36
125 � 28

125

� 27
125

21
125

#!
=
57

125
;

and the post-measurement probability for the state jm2i is

p02 = tr (jm2i hm2j �) = tr

 "
9
25

12
25

12
25

16
25

#"
12
25

1
25

1
25

13
25

#!

= tr

 "
24
125

33
125

32
125

44
125

#!
=
68

125
.

These probabilities are (25) in the proof of Lemma 1. The inequalities (22) are

con�rmed as follows:

H (j i) > �0:5 ln (0:5)� (0:4 + 0:1) ln (0:4 + 0:1) ' 0:6932

> � 57

125
ln

�
57

125

�
� 68

125
ln

�
68

125

�
' 0:6893 > S (�) .
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3 Main Analysis

In this section, we analyze the relationship between accounting number and

information number, the latter is described by the von Neumann entropy. This

entails an economy setting that can be depicted by a quantum process. As

we show, the relationship between accounting number and the von Neumann

entropy takes the same form as the relationship between accounting number

and the Shannon entropy in a classical Arrow-Debreu economy.

Fellingham and Lin (2018) state that in a general state-act-outcome decision

problem with Arrow-Debreu securities and long run preferences, the accounting

rate of return computed based on an economic income basis� which is also the

expected long run return� is equal to a base amount minus the information

number measured by the Shannon entropy. The base amount is the expected

return with perfect information.

Lemma 2 In an Arrow-Debreu economy with long run preferences, the follow-

ing relationship holds:

ln

�
1 +

Income

Assets

�
= E [rjXp]�H (Y jX) , (28)

where Xp denotes the perfect information; Y denotes the payo¤s of interests,

and X denotes the information signals about Y .

Proof. Under economic income accounting, the accounting rate of return is the

continuously compounded rate of return based on information X, that is,

Income

Assets
= er(X) � 1) r (X) = ln

�
1 +

Income

Assets

�
. (29)

Taking a long run perspective so that many returns have been gathered for an

entity, the accounting rate of return converges to the expected rate of return

given information X. This is the application of the law of large number. That

is,

r (X) = E [rjX] . (30)

The central result in Fellingham and Lin (2018) is reproduced as follows,

ln

�
1 +

Income

Assets

�
= rf + I (X;Y ) (31)

where rf denotes the risk free rate; and I (X;Y ) = H (Y ) � H (Y jX) is the
mutual information which measures the reduction of uncertainty in the presence
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of information X. Combining (29) and (30), the relationship (31) is rewritten

as

ln

�
1 +

Income

Assets

�
= E [rjX] = rf +H (Y )�H (Y jX) . (32)

With perfect information Xp, the decision maker learns perfectly about the

underlying state. There is no uncertainty so that H (Y jXp) = 0, from (32),

E [rjXp] = rf +H (Y )�H (Y jXp) = rf +H (Y )

) rf = E [rjXp]�H (Y ) . (33)

Substituting rf expression (33) in (32) yields

E [rjX] = E [rjXp]�H (Y ) +H (Y )�H (Y jX)

= E [rjXp]�H (Y jX) . (34)

In words, the expected return with information X is the expected return with

perfect information minus the Shannon entropy given X.

In this paper, we show that the relationship, described in (28), stays the same

when probabilities and transformations are governed (speci�ed) by quantum

process. In notation,

ln

�
1 +

Income

Assets

�
= E [rjXp]� S (�jX) . (35)

In words, the expected return of an entity (de�ned by accounting rate of return)

is the expected return with perfect information minus the von Neumann entropy.

Both perfect information and entropy are de�ned distinctively in the quantum

setting. In particular, only the measured states can be perfectly observed in

the quantum setting (35) while the underlying states can be perfectly observed

in the classical setting (28). We next present an economic setting in which the

relationship (35) is derived.

3.1 The quantum decision problem

We formulate a state-act-payo¤ decision problem where quantum mechanics

apply. There are two distinct features that are absent in the classical setting

depicted by Fellingham and Lin (2018). One, the state-act-payo¤ matrix does

not have to be full rank in which case an Arrow-Debreu security does not exist

in some states. Two, the underlying states can not be directly observed nor

known.
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Suppose a decision maker is confronted with uncertainty over the set of the

states described by an ensemble of qubits. The underlying state of the qubit

can not be observed but can be measured with some prescribed measurement

basis. The decision maker�s resource allocation decision is then based on the

measured state. In this setting, the decision maker has two decisions to make: (i)

choosing an optimal measurement basis; and (ii) choosing an optimal resource

allocation conditional on the measurement basis. To proceed, we �rst solve the

optimal resource allocation decision for a given measurement basis, and then

characterize the optimal measurement basis.

In particular, the economy is described by an ensemble fpj ;
�� j�g where

the state is denoted by
�� j� and its respective probability is pj . The density

operator of the ensemble � has two eigenvectors jv1i and jv2i and the respective
eigenvalues are �1 and �2. The ensemble is common knowledge but the (realized

state) cannot be observed. Only the measured state is observable. The decision

maker chooses some measurement basis fjmiig to measure the ensemble and
observes the state jmii with probability gi. Let y be the payo¤ for every dollar
invested in the (measured) state. The sequence of events is as follows.

� At t = 0, the decision maker chooses a measurement basis.

� At t = 1, the decision maker chooses the fraction of the initial wealth

invested in each measured state.

� At t = 2, the measured state is observed and the payo¤ is realized.

As the decision maker repeats the sequence of events for many rounds, the

realized return converges to the expected rate of return. This is the application

of the law of large number.

We model the decision maker as a Kelly decision maker who repeatedly

invests a fraction bi of the initial wealth in state jmii. The initial wealth is
normalized to one. Using continuous compounding, the rate of return in state

jmii is written as
biy = eri ) ri = ln (biy) . (36)

Maximizing long run wealth is equivalent to maximizing expected log return (net

of any measurement costs). The Kelly decision maker�s maximization problem

is written as follows.

max
b

E [rjX]� C =
X
i

gi ln (biy)� C (37)
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Subject to
X
i

bi = 1

where C is the cost of measurement scaled by the initial wealth; and X is the

information available at the time of measurement.

Proposition 1 In an economy described by an ensemble fpi; j iig, given a
measurement basis fjmiig, the post-measurement probability that the state of
the economy is state jmii is gi. The Kelly decision maker�s optimal decision is
to invest bi = gi portion of the initial wealth in state jmii.

Proof. The Lagrangian for the decision maker�s program (37) is de�ned as

L (bi;�) =
X
i

gi ln (biy)� C � �
"X

i

bi � 1
#

(38)

where � is the Lagrange multiplier. Then

@L (bi;�)

@bi
= 0 ) bi =

gi
�
. (39)

Since
X
i

bi = 1,
X
i

gi
� = 1 ) � = 1. Then it must be bi = gi. This is the

Kelly "bet your beliefs" criterion (Kelly 1956).

Proposition 1 describes the Kelly decision maker�s optimal resource alloca-

tion decision for a given measurement basis. In the next section, we solve for

the optimal measurement basis.

3.2 Measurement basis optimality

The decision maker chooses the optimal measurement basis to maximize his

expected return (as the measurement cost C is exogenous). Incorporating the

optimal resource allocation decision in Proposition 1, the expected return for

the decision maker can be further written as

E [rjX] =
X
i

gi ln (giy) (40)

=
X
i

gi ln (gi) +
X
i

gi ln (y)

=
X
i

gi ln (gi) + ln (y) .

The second term ln (y) is the return with perfect information. To see why, if

the decision maker knows which state jmii is observed with certainty, he will
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optimally invest all of the initial wealth to the state jmii and not invest in other
states (bi = 1 and bj = 0 for i 6= j). In this case, the expected return is written

as

E [rjXp] = ln (y) . (41)

Here perfect information refers to the measured states while in the classical

setting perfect information refers to the underlying states. Nevertheless, both

the measured states in the quantum setting and the underlying states in the

classical setting are payo¤-relevant. In quantum setting the underlying states

are not observable and therefore irrelevant to payo¤s. The expected return (40)

can be further written as

E [rjX] = E [rjXp] +
X
i

gi ln (gi) . (42)

Example 5 explains how the choice of measurement basis a¤ects the expected

return.

Example 5 Continue Example 3. Suppose the economy is described by an en-

semble (
1

2
;
1

2
; j 1i =

"
1

0

#
; j 2i =

"
3
5
4
5

#)
.

The density operator of the economy is

� =
1

2
j 1i h 1j+

1

2
j 2i h 2j =

1

25

"
17 6

6 8

#
.

The eigenvectors are computed in Example 3 as

jv1i =
"
2p
5
1p
5

#
and jv2i =

"
1p
5

� 2p
5

#
;

and the post-measurement probabilities are �1 = 4
5 and �2 =

1
5 respectively. The

payo¤ is y = 2:5 and the expected return with perfect information is ln (y) =

0:9163.

If the economy is measured by the eigenvectors, the optimal bids are b1 = 0:8

and b2 = 0:2. Then the expected return is computed as

E [r] = 0:8� ln (0:8� 2:5) + 0:2� ln (0:2� 2:5) = 0:4159.
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The entropy is 4
5 ln

�
4
5

�
+ 1

5 ln
�
1
5

�
' �0:5004. Then we derive

E [r] = �0:5004 + ln (y) = �0:5004 + 0:9163 = 0:4159.

If the economy is measured by the standard basis, jm1i =
"
1

0

#
and jm2i ="

0

1

#
. The post-measurement probability that the state is jm1i =

"
1

0

#
is

g1 = tr

 "
1

0

# h
1 0

i 1
25

"
17 6

6 8

#!

= tr

 
1

25

"
17 6

0 0

#!
=
17

25
;

while the post-measurement probability for the state jm2i =
"
0

1

#
is

g2 = tr

 "
0

1

# h
0 1

i 1
25

"
17 6

6 8

#!

= tr

 
1

25

"
0 0

6 8

#!
=
8

25
.

The optimal bids are b1 = 17
25 = 0:68 and b2 = 8

25 = 0:32. Then the expected

return is computed as

E [r] =
17

25
� ln (0:68� 2:5) + 8

25
� ln

�
8

25
� 2:5

�
= 0:2894.

The entropy is 17
25 ln

�
17
25

�
+ 8

25 ln
�
8
25

�
' �0:6269. Then we derive

E [r] = �0:6269 + ln (y) = �0:6269 + 0:9163 = 0:2894.

The decision maker chooses the optimal measurement basis to maximize the

expected return. Since the expected return with perfect information E [rjXp]

is not a¤ected by the measurement basis, maximizing the expected return is

equivalent to maximizing the following expression,

max
fjmiig

X
i

gi ln (gi) . (43)
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In Example 5, the measurement basis fjviig yields higher expected return than
the standard basis fjmiig. As we prove later, the measurement basis fjviig is
the optimal basis.

To understand the intuition, recall the measurement basis fjviig is the eigen-
basis for the ensemble and the probabilities �i are the eigenvalues. In particular,

eigenvectors jvii solve � jvii = �i jvii. This allows spectral decomposition of the
density operator � as

� = �1 jv1i hv1j+ �2 jv2i hv2j

=
4

5

"
4
5

2
5

2
5

1
5

#
+
1

5

"
1
5

2
5

� 2
5

4
5

#
=
1

25

"
17 6

6 8

#
.

In this form it is seen that � is also the density operator for another ensemble,(
4

5
;
1

5
; jv1i =

"
2p
5
1p
5

#
; jv2i =

"
1p
5

� 2p
5

#)
.

Since the density operator for the modi�ed ensemble is the same as that of the

initial ensemble, the optimal measurement basis should be the same for both

ensembles. To understand why the eigenbasis fjviig is the optimal measurement
basis, consider the measurement vectors jmii and the respective probabilities
gi. A density operator can be formulated as

�0 = g1 jm1i hm1j+ g2 jm2i hm2j

=
17

25

"
1 0

0 0

#
+
8

25

"
0 0

0 1

#
=
1

25

"
17 0

0 8

#
.

The new density operator �0 is a projective measurement of the initial density

operator � (as shown in the proof of Proposition 2), that is,

�0 =
X
i

Mi�Mi.

The term
X
i

gi ln (gi) = �S (�0) is the negative entropy of �0 while
X
i

�i ln (�i) =

�S (�) is the negative entropy of �. However, as Theorem 11.9 in Nielsen and

Chuang (2014) states, projective measurement will never decrease entropy so

that S (�) � S (�0) )
X
i

�i ln (�i) �
X
i

gi ln (gi). Proposition 2 formally

states the result.
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Proposition 2 In an economy described by an ensemble fpi; j iig and its den-
sity operator �, the optimal measurement basis that maximizes long run expected

return is the set of eigenvectors for the density operator, fjviig.

Proof. First, we show that for any measurement vectors jmii, the respective
probabilities gi and the density operator �0 =

X
i

gi jmii hmij, the following

equality holds. X
i

gi ln (gi) = tr (�0 ln (�0)) (44)

Two facts about �0 are useful in proving (44). One, jmii and gi are the respective
eigenvectors and eigenvalues for �0 so that hmij �0 = gi hmij. Two, the density
operator �0 is diagonalizable in the form of �0 = D�1AD. Matrix D has the

eigenvectors jmii as the columns D =
h
jm1i jm2i

i
and D�1 =

"
hm1j
hm2j

#
.6 Ma-

trix A is a diagonal matrix whose diagonal elements are probabilities gi. Then

ln (A) is a diagonal matrix whose diagonal elements are ln (gi). The natural log

of a diagonalizable matrix is de�ned as

ln (�0) = D�1 ln (A)D (45)

=

"
hm1j
hm2j

#"
ln (g1) 0

0 ln (g2)

# h
jm1i jm2i

i
= ln (g1) jm1i hm1j+ ln (g2) jm2i hm2j =

X
j

ln (gj) jmji hmj j .

The �rst fact explains the second equality in (46); and (45) ensures the third

equality in (46),

tr (�0 ln (�0)) =
X
i

hmij �0 ln (�0) jmii =
X
i

gi hmij ln (�0) jmii (46)

=
X
i

gi hmij

0@X
j

ln (gj) jmji hmj j

1A jmii

=
X
i

gi

0@X
j

ln (gj) hmijmji hmj jmii

1A =
X
i

gi ln (gi) .

6Matrix D is orthonormal as

DTD =

"
hm1j
hm2j

# h
jm1i jm2i

i
=

"
hm1jm1i hm1jm2i
hm2jm1i hm2jm2i

#
= I.

For an orthonormal matrix, its inverse is equal to its transpose.
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The last equality of (46) is ensured as fjmiig is orthonormal basis.
Next, to prove X

i

�i ln (�i) �
X
i

gi ln (gi) , (47)

(44) suggests that it is su¢ cient to show the following inequality holds,

tr (� ln (�)) � tr (�0 ln (�0)) (48)

as the density operator of the initial ensemble is written as � =
X
i

�i jvii hvij.

We take two steps. In the �rst step, we show tr (�0 ln (�0)) = tr (� ln (�0)); and

in the second step, tr (� ln (�)) � tr (� ln (�0)).

Step 1. For gi = hmij � jmii and Mi = jmii hmij, �0 can be written as

�0 =
X
i

gi jmii hmij =
X
i

hmij � jmii jmii hmij (49)

=
X
i

jmii hmij � jmii hmij =
X
i

Mi�Mi.

Note that (49) suggests the density operator �0 is a projective measurement of

�. Now we prove the result in Step 1:

tr (�0 ln (�0)) = tr

 X
i

Mi�Mi ln (�
0)

!
= tr

 X
i

Mi� ln (�
0)Mi

!
(50)

= tr

 X
i

M2
i � ln (�

0)

!
= tr (� ln (�0)) .

The �rst equality in (50) is ensured by (49), the second equality is ensured by

the observation that ln (�0) commutes with Mi as shown in (51). The third

equality in (50) is to apply the cyclic property of trace and the fourth equality

is ensured by M2
i = Mi and

X
i

Mi = I. In addition, the de�nition (45) and

the commutative property of Mi yield

Mi ln (�
0) = Mi

0@X
j

ln (gj)Mj

1A =
X
j

ln (gj)MiMj (51)

=
X
j

ln (gj)MjMi = ln (�
0)Mi.

Step 2. Based on (44), we derive

tr (� ln (�))� tr (� ln (�0)) =
X
i

�i ln (�i)�
X
i

hvij � ln (�0) jvii . (52)
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Substituting hvij � = �i hvij and the de�nition (45) in (52) yields

tr (� ln (�))� tr (� ln (�0)) =
X
i

�i ln (�i)�
X
i

�i hvij ln (�0) jvii (53)

=
X
i

�i ln (�i)�
X
i

�i hvij

24X
j

ln (gj) jmji hmj j

35 jvii
=

X
i

�i

24ln (�i)�X
j

ln (gj) hvi jmji hmj j vii

35 .
Because

X
j

hvi jmji hmj j vii = 1 and ln (�) is a concave function, applying

Jensen�s inequality, (53) yields the following inequality,

tr (� ln (�))� tr (� ln (�0)) (54)

�
X
i

�i

24ln (�i)� ln
0@X

j

gjhvi jmji hmj j vii

1A35

=
X
i

�i

2664ln
0BB@ �iX

j

gjhvi jmji hmj j vii

1CCA
3775 = �X

i

�i

2664ln
0BB@
X
j

gjhvi jmji hmj j vii

�i

1CCA
3775 .

Applying Jensen�s inequality can further reduce the right-hand side expression

in (54) and yields the inequality in (55),

tr (� ln (�))� tr (� ln (�0)) (55)

� � ln

0BB@X
i

�i

2664
X
j

gjhvi jmji hmj j vii

�i

3775
1CCA

= � ln

0@X
i

X
j

gjhvi jmji hmj j vii

1A = � ln

0@X
i

hvij

24X
j

gj jmji hmj j

35 jvii
1A

= � ln
 X

i

hvij �0 jvii
!
= 0.

The last equality in (55) is ensured as hvij �0 jvii is the post-measurement prob-
ability of the state being jvii and all the probabilities sum up to one.

In a nutshell, we have shown tr (� ln (�)) � tr (� ln (�0)) = tr (�0 ln (�0)) )X
i

�i ln (�i) �
X
i

gi ln (gi) so that the measurement basis fjviig yields the

greatest expected return. The equality holds as long as gi = �i.
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The following example illustrate Proposition 2 for an ensemble with three

qubits.

Example 6 Consider a system with three qubits, j 1i =
"
1

0

#
, j 2i =

"
3
5
4
5

#
, and

j 3i =
"

1p
10
3p
10

#
. Their respective probabilities are 0:3, 0:5, and 0:2. The density

operator is computed as

� = 0:3

 "
1 0

0 0

#!
+ 0:5

 "
9
25

12
25

12
25

16
25

#!
+ 0:2

 "
1
10

3
10

3
10

9
10

#!

=

"
1
2

3
10

3
10

1
2

#
.

The eigenvalues of � can be calculated as follows,

det

 "
1
2 � �

3
10

3
10

1
2 � �

#!
= 0,

�
1

2
� �
� �
1

2
� �
�
� 9

100
= 0,

which has the solutions

�1 = 0:8 and �2 = 0:2;

and the respective eigenvectors are jv1i =
"
1p
2
1p
2

#
and jv2i =

"
� 1p

2
1p
2

#
. The payo¤

is y = 2:5 and the expected return with perfect information is ln (y) = 0:9163.

When measured by the eigenvectors, the optimal bids are b1 = 0:8 and b2 = 0:2.

Then the expected return is computed as

E [r] = 0:8� ln (0:8� 2:5) + 0:2� ln (0:2� 2:5) = 0:4159.

The entropy is 0:8 ln (0:8) + 0:2 ln (0:2) ' �0:5004. Then we derive

E [r] = �0:5004 + ln (y) = �0:5004 + 0:9163 = 0:4159.

If the economy is measured by the standard basis, jm1i =
"
1

0

#
and jm2i ="

0

1

#
. The post-measurement probability that the state is jm1i =

"
1

0

#
is

g1 = tr

 "
1

0

# h
1 0

i " 1
2

3
10

3
10

1
2

#!
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= tr

 "
1
2

3
10

0 0

#!
=
1

2
;

while the post-measurement probability for the state jm2i =
"
0

1

#
is

g2 = tr

 "
0

1

# h
0 1

i " 1
2

3
10

3
10

1
2

#!

= tr

 "
0 0
3
10

1
2

#!
=
1

2
.

The optimal bids are b1 = 0:5 and b2 = 0:5. Then the expected return is com-

puted as

E [r] =
1

2
� ln (0:5� 2:5) + 1

2
� ln (0:5� 2:5) = 0:2231.

The entropy is 1
2 ln

�
1
2

�
+ 1

2 ln
�
1
2

�
' �0:6932. Then we derive

E [r] = �0:6932 + ln (y) = �0:6932 + 0:9163 = 0:2231.

Combining Propositions 1 and 2, the relationship between accounting infor-

mation and quantum entropy is immediate.

Proposition 3 In an economy described by an ensemble fpi; j iig and its
density operator �, the following relationship holds,

ln

�
1 +

Income

Assets

�
= E [rjXp]� S (�jX) , (56)

where Xp denotes perfect information regarding the measured states.

Proof. Proposition 2 suggests that the expected return (42) is written as

E [rjX] = E [rjXp] +
X
i

�i ln (�i) = E [rjXp]� S (�jX) , (57)

where S (�jX) denotes the von Neumann entropy of the density operator for
a given information X. The accounting rate of return under economic income

accounting converges to the expected return (see the discussions in Lemma 2)

so that

ln

�
1 +

Income

Assets

�
= E [rjX] . (58)
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The result is immediate while combining (57) and (58).

Proposition 3 applies to all economic settings, in particular, the settings in

which complete market does not exist. If there is no trading in some states of

the economy (that is, the qubit states in the ensemble are not orthogonal, please

refer to Example 5), taking the return with perfect information as a benchmark,

the expected return is reduced by the amount equal to the von Neumann entropy.

On the other hand, if the qubit states are orthogonal, the quantum decision

problem is reduced to a classical problem which is depicted by an Arrow-Debreu

economy. Then the von Neumann entropy of the initial ensemble is the same

as the Shannon entropy, the latter is de�ned as H (fj iig) = �
X
i

pi ln (pi).

In this sense, the quantum decision problem essentially stretches the domain of

the classical decision problem by incorporating incomplete markets. Corollary

1 formally states the result.

Corollary 1 In an economy described by an ensemble fpi; j iig and its density
operator �, assume the states j ii are orthogonal. Then the following relation-
ship holds,

ln

�
1 +

Income

Assets

�
= E [rjXp]�H (fj iig) . (59)

Proof. It is su¢ cient to show that the eigenvectors of the ensemble are j ii
and the eigenvalues are pi. The density operator of the ensemble is � =X
i

pi j ii h ij. Then we derive

�
�� j� =

 X
i

pi j ii h ij
!�� j� = pj

�� j� . (60)

That is, �j = pj and jvji =
�� j�.

There are two implications. One, accounting stocks and �ows are useful

in quantum setting. Two, classical problems are seen to be a special case of

quantum decision problems. Example 7 illustrates how accounting information

connects with the von Neumann entropy.

Example 7 Consider a new asset is acquired at the beginning of each period

and generates periodic cash �ows for three periods after acquisition. The cash

�ows are de�ned as CFi = ki (e
r)
i, where k = fkig =

�
1
3 ;

1
6 ;

1
2

�
and r = 0:3955

is the rate of return calculated in Example 5. The economic value of the acquired
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asset is

C =
X
i

CFi

(er)
i
=
X
i

ki (e
r)
i

(er)
i
=
1

3
+
1

6
+
1

2
= 1.

In the steady state, there will always be three productive assets. The ending

balance of the asset, denoted by B, converges to a constant so that

B + C �Depreciation = B.

The periodic income is the expected rate of return multiplied by the assets avail-

able at the beginning of each period (er � 1) (B + C). The depreciation expense
can be derived from the income statement,

Revenues
X
i

CFi =
er

3 +
e2r

6 + e3r

2

Expenses Depreciation

Income (er � 1) (B + C)

so that Depreciation =
X
i

CFi�(er � 1) (B + C). The steady state asset value

can be derived as

B + C �
X
i

CFi + (e
r � 1) (B + C) = B

) B =

X
i

CFi � erC

er � 1 =
� 2er

3 + e2r

6 + e3r

2

er � 1 = 2:0929.

The periodic income is income = (er � 1) (B + C) =
X
i

CFi � C = 1:5004.

Then

ln

�
1 +

Income

Assets

�
= ln

�
1 +

Income

B + C

�
= 0:3955 = E [r] .

Example 8 In this example, we incorporate (nontrivial) partial information

X. Continue Example 5 in which the economy is described by an ensemble(
1

2
;
1

2
; j 1i =

"
1

0

#
; j 2i =

"
3
5
4
5

#)
.

If the decision maker does not have any information (except the ensemble) at

the measurement, E [r] = 0:4159.
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Suppose there is information source X producing two signals, x1 and x2, and

the joint probabilities are de�ned as

pr (j 1i ; x) j 1i j 2i
x1

1
4 0

x2
1
4

1
2

.

The marginal probabilities of the qubit states are consistent with those in Exam-

ple 5. All the other information is also consistent with Example 5.

If x1 is observed, the signal perfectly predicts the state of the ensemble is

j 1i and the density operator � (x1) =
"
1 0

0 0

#
. There is no uncertainty. The

expected return given signal x1 is

E [rjx1] = E [rjXp]� S (�jx1) = 0:9163� 0 = 0:9163.

If x2 is observed, the decision maker updates his belief and the probability that

the qubit state is j 1i (j 2i) is 1
3 (

2
3). The revised ensemble is written as(

1

3
;
2

3
; j 1i =

"
1

0

#
; j 2i =

"
3
5
4
5

#)

and the density operator is computed as

� (x2) =
1

3
j 1i h 1j+

2

3
j 2i h 2j

=
1

3

"
1 0

0 0

#
+
2

3

"
9
25

12
25

12
25

16
25

#
=

"
43
75

8
25

8
25

32
75

#
.

The eigenvalues of � (x2) are computed as �1 (x2) = 15+
p
97

30 ' 0:8283, and

�2 (x2) =
15�

p
97

30 ' 0:1717. The respective eigenvectors are

jv1i =
"
0:7821

0:6231

#
and jv2i =

"
0:6231

�0:7821

#
.

It is checked that hv1j v2i = 0 so that the two vectors are orthogonal. The

expected return given signal x2 is

E [rjx2] = 0:8283� ln (0:8283) + 0:1717� ln (0:1717) + 0:9163 = 0:4577.

The expected return is higher when information source X is available. This is

evident as E [rjxi] > 0:4159, the latter, calculated in Example 5, is the expected
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return given the prior knowledge is merely the ensemble. The expected return

prior learning information X can be calculated as

E [r] =
1

4
� E [rjx1] +

3

4
� E [rjx2] ' 0:5724.

4 Application�Performance Measurement

The equivalence relationship makes it convenient to look at problems in one

discipline from the perspective of another discipline. One such example is the

issue of performance measurement. Consider a large organization in which in-

dividuals, although work remotely, share information and work as a team. How

shall the individual be evaluated, based on individual performance or based on

group performance?

We illustrate that in this setting, it is impossible to do individual measure-

ment without having a strictly negative impact on expected return. Speculation

is o¤ered about implications of individual measure when individuals sharing in-

formation and coordinating their behaviors is natural and bene�cial. In this

case individual measures are quite destructive.7

To properly describe the setting, we introduce entangled qubits and its non-

locality property in quantum mechanics.

Entangled qubits

So far, the state of an ensemble is described by a qubit. Now consider the

state of a system is described by two qubits, which can be represented by a four

element vector. For example, the standard states for two qubits are written as

j00i =

266664
1

0

0

0

377775 , j01i =
266664
0

1

0

0

377775 , j10i =
266664
0

0

1

0

377775 , and j11i =
266664
0

0

0

1

377775 .

These states can be written as a the Kronecker matrix product (or tensor prod-

7Demski, Fellingham, Lin and Schroeder (2008) also demonstrates the detrimental e¤ect of

individual measurement in a setting in which qubit entanglement describes positive productive

interaction.
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uct) of two qubits j0i and/or j1i. For example,

j01i = j0i 
 j1i =
"
1

0

#


"
0

1

#
=

266664
0

1

0

0

377775 .
An important two-qubit state is the Bell state or EPR qubit pair (EPR stands

for Einstein, Podolsky, and Rosen), written as8

j�00i =
j00i+ j11ip

2
=

1p
2

266664
1

0

0

1

377775 .
An unique feature of the Bell state is that it cannot be written as a Kronecker

product of any two qubits. This property is called "entanglement." Entangled

qubits are correlated to the extent that they instantaneously share each other�s

state even when separated by any distance. When the two entangled qubits are

moved far apart, a measurement of either qubit will allow the prediction with

certainty of the state of the other qubit. This "non-locality" directly violates

Einstein�s principle of local action� meaning distant objects do not have direct

impact on each other and therefore is viewed as a disturbing phenomenon.

Measurement

In economic setting, non-locality is not at all mysterious� individuals in

an entity often share information and work cooperatively. Now the question

is whether, in such setting, it makes sense to adopt group measurement or

individual measurement. Consider the state of the system is the Bell state

j�00i. The measurement axiom and the entropy concept discussed in previous

sections also apply here. Since the state is unique and there is no uncertainty,

the von Neumann entropy is zero. To see this, the density operator of the Bell

state j�00i is computed as

�j�00i = j�00i h�00j =
1

2

266664
1

0

0

1

377775
h
1 0 0 1

i
=
1

2

266664
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

377775 .
8Three other Bell states are j�01i =

j01i+j10ip
2

, j�10i =
j00i�j11ip

2
, and j�11i =

j01i�j10ip
2

.
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The eigenvalues of �j�00i are 1 and 0.
9 This suggests the optimal measurement

vector is j�00i. So the von Neumann entropy is S
�
�j�00i

�
= � ln (1) = 0.

Alternatively, it is possible to measure one qubit at a time. The measurement

matrix is constructed using the Kronecker product of a measurement matrix

and the identity matrix. Consider a set of orthonormal measurement vectors

1p
x2+1

"
1

x

#
and 1p

x2+1

"
�x
1

#
where x can be any real number. To measure the

�rst qubit using the measurement vector 1p
x2+1

"
1

x

#
while leaving the second

qubit unmeasured, the measurement matrix is written as

M1 =
1p

x2 + 1

"
1

x

#
1p

x2 + 1

h
1 x

i


"
1 0

0 1

#

=
1

x2 + 1

"
1 x

x x2

#


"
1 0

0 1

#
=

1

x2 + 1

266664
1 0 x 0

0 1 0 x

x 0 x2 0

0 x 0 x2

377775 .
9The eigenvalues � satis�es the following expression,

det

0BBBB@
266664
1
2
� � 0 0 1

2

0 �� 0 0

0 0 �� 0
1
2

0 0 1
2
� �

377775
1CCCCA = 0.

It is more complex to determine the eigenvalues for a 4� 4 matrix.

det

0BBBB@
266664
1
2
� � 0 0 1

2

0 �� 0 0

0 0 �� 0
1
2

0 0 1
2
� �

377775
1CCCCA

=

�
1

2
� �

�
det

0B@
264�� 0 0

0 �� 0

0 0 1
2
� �

375
1CA� 1

2
det

0B@
2640 �� 0

0 0 ��
1
2

0 0

375
1CA

=

�
1

2
� �

�"
(��) det

 "
�� 0

0 1
2
� �

#!#
� 1

2

"
�det

 "
0 ��
1
2

0

#!#

=

�
1

2
� �

�
(��) (��)

�
1

2
� �

�
� 1

2
�

�
�

2

�
= �2 (1� �) (��) = 0.

Therefore, there are two distinct eigenvalues 1 and 0. The eigenvector associated with � = 1

is j�00i.
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Similarly, to measure the second qubit using the measurement vector 1p
x2+1

"
�x
1

#
while leaving the second qubit unmeasured, the measurement matrix is written

as

M2 =
1p

x2 + 1

"
�x
1

#
1p

x2 + 1

h
�x 1

i


"
1 0

0 1

#

=
1

x2 + 1

"
x2 �x
�x 1

#


"
1 0

0 1

#
=

1

x2 + 1

266664
x2 0 �x 0

0 x2 0 �x
�x 0 1 0

0 �x 0 1

377775 .

The post-measurement probability that the �rst qubit is 1p
x2+1

"
1

x

#
can be

computed as

tr
�
M1�j�00i

�
= tr

0BBBB@ 1

x2 + 1

266664
1 0 x 0

0 1 0 x

x 0 x2 0

0 x 0 x2

377775 12
266664
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

377775
1CCCCA

= tr

0BBBB@ 1

2 (x2 + 1)

266664
1 0 0 1

x 0 0 x

x 0 0 x

x2 0 0 x2

377775
1CCCCA =

1

2
;

similarly, the post-measurement probability that the �rst qubit is 1p
x2+1

"
�x
1

#
can be computed as

tr
�
M2�j�00i

�
= tr

0BBBB@ 1

x2 + 1

266664
x2 0 �x 0

0 x2 0 �x
�x 0 1 0

0 �x 0 1

377775 12
266664
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

377775
1CCCCA

= tr

0BBBB@ 1

2 (x2 + 1)

266664
x2 0 0 x2

�x 0 0 �x
�x 0 0 �x
x2 0 0 1

377775
1CCCCA =

1

2
.
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That is, for any measurement vector (described by x), the post-measurement

probabilities would be one-half. The entropy is then calculated as

�1
2
ln

�
1

2

�
� 1
2
ln

�
1

2

�
= ln 2 > 0.

What we just illustrated is an application of Proposition 2� that is, any

projective measurement that is not eigenbasis would increase entropy. In our

economic setting, measuring using the entangled Bell state j�00i can be viewed
as group measurement as the two qubits are measured simultaneously. Mea-

suring one qubit at a time can be viewed as individual measurement. Clearly,

individual measurement increases the entropy than group measurement. Propo-

sition 3 suggests in this case individual measurement also decreases the expected

rate of return and therefore is corrosive.

5 Concluding Remarks

The main result of the paper is the equality between accounting number and

quantum entropy, S (Y jX),

ln

�
1 +

Income

Assets

�
= E [rjXp]� S (Y jX) .

In an attempt to establish accounting as an information discipline, a previ-

ous paper had established conditions for the accounting-entropy equality using

Shannon or classical entropy. One of the conditions for the equality was the

existence of complete market. This paper demonstrates that, when quantum

entropy is substituted for Shannon entropy, the domain of the equality is ex-

panded to include incomplete market. (When markets are complete, quantum

entropy equals Shannon entropy.)

An accounting question, that is, what number to assign to income and assets,

can be reframed as an information question, that is, how much information

does the accounting entity possesses. Since the equality goes both ways, an

information question can be reframed as an accounting question.

There are advantages to the quantum approach besides expanding the do-

main of the accounting-entropy equality. One advantage is that quantum math-

ematics capture non-local e¤ects. That is, distant units can share information

instantaneously. While this has been a source of debate in physics, it does
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seem more plausible in an economic setting, where coordination and informa-

tion sharing among units are routine and valuable. We illustrate in the paper

that individual measurement of units can be destructive: entropy is increased

and rate of return declines.

Another advantage of the quantum approach is that it anticipates an immi-

nent technological change. A number of quantum technologies, such as quantum

computers and quantum clocks, are already beginning to appear. Double entry

accounting has proven useful over the certain notwithstanding dramatic techno-

logical shifts. It is somewhat comforting that accounting remains well positioned

to adapt to another such shift.
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