
1 Quantile treatment effects

Quantile treatment effects (QTE ) are point identified very similarly to LATE,
local average treatment effects, when a binary instrument exists (see Abadie,
Angrist, and Imbens [1998]). In addition to standard identification conditions
for LATE (potential outcomes are independent of instruments ν, treatment z is
meaningfully related to the instruments, and treatment adoption is uniformly
increasing in the instruments; see chapter 3), QTE (θ) uniqueness can only be
assured if the θ-quantiles for Y (0) and Y (1) conditional on z1−z0 = 1 (defined
below) are unique. Some explanation is in order.
Quantiles are typically defined by the distribution function,

F (y) =

yu∑
i=yl

Pr (yi)

where yl is the lower bound of support for y and yu is the upper bound of
support for y. However, if we define another function, say

G (y) =

yl∑
i=yu

Pr (yi) ,

the quantile is unambiguous or unique if F−1 (θ) = G−1 (1− θ). This statement
is always true for continuous random variables but may fail for random variables
with discrete support. An example helps clarify.
Suppose the data generating process is uniform{1, 2, 3, 4}. Then,

y F (y) G (y)
1 0.25 1.0
2 0.50 0.75
3 0.75 0.50
4 1.0 0.25

First, second, and third quartiles are ambiguous but immediate surrounding
quantiles are not.

θ F−1 (θ) G−1 (1− θ)
0.24 1 1
0.25 1 2
0.26 2 2
0.49 2 2
0.5 2 3
0.51 3 3
0.74 3 3
0.75 3 4
0.76 4 4

Point identification of QTE (θ) may fail if the θ−quantile for Y (0) or Y (1)
conditional on z1 − z0 = 1 is ambiguous. When θ-quantiles for Y (0) or Y (1)
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conditional on z1 − z0 = 1 are unambiguous, the θ−quantile treatment effect
conditional on X is

QTE (θ | X = x, z1 − z0 = 1) ≡ Qθ (Y (1) | X = x, z1 − z0 = 1)

−Qθ (Y (0) | X = x, z1 − z0 = 1)

= α

where Qθ (·) refers to θ−quantile of the random variable, α is the conditional
quantile treatment effect from a quantile regression with treatment z = 0, 1 and
covariates X,

Y ≡ zY (1) + (1− z)Y (0) = αz +Xβ + ε

xβ is the θ−quantile for Y (0) conditional on X = xi, z1 is treatment when the
instrument ν = 1 and z0 is treatment when ν = 0. Hence, z1 − z0 = 1 refers
to the target subpopulation of compliers. That is, those individuals who adopt
treatment when the instrument is manipulated from zero to one.
Next, we explore two instrumental variable strategies to identify conditional

(on the covariates) quantile treatment effects and compare them with exoge-
nous treatment. In addition to the approach outlined above focusing on the
subpopulation of compliers proposed by Abadie, Angrist, and Imbens (AAI),
we consider an approach developed by Chernozhukov and Hansen (CH) that
seeks to identify QTE for the entire population. Then, we explore identifica-
tion of marginal (not conditional on the covariates) quantile treatment effects
proposed by Firpo (F).

1.1 Identification

First, consider conventional quantile regression. Parameters are identified via

argmin
b

E [(Y −Xb) · (θ − 1 {Y −Xb < 0})]

The intuition for this result is that Ŷ = Xb is chosen to minimize the expected
linear loss where the loss function is

C
(
Ŷ , Y | X

)
=

c1

∣∣∣Ŷ − Y ∣∣∣ Ŷ ≤ Y

c2

∣∣∣Ŷ − Y ∣∣∣ Ŷ > Y

and θ = c1
c1+c2

. Suppose c1 = αθ then θ = αθ
αθ+c2

or 1 = α
αθ+c2

which gives
c2 = α (1− θ). In other words, c1 is proportional to θ as c2 is proportional
to 1 − θ. The QTE identification strategies are similar in that they employ
variations (typically, different weighting schemes) on the above conventional
quantile regression.

1.1.1 AAI identification strategy

The AAI conditions
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(1) (independence) for Yνz and zν , Y10, Y11, Y00,Y01, z1, and z0 are indepen-
dent of the instrument ν given X,

(2) (exclusion) Yz = Y0z = Y1z,
(3) (non-trivial assignment) Pr (z = 1 | X) ∈ (0, 1),
(4) (first-stage) E [z1 | X] 6= E [z0 | X], and
(5) (monotonicity or uniformity) Pr (z1 ≥ z0 | X) = 1,

lead to

argmin
a,b

E

[ (
1− (1−ν)z

Pr(ν=0|X) −
(1−z)ν

Pr(ν=1|X)

)
× (Y − az −Xb) (θ − 1 {Y − az −Xb < 0})

]

equals α, β. Hence, the conditional θ−quantile treatment effect, α, is point
identified for the (unidentified) subpopulation of compliers and the variation

from conventional quantile regression is that κ =
(

1− (1−ν)z
Pr(ν=0|X) −

(1−z)ν
Pr(ν=1|X)

)
replaces weight equal to one.
Now, let’s explore the derivation of the weights

κ =

(
1− (1− ν) z

Pr (ν = 0 | X)
− (1− z) ν

Pr (ν = 1 | X)

)
in the above expression

E [κ (Y − az −Xb) · (θ − 1 {Y − az −Xb < 0})]

= E

[ (
1− (1−ν)z

Pr(ν=0|X) −
(1−z)ν

Pr(ν=1|X)

)
× (Y − az −Xb) (θ − 1 {Y − az −Xb < 0})

]

For any real function ψ of (Y,X,Z), ψ (Y,X,Z) along with independence con-
dition (1),

E [κψ (Y,X,Z)]

Pr (z1 > z0)
= E [ψ (Y,X,Z) | z1 > z0]

To see this, write via Bayes and monotonicity or uniformity (precludes defiers)

E [ψ | X] = E [ψ | X, z1 > z0] Pr (z1 > z0 | X)

+E [ψ | X, z1 = z0 = 1] Pr (z1 = z0 = 1 | X)

+E [ψ | X, z1 = z0 = 0] Pr (z1 = z0 = 0 | X)

Rearranging gives

E [ψ | X, z1 > z0]

=
1

Pr (z1 > z0 | X)

×
{
E [ψ | X]− E [ψ | X, z1 = z0 = 1] Pr (z1 = z0 = 1 | X)

−E [ψ | X, z1 = z0 = 0] Pr (z1 = z0 = 0 | X)

}
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Monotonicity means ν = 1 and z = 0 are never-takers which implies

E [ψ | X, z1 = z0 = 0] = E [ψ | X, ν = 1, z = 0]

= E

[
ψν (1− z)

Pr (ν = 1, z = 0 | X)
| X
]

= E

[
ψν (1− z)

Pr (ν = 1 | X, z = 0) Pr (z = 0 | X)
| X
]

=
1

Pr (ν = 1 | X, z = 0)
E

[
ψν (1− z)

Pr (z = 0 | X)
| X
]

Uniformity and independence imply

Pr (ν = 1 | X, z = 0) = Pr (z1 = z0 = 0 | X)

Hence,

E [ψ | X, z1 = z0 = 0] Pr (z1 = z0 = 0 | X) = E

[
ψν (1− z)

Pr (z = 0 | X)
| X
]

Likewise, ν = 0 and z = 1 are always-takers and

E [ψ | X, z1 = z0 = 1] = E [ψ | X, ν = 0, z = 1]

= E

[
ψz (1− ν)

Pr (ν = 0, z = 1 | X)
| X
]

= E

[
ψz (1− ν)

Pr (ν = 0 | X, z = 1) Pr (z = 1 | X)
| X
]

=
1

Pr (ν = 0 | X, z = 1)
E

[
ψz (1− ν)

Pr (z = 1 | X)
| X
]

Again, uniformity and independence imply

Pr (ν = 0 | X, z = 1) = Pr (z1 = z0 = 1 | X)

Hence,

E [ψ | X, z1 = z0 = 1] Pr (z1 = z0 = 1 | X) = E

[
ψz (1− ν)

Pr (z = 1 | X)
| X
]

Substitution into the expression above yields

E [ψ | X, z1 > z0] =
E [ψ | X]− E

[
ψz(1−ν)
Pr(z=1|X) | X

]
− E

[
ψν(1−z)
Pr(z=0|X) | X

]
Pr (z1 > z0 | X)

Iterated expectations produces the result

EX [E [ψ | X, z1 > z0]] =
E [ψ]− E

[
ψz(1−ν)
Pr(z=1|X)

]
− E

[
ψν(1−z)
Pr(z=0|X)

]
Pr (z1 > z0)

E [ψ | z1 > z0] =
E [κψ]

Pr (z1 > z0)
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Let ψ = (Y − az −Xb) (θ − 1 {Y − az −Xb < 0}) and the θ−quantile AAI in-
strumental variable identification strategy for the subpopulation of compliers is
complete.

1.1.2 CH identification strategy

The CH identification strategy revolves around defining a quantile response
function, Yz ≡ q (z, x, Uz) where Yz is potential outcome with treatment z, x is
potential values of covariates, and Uz is unobservable outcome. For Uz ∼ U (0, 1)
and Uz = θ, q (z, x, Uz) identifies the θ-th quantile for potential outcome Yz. CH
identification conditions include
(1) (potential outcomes) Yz = q (z, x, Uz), where q (z, x, θ) is strictly increas-

ing in θ and Uz ∼ U (0, 1),
(2) (independence) conditional on X, Uz is independent of ν,
(3) (selection) Z ≡ δ (ν,X, V ) is some unknown function δ and random

vector V ,
(4) (rank invariance or rank similarity) conditional on X = x and ν = ν,

Uz = Uz′ , or Uz ∼ Uz′ conditional on V , and
(5) (observables) observable variables consist of Yz ≡ q (z, x, Uz) , Z,X, and

ν.
The principle follows from conventional quantile regression proposed by

Koenker and Bassett [1978]

QY |X (θ) ∈ arg min
f∈F

E [ρθ (Y − f (X))]

where ρθ (u) = (θ − 1 (u < 0))u, the asymmetric least absolute deviation loss.
The implication of the CH identification conditions is 0 is the τ -th quantile of
Y − q (Z,X, θ) conditional on covariates and instruments (X, ν).

0 = QY−q(Z,X,θ) (θ | X, ν)

Thus, CH pose the problem as finding a function that satisfies

0 ∈ arg min
f∈F

E [ρθ (Y − q (Z,X, θ)− f (X, ν))]

1.1.3 F identification strategy

As with the other identification strategies outcome is continuous (to avoid ambi-
guity in the quantiles – the examples violate this but we accommodate this via
partial identification), in addition the F (Firpo) identification strategy draws on
(1) (strong ignorability) Conditional on X, Y (1) , Y (0) are independent of

treatment, Z.
(2) (common support) Let p (x) = Pr (Z = 1 | X = x), then c ≤ p (x) ≤ 1−c

for c > 0.
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1.2 Estimation

Conventional quantile regression has a linear programming (LP) formulation.

min
τ≥0

cT τ

s.t. Aτ = Y

where c = (o, o, θ · ι, (1− θ) · ι)T , τ = (a+, b+, a−, b−, u+, u−)
T
, u = Y − za −

Xb, A = [z,X,−z,−X, I,−I] , o is an h + 1 element vector of zeroes, ι is an
n element vector of ones, X is an n × h matrix of covariates, I is an n × n
identity matrix, b has h elements, e+ denotes the positive part and e− denotes
the negative part of real number e.

1.2.1 AAI estimation

AAI estimation of QTE (θ) involves a variation on the above where c is re-
defined as (o, o, θ ·K, (1− θ) ·K)

T and K = κ1, . . . , κn, an n element vector

composed of the sample analog of
(

1− (1−ν)z
Pr(ν=0|X) −

(1−z)ν
Pr(ν=1|X)

)
. However, when

κi is negative (for instance, ν = 1 and z = 0) the LP is unbounded. This
necessitates further modification. Two additional constraints and one additional
parameter, si, are added for each instance where κi is negative.

u+i ≤ Msi

u−i ≤ M (1− si)

where M is a large (nonbinding) constant, and si ∈ {0, 1}, an integer. In other
words, we now have a mixed integer linear program (MILP) formulation for
QTE estimation.

1.2.2 CH estimation

CH focus on the basic linear-in-parameters model

q (z, x, θ) = zα (θ) + x′β (θ)

for the binary treatment case. Define the finite-sample analog weighted quantile
regression objective function as

Qn (α, β, γ) =
1

n

n∑
i=1

ρθ

(
Yi − Ziα−X ′iβ − Φ̂i (θ) γ

)
V̂i (θ)

where Φ̂i (θ) is a transformation of the instruments (a likely practical candidate
is the projection of Z onto (X, ν)) and V̂i (θ) is a positive weight function (practi-

cal candidates include V̂ (θ) = I or alternatively V̂ (θ) = 1
n

∑n
i=1 Φ̂i (θ)

(
Φ̂i (θ)

)T
.

CH propose a simple practical implementation.
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(1) Construct a grid of values αj , j = 1, . . . , J . Employ conventional quantile
regression of Yi−Ziα onXi and Φ̂i (θ) to obtain estimates β̂ (αj , θ) and γ̂ (αj , θ).
(2) Choose α̂ (θ) = Q̂TE (θ) from the αj such that γ̂ (αj , θ)

T
V̂ (θ) γ̂ (αj , θ)

is zero or as near as possible to zero.

1.2.3 F estimation

Let p̂ (x) denote the nonparametric estimator for the propensity score. Then,
the estimator for the marginal quantile treatment effect is

mQTE (θ) = Q̂1 (θ)− Q̂0 (θ)

where, for j = 0, 1,

Q̂j (θ) = arg min
q

n∑
i=1

ωj,iρθ (Yi − q)

ρθ (u) = u (θ − 1 (u ≤ 0))

ω1,i =
Zi

N · p̂ (Xi)

and

ω0,i =
1− Zi

N · (1− p̂ (Xi))

The examples below involve no covariates except for the F strategy to make
conditional and marginal QTE comparable. Also, ωj,i = 0

0 is set to zero. It’s
time for some examples.

1.3 Examples

Each example explores four experimental designs: exogenous treatment design
for conditional QTE (conventional quantile regression, CQR), AAI instrumental
variable design aimed at conditional QTE for the subpopulation of compliers,
CH instrumental variable design targeting conditional QTE for the entire (com-
monly supported) population, and F design targeting marginal QTE for the
population with common support. The first example illustrates unconfounded
quantile treatment effects as outcomes are independent of treatment. In other
words, treatment serves as an instrument and the entire population is composed
of compliers. As there are no covariates X = ι.
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Example 1 (unconfounded QTE) Suppose the DGP is

Y Y (1) Y (0) TE = Y (1)− Y (0) z ν X∗ K p (x) Φ
0 2 0 2 0 0 0 1 0.5 0
2 2 0 2 1 1 0 1 0.5 1
2 4 2 2 0 0 1 1 0.5 0
4 4 2 2 1 1 1 1 0.5 1
3 5 3 2 0 0 2 1 0.5 0
5 5 3 2 1 1 2 1 0.5 1
4 6 4 2 0 0 3 1 0.5 0
6 6 4 2 1 1 3 1 0.5 1
6 8 6 2 0 0 4 1 0.5 0
8 8 6 2 1 1 4 1 0.5 1

Exogenous treatment DGP
∗X is only utilized for strategy F

All quantile treatment effects except θ = 0.2, 0.4, 0.6, 0.8 (where Qθ [Y (0)] and
Qθ [Y (1)] are not unique) are point identified. Some quantile treatment effects,
α, along with quantiles for Y (0), β, are tabulated below. Partially identified
(non-unique) quantities are indicated by intervals within which the objective
function value is constant and minimized.1

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTE (θ)

0.1 2 0 2 2
0.2 (0, 4) (0, 2) (2, 4) (0, 4)
0.3 2 2 4 2
0.4 (1, 3) (2, 3) (4, 5) (1, 3)
0.5 2 3 5 2
0.6 (1, 3) (3, 4) (5, 6) (1, 3)
0.7 2 4 6 2
0.8 (0, 4) (4, 6) (6, 8) (0, 4)
0.9 2 6 8 2

Quantities identified by all four strategies (CQR, AAI, and F)

QTE (θ) = (minQθ [Y (1)]−maxQθ [Y (0)] ,maxQθ [Y (1)]−minQθ [Y (0)])

The CH strategy requires separate treatment as it appears to be sensitive to the
discrete nature of the DGP (CH and F are specifically engineered for continuous

1Recall, quantiles of discrete distributions can be ambiguous when F−1 (θ) 6= G−1 (1− θ).
This occurs at discrete mass points. Let θm denote such mass points. Now, define quantile
θm by the interval

(
F−1 (θm) , F−1 (θm + ε)

)
. Accordingly, the quantile treatment effect is

QTE (θm) =
(
F−1
Y (1)

(θm)− F−1Y (0) (θm + ε) , F−1
Y (1)

(θm + ε)− F−1
Y (0)

(θm)
)

or
QTE (θ) = (minQθ [Y (1)]−maxQθ [Y (0)] ,maxQθ [Y (1)]−minQθ [Y (0)])

That is, QTE (θ) is an interval when θ = θm and a point when θ 6= θm.
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outcomes).

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] γ QTE (θ)

0.1 2 0 0 2
0.2 2 0 0 (0, 4)
0.25 2 2 0 2
0.4 2 2 0 (1, 3)
0.5 2 3 0 2
0.6 (1, 3) (3, 4) 0 (1, 3)
0.75 2 4 0 2
0.8 4 4 0 (0, 4)
0.9 2 6 0 2

Quantities identified by the CH strategy for the entire population

While the CH strategy identifies QTE, the intervals deviate from expected. In
particular, θ = 0.2, 0.4, 0.8 are expected to be partially identified but are point
identified by the CH strategy with θ = 0.2, 0.4 in the middle with QTE (θ = 0.2) =
2 but θ = 0.8 identified at the boundary QTE (θ = 0.8) = 4 by CH. Only
QTE (θ = 0.6) = (1, 3) matches partially identified expectations for the CH
strategy but CH is a point identification strategy (as is F). Outcomes are homoge-
neous and since Pr (z0 = 1) = 0, QTE (θ) for the compliers equals QTT (θ), the
quantile treatment effect for the treated. Likewise, as Pr (z1 = 1) = 1, QTE (θ)
for the compliers equals QTUT (θ), the quantile treatment effect for the un-
treated. This is a case of unconfounded treatment as treatment adopted serves
the role of an instrument.

Example 2 (QTE for subsample of compliers) Suppose the DGP is a slight
variation of example 1.

Y Y (1) Y (0) TE = Y (1)− Y (0) z ν X∗ K p (x) Φ
0 2 0 2 0 0 0 1 0.0 0
0 2 0 2 0 1 0 −1 0.0 0.8
2 4 2 2 0 0 1 1 0.5 0
4 4 2 2 1 1 1 1 0.5 0.8
3 5 3 2 0 0 2 1 0.5 0
5 5 3 2 1 1 2 1 0.5 0.8
4 6 4 2 0 0 3 1 0.5 0
6 6 4 2 1 1 3 1 0.5 0.8
6 8 6 2 0 0 4 1 0.5 0
8 8 6 2 1 1 4 1 0.5 0.8

Homogeneous DGP for complier subpopulation
∗X is only utilized for strategy F

Conventional quantile regression involves exogenous treatment. CQR identified
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quantities are

identified quantities target quantities
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTE∗ (θ) QTE (θ)

0.1 4 0 4 2 2
0.2 4 0 4 2 (0, 4)
0.25 (4, 5) 0 (4, 5) (1, 3) 2
0.3 5 0 5 2 2
0.4 3 2 5 2 (1, 3)
0.5 (2, 4) (2, 3) (5, 6) (1, 3) 2
0.6 3 3 6 2 (1, 3)
0.7 2 4 6 2 2
0.75 (2, 4) 4 (6, 8) (0, 4) 2
0.8 4 4 8 2 (0, 4)
0.9 2 6 8 2 2

Quantities identified by the CQR strategy

Even though QTE is homogeneous across quantiles, exogenous treatment poorly
identifies QTE at many quantiles. Interestingly, quartiles are non-unique rather
than quintiles as the population suggests. Apparently, this reflects quantiles with
common support (rows 3 through 10). If CQR utilized covariate X to identify
marginal (not conditional) QTE for the subpopulation with common support
then CQR would identify the same quantities as AAI and F (reported below).
For the AAI strategy, compliers are represented by rows 3 through 10. All quan-
tile treatment effects except θ = 0.25, 0.5, 0.75 (where Qθ [Y (0)] and Qθ [Y (1)]
are not unique) are point identified for the subpopulation of compliers. Some
quantile treatment effects for the compliers, α, along with quantiles for Y (0), β,
are tabulated below. Partially identified (non-unique) quantities are indicated by
intervals. The F strategy requires covariates to identify where common support
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is lacking.

identified quantities target

θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)]
QTEc (θ) =
mQTE (θ)

0.1 2 2 4 2
0.2 2 2 4 2
0.25 (1, 3) (2, 3) (4, 5) (1, 3)
0.4 2 3 5 2
0.5 (1, 3) (3, 4) (5, 6) (1, 3)
0.6 2 4 6 2
0.75 (0, 4) (4, 6) (6, 8) (0, 4)
0.8 2 6 8 2
0.9 2 6 8 2

Quantities identified by the AAI strategy for the subpopulation of compliers

including QTEc (θ)

as well as mQTE (θ) for the F strategy subpopulation

where common support is satisfied

Outcomes are again homogeneous and since Pr (z0 = 1) = 0, QTE (θ) for the
compliers equals QTT (θ), the quantile treatment effect for the treated. The AAI
strategy effectively identifies QTE for the various quantiles associated with the
subpopulation of compliers. Notice, even though quartiles are uniquely defined
for the population that is not the case for the subpopulation of compliers. The
CH strategy deviates from AAI or CQR in that ambiguity reflects population
quantiles even though lack of common support leads to identification of wide
intervals for treatment effect quantiles less than 0.20.

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] γ QTE (θ)

0.1 (−∞, 4) 0 0 2
0.2 (0, 5) 0 0 (0, 4)
0.25 2 2 0 2
0.4 (1, 3) (2, 3) 0 (1, 3)
0.5 2 3 0 2
0.6 (0, 3) (3, 4) 0 (1, 3)
0.75 2 4 0 2
0.8 (0, 4) (4, 6) 0 (0, 4)
0.9 2 6 0 2

Quantities identified by the CH strategy for the entire population

Not surprisingly, no identification strategy is very effective where common sup-
port is lacking.
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Example 3 (more variation in QTE) Suppose the DGP involves more vari-
ation than example 2.

Y Y (1) Y (0) TE = Y (1)− Y (0) z ν X∗ K p (x) Φ
0 2 0 2 0 0 0 1 0.0 0
0 2 0 2 0 1 0 −1 0.0 0.8
2 4 2 2 0 0 1 1 0.5 0
4 4 2 2 1 1 1 1 0.5 0.8
5 5 5 0 0 0 2 1 0.5 0
5 5 5 0 1 1 2 1 0.5 0.8
5 6 5 1 0 0 3 1 0.5 0
6 6 5 1 1 1 3 1 0.5 0.8
6 8 6 2 0 0 4 1 0.5 0
8 8 6 2 1 1 4 1 0.5 0.8

Heterogeneous DGP for complier subpopulation
∗X is only utilized for strategy F

Conventional quantile regression involves exogenous treatment. CQR identified
quantities are

identified quantities target quantities
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTE∗ (θ) QTE (θ)

0.1 4 0 4 2 2
0.2 4 0 4 2 (0, 4)
0.25 (4, 5) 0 (4, 5) (−1, 3) 2
0.3 5 0 5 0 0
0.4 3 2 5 0 (−1, 3)
0.5 (0, 4) (2, 5) (5, 6) (0, 1) 0
0.6 1 5 6 1 (0, 1)
0.7 1 5 6 1 1
0.75 (1, 3) 5 (6, 8) (0, 3) 1
0.8 3 5 8 2 (0, 3)
0.9 2 6 8 2 2

Quantities identified by the CQR strategy

QTE∗ (θ) based on overlapping support data

QTE (θ) based on population DGP

Again, CQR fails to effectively identify QTE. Even though the data are hetero-
geneous, CQR restricted to the common support subpopulation (as indicated by
X) effectively identifies QTE (as is the case for AAI – focusing on the sub-
population of compliers, and F – based on common X support). For the AAI
strategy, compliers are represented by rows 3 through 10. Again, all quantile
treatment effects except θ = 0.25, 0.5, 0.75 (where Qθ [Y (0)] and Qθ [Y (1)] are
not unique) are point identified for the subpopulation of compliers. Some quan-
tile treatment effects for the compliers, α, along with quantiles for Y (0), β,
are tabulated below. Partially identified (non-unique) quantities are indicated
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by intervals. Again, the F strategy utilizes covariates to identify where common
support is lacking.

identified quantities target

θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)]
QTEc (θ) =
mQTE (θ)

0.1 2 2 4 2
0.2 2 2 4 2
0.25 (−1, 3) (2, 5) (4, 5) (−1, 3)
0.4 0 5 5 0
0.5 (0, 1) 5 (5, 6) (0, 1)
0.6 1 5 6 1
0.75 (0, 3) (5, 6) (6, 8) (0, 3)
0.8 2 6 8 2
0.9 2 6 8 2

Quantities identified by the AAI strategy for the subpopulation of compliers

including QTEc (θ)

as well as mQTE (θ) for the F strategy where common support is satisfied

Outcomes are heterogeneous but since Pr (z0 = 1) = 0, QTE (θ) for the com-
pliers equals QTT (θ), the quantile treatment effect for the treated. For the CH
strategy once again the lack of common support yields exceptionally wide inter-
vals for unsupported quantiles (θ ≤ 0.2).

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] γ QTE (θ)

0.1 (−∞, 4) 0 0 2
0.2 (0, 5) 0 0 (0, 4)
0.25 2 2 0 2
0.4 (−1, 3) (2, 5) 0 (−1, 3)
0.5 0 5 0 0
0.6 (0, 1) 5 0 (0, 1)
0.75 1 5 0 1
0.8 (0, 3) (5, 6) 0 (0, 3)
0.9 2 6 0 2

Quantities identified by the CH strategy for the entire population

As in example 2, quintiles are non-unique for the CH identification strategy
while quartiles are ambiguous for the AAI identification strategy.
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Example 4 (AAI identification strategy) Suppose the DGP is

Y Y (1) Y (0) TE = Y (1)− Y (0) z ν X∗ K p (x) Φ
0 2 0 2 0 0 1 1 1

3 0.2
2 2 0 2 1 1 1 1 1

3 0.8
2 3 2 1 0 0 1 1 1

3 0.2
2 3 2 1 0 1 1 −1 1

3 0.8
2 3 2 1 0 0 1 1 1

3 0.2
3 3 2 1 1 1 1 1 1

3 0.8
5 5 2 3 0 0 2 1 0.75 0.2
2 5 2 3 1 1 2 1 0.75 0.8
5 5 2 3 1 0 2 −1 0.75 0.2
5 5 2 3 1 1 2 1 0.75 0.8

Heterogeneous DGP with complier subpopulation
∗X is only utilized for strategy F

Conventional quantile regression involves exogenous treatment. CQR identified
quantities are

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTE (θ)

0.1 2 0 2 2
0.2 (0, 3) (0, 2) (2, 3) (0, 3)
0.25 1 2 3 1
0.3 1 2 3 1
0.4 1 2 3 1
0.5 3 2 5 1
0.6 3 2 5 (1, 3)
0.7 3 2 5 3
0.75 3 2 5 3
0.8 3 2 5 3
0.9 3 2 5 3

Quantities identified by the CQR strategy

CQR fails to effectively identify QTE for the median and mistakenly appears
to point identify θ = 0.6. For the AAI strategy, compliers reside in rows
1,2,5,6,7,8, never takers in rows 3,4, always takers in rows 9,10 and no de-
fiers. Hence, AAI effectively identifies QTE for the subpopulation of compliers

14



(non-uniqueness for the subpopulation of compliers occurs at θ = 1
3 and

2
3).

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTEc (θ)

0.1 2 0 2 2
0.2 2 0 2 2
0.25 2 0 2 2
0.4 1 2 3 1
0.5 1 2 3 1
0.6 1 2 3 1
0.75 3 2 5 3
0.8 3 2 5 3
0.9 3 2 5 3

Quantities identified by the AAI strategy for the subpopulation of compliers

including QTEc (θ)

The CH strategy fails as the rank condition is not satisfied. In particular, U0
and U1 are not equal identically or in distribution.

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] γ QTE (θ)

0.05 2 0 0 2
0.1 2 0 0 2
0.2 2 0 0 (0, 3)
0.25 (0, 1) 2 0 1
0.4 (0, 1) 2 0 1
0.5 (1, 3) 2 0 1
0.6 (1, 3) 2 0 (1, 3)
0.75 3 2 0 3
0.8 (−∞, 3) (2,∞) 0 3
0.9 (−∞, 3) (2,∞) 0 3
0.95 (−∞, 3) (2,∞) 0 3

Quantities identified by the CH strategy for the entire population

The F strategy fails to effectively identify QTE for 0.2 ≤ θ ≤ 0.3 as ignorability
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is not satisfied.

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTE (θ)

0.05 2 0 2 2
0.1 2 0 2 2
0.2 0 2 2 (0, 3)
0.25 0 2 2 1
0.3 (0, 1) 2 (2, 3) 1
0.4 1 2 3 1
0.5 1 2 3 1
0.6 (1, 3) 2 (3, 5) (1, 3)
0.7 3 2 5 3
0.75 3 2 5 3
0.8 3 2 5 3
0.9 3 2 5 3
0.95 3 2 5 3

Quantities identified by the F strategy

Example 5 (CH identification strategy) Suppose the DGP is

Y Y (1) Y (0) TE = Y (1)− Y (0) z ν X∗ K p (x) Φ
0 2 0 2 0 0 1 1 0.5 0.4
2 2 0 2 1 1 1 1 0.5 0.6
2 3 1 2 0 0 1 1 0.25 0.4
2 3 1 2 0 1 1 −1 0.25 0.6
2 3 1 2 0 0 1 1 0.25 0.4
3 3 1 2 1 1 1 1 0.25 0.6
5 5 3 2 1 0 2 −1 0.75 0.4
2 5 3 2 0 1 2 −1 0.75 0.6
5 5 3 2 1 0 2 −1 0.75 0.4
5 5 3 2 1 1 2 1 0.75 0.6

Heterogeneous DGP for complier subpopulation
∗X is only utilized for strategy F

Conventional quantile regression involves exogenous treatment. CQR identified
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quantities are

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTE (θ)

0.1 2 0 2 2
0.2 (1, 3) (0, 1) (2, 3) (1, 3)
0.25 2 1 3 2
0.3 2 1 3 2
0.4 (2, 4) 1 (3, 5) 2
0.5 4 1 5 2
0.6 4 1 5 (0, 4)
0.7 4 1 5 2
0.75 4 1 5 2
0.8 (2, 4) (1, 3) 5 2
0.9 3 2 5 2

Quantities identified by the CQR strategy

CQR fails to effectively identify QTE for quantiles 0.4 < θ < 0.8. For the AAI
strategy, compliers reside in rows 1,2,5,6, never takers in rows 3,4 and always
takers in rows 9,10 but defiers are represented by rows 7 and 8 causing AAI
identification failure. Surprisingly, AAI failure is not apparent for quantiles
except the median appears to be point identified while the DGP indicates an
interval for the median QTE.

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTEc (θ)

0.1 2 0 2 2
0.2 2 0 2 2
0.25 2 0 2 2
0.4 2 0 2 2
0.5 2 0 2 (1, 3)
0.6 2 0 2 2
0.75 2 0 2 2
0.8 2 0 2 2
0.9 2 0 2 2

Quantities identified by the AAI strategy for the subpopulation of compliers

including QTEc (θ)

The CH strategy is effective in identifying QTE as the rank condition is satisfied,
however, some intervals differ and/or are wider than expected. Even though, U0
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and U1 are identically equal the strategy is not very useful for quantiles θ > 0.6.

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] γ QTE (θ)

0.05 2 0 0 2
0.1 2 0 0 2
0.2 2 0 0 (1, 3)
0.25 (1, 2) 1 0 2
0.4 (1, 2) 1 0 2
0.5 (2, 5) (0, 1) 0 2
0.6 (3, 4) 1 0 (0, 4)
0.75 (2,∞) (1, 3) 0 2
0.8 (−∞,∞) (1,∞) 0 2
0.9 (−∞, 2) (3,∞) 0 2
0.95 (−∞, 2) (3,∞) 0 2

Quantities identified by the CH strategy for the entire population

Results for the AAI and CH strategies are diffi cult to reconcile with the DGP.
The F strategy fails to effectively identify all QTE as ignorability is not satisfied.

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTE (θ)

0.05 2 0 2 2
0.1 2 0 2 2
0.2 1 1 2 (1, 3)
0.25 2 1 3 2
0.3 (1, 2) 1 (2, 3) 2
0.4 2 1 3 2
0.5 2 1 3 2
0.6 (0, 4) (1, 3) (3, 5) (2, 5)
0.7 2 3 5 2
0.75 2 3 5 2
0.8 2 3 5 2
0.9 2 3 5 2
0.95 2 3 5 2

Quantities identified by the F strategy

Remarkably, the AAI and F strategies perform at least as well as the CH strategy
even though the DGP suggests the CH strategy would be most effective at iden-
tifying QTE. Perhaps, this reflects the idea that ν is a weak instrument (that is,
it only weakly predicts treatment Z) along with discrete rather than continuous
potential outcomes, whereas in example 1 through 3 the instrument is strongly
related to treatment and outcomes are closer to continuous.2

2Additional experimentation suggests the CH strategy is sensitive to both outcome conti-
nuity and quality of instruments.
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Example 6 (F identification strategy) Suppose the DGP is

Y Y (1) Y (0) TE = Y (1)− Y (0) z ν X∗ K p (x) Φ
0 2 0 2 0 0 0 1 0.5 0.4
2 2 0 2 1 1 0 1 0.5 0.6
2 3 2 1 0 0 1 1 0.25 0.4
2 3 2 1 0 1 1 −1 0.25 0.6
2 3 2 1 0 0 1 1 0.25 0.4
3 3 2 1 1 1 1 1 0.25 0.6
5 5 2 3 1 0 2 −1 0.75 0.4
2 5 2 3 0 1 2 −1 0.75 0.6
5 5 2 3 1 0 2 −1 0.75 0.4
5 5 2 3 1 1 2 1 0.75 0.6

Heterogeneous DGP for complier subpopulation
∗X is only utilized for strategy F

Conventional quantile regression involves exogenous treatment. CQR identified
quantities are

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTE (θ)

0.1 2 0 2 2
0.2 (0, 3) (0, 2) (2, 3) (0, 3)
0.25 1 2 3 1
0.3 1 2 3 1
0.4 1 2 3 1
0.5 3 2 5 1
0.6 3 2 5 (1, 3)
0.7 3 2 5 3
0.75 3 2 5 3
0.8 3 2 5 3
0.9 3 2 5 3

Quantities identified by the CQR strategy

CQR fails to effectively identify QTE for the median and mistakenly appears to
point identify θ = 0.6. For the AAI strategy, compliers reside in rows 1,2,5,6,
never takers in rows 3,4 and always takers in rows 9,10 but defiers are rep-
resented by rows 7 and 8 causing AAI identification failure. AAI failure is
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apparent for quantiles above the median.

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTEc (θ)

0.1 2 0 2 2
0.2 2 0 2 2
0.25 2 0 2 2
0.4 2 0 2 2
0.5 (0, 3) 0 (0, 3) (0, 3)
0.6 2 0 2 1
0.75 2 0 2 1
0.8 2 0 2 1
0.9 2 0 2 1

Quantities identified by the AAI strategy for the subpopulation of compliers

including QTEc (θ)

The CH strategy fails as the rank condition is not satisfied with many quantiles
involving very wide intervals. In particular, U0 and U1 are not equal identically
or in distribution.

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] γ QTE (θ)

0.05 2 0 0 2
0.1 2 0 0 2
0.2 2 0 0 (0, 3)
0.25 (−∞, 1) 2 0 1
0.4 (−∞, 1) 2 0 1
0.5 (0, 5) (0, 2) 0 1
0.6 (0, 3) 2 0 (1, 3)
0.75 (3,∞) 2 0 3
0.8 (−∞,∞) (2,∞) 0 3
0.9 (−∞,∞) (2,∞) 0 3
0.95 (−∞,∞) (2,∞) 0 3

Quantities identified by the CH strategy for the entire population
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The F strategy effectively identifies QTE as ignorability is satisfied.

identified quantities target
θ Qθ [Y (1)]−Qθ [Y (0)] Qθ [Y (0)] Qθ [Y (1)] QTE (θ)

0.05 2 0 2 2
0.1 2 0 2 2
0.2 (0, 3) (0, 2) (2, 3) (0, 3)
0.25 1 2 3 1
0.3 1 2 3 1
0.4 1 2 3 1
0.5 3 2 3 1
0.6 (1, 3) 2 (3, 5) (1, 3)
0.7 3 2 5 3
0.75 3 2 5 3
0.8 3 2 5 3
0.9 3 2 5 3
0.95 3 2 5 3

Quantities identified by the F strategy

Next, we revisit monotone treatment response (MTR) and explore partial
identification of QTE.

1.4 MTR and partial identification of QTE

MTR says if treatment t > s, then yj (t) > yj (s) for all individuals j. MTR
bounds for outcome quantity D that respects stochastic dominance are

D [y0 (t)] ≤ D [y (t)] ≤ D [y1 (t)]

where

y0j (t) ≡ yj t ≥ zj
y0 otherwise

y1j (t) ≡ yj t ≤ zj
y1 otherwise

and zj is individual j’s adopted treatment.
Partial identification bounds for MTR quantiles are

0 < θ ≤ Pr (t < z) ⇒ y0 ≤ Qθ [y (t)] ≤ Qλ1 (y | t ≤ z)

Pr (t < z) < θ ≤ Pr (t ≤ z) ⇒ Qλ0 (y | t ≥ z) ≤ Qθ [y (t)] ≤ Qλ1 (y | t ≤ z)

Pr (t ≤ z) < θ < 1 ⇒ Qλ0 (y | t ≥ z) ≤ Qθ [y (t)] ≤ y1

where

λ1 ≡ θ

Pr (t ≤ z)

λ0 ≡ θ − Pr (t < z)

Pr (t ≥ z)
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In the binary treatment setting, t = 0, 1, the MTR quantile bounds are

0 < θ ≤ Pr (t < z)
t = 0

⇒ y0 ≤ Qθ [y (0)] ≤ Qθ (y)

Pr (t < z) < θ ≤ Pr (t ≤ z)
t = 0
t = 1

⇒
⇒

Qθ (y | z = 0) ≤ Qθ [y (0)] ≤ Qθ (y)
Qθ (y) ≤ Qθ [y (1)] ≤ Qθ (y | z = 1)

Pr (t ≤ z) < θ < 1
t = 1

⇒ Qθ (y) ≤ Qθ [y (1)] ≤ y1

Then, the MTR treatment effect for any quantity D that respects stochastic
dominance (e.g.,. means or quantiles) has bounds

0 ≤ D [y (t)]−D [y (s)] ≤ D [y1 (t)]−D [y0 (s)]

To appreciate this result consider the bounds on the following exhaustive monotone
treatment response cases.

s < t < zj ⇒ y0 ≤ yj (s) ≤ yj (t) ≤ yj (1)

s < t = zj ⇒ y0 ≤ yj (s) ≤ yj (t) = yj (2)

s < zj < t ⇒ y0 ≤ yj (s) ≤ yj ≤ yj (t) ≤ y1 (3)

s = zj < t ⇒ yj = yj (s) ≤ yj (t) ≤ y1 (4)

zj < s < t ⇒ yj ≤ yj (s) ≤ yj (t) ≤ y1 (5)

For simplicity, consider the implications for quantile treatment effect bounds
with binary treatment, s = 0 and t = 1. Only cases (2) and (4) apply.
Case (2) identifies quantile bounds as

0 < θ ≤ Pr (t < z) ⇒ y0 ≤ Qθ [y (0)] ≤ Qθ (y)

and

0 = Pr (t < z) < θ ≤ Pr (t ≤ z) ⇒ Qθ (y) ≤ Qθ [y (1)] ≤ Qθ (y | z = 1)

Hence, the case (2) quantile treatment effect

QTE (θ) = Qθ [y (1)]−Qθ [y (0)]

has bounds

0 = Qθ (y)−Qθ (y) ≤ QTE (θ) ≤ Qθ (y | z = 1)− y0

Case (4) identifies quantile bounds as

Pr (t < z) < θ ≤ Pr (t ≤ z) ⇒ Qθ (y | z = 0) ≤ Qθ [y (0)] ≤ Qθ (y)
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and
Pr (t ≤ z) < θ < 1 ⇒ Qθ (y) ≤ Qθ [y (1)] ≤ y1

Hence, the quantile treatment effect for case (4)

QTE (θ) = Qθ [y (1)]−Qθ [y (0)]

has bounds

0 = Qθ (y)−Qθ (y) ≤ QTE (θ) ≤ y1 −Qθ (y | z = 0)

1.5 Quantile treatment effects based on the data alone

On the other hand, quantile treatment effects based on the data alone are wider.
From section 11.1.2, the θ-quantile bounds are

r (θ, x)

≤ Qθ (y | x) ≤
s (θ, x)

where

r (θ, x) = Q θ−Pr(m is s in g |x)
Pr(o b s e r v e d |x)

(y | x, observed) if Pr (missing | x) < θ

y0 otherwise

and

s (θ, x) = Q θ
Pr(o b s e r v e d |x)

(y | x, observed) if Pr (missing | x) < 1− θ
y1 otherwise

To illustrate quantile bounds for treatment effects, consider the binary treat-
ment case. Quantile bounds based on the data alone are

r (θ, x, 0) ≤ Qθ [y (0) | x] ≤ s (θ, x, 0)

r (θ, x, 1) ≤ Qθ [y (1) | x] ≤ s (θ, x, 1)

so that quantile treatment effect, Qθ [y (1) | x]−Qθ [y (0) | x], bounds are

r (θ, x, 1)− s (θ, x, 0) ≤ QTE (θ | x) ≤ s (θ, x, 1)− r (θ, x, 0)

where

r (θ, x, 0) = Q θ−Pr(z=1)
Pr(z=0)

(y | x, z = 0) if Pr (z = 1 | x) < θ

r (θ, x, 0) = y0 otherwise
s (θ, x, 0) = Q θ

Pr(z=0)
(y | x, z = 0) if Pr (z = 1 | x) < 1− θ

s (θ, x, 0) = y1 otherwise

r (θ, x, 1) = Q θ−Pr(z=0)
Pr(z=1)

(y | x, z = 1) if Pr (z = 0 | x) < θ

r (θ, x, 1) = y0 otherwise
s (θ, x, 1) = Q θ

Pr(z=1)
(y | x, z = 1) if Pr (z = 0 | x) < 1− θ

s (θ, x, 1) = y1 otherwise

A binary treatment illustration helps illuminate some of the subtleties associated
with quantile treatment effect bounds.
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1.6 Example

Example 7 (MTR bounds for QTE) Suppose the DGP is the same as ex-
ample 2.

Y Y (1) Y (0) TE = Y (1)− Y (0) z ν
0 2 0 2 0 0
0 2 0 2 0 1
2 4 2 2 0 0
4 4 2 2 1 1
3 5 3 2 0 0
5 5 3 2 1 1
4 6 4 2 0 0
6 6 4 2 1 1
6 8 6 2 0 0
8 8 6 2 1 1

The median and first and third quartile bounds based on MTR are

θ Qlowerθ [y (0)] Qupperθ [y (0)] Qlowerθ [y (1)] Qupperθ [y (1)]
0.2 0 (0, 2) (0, 2) 4
0.25 0 2 2 (4, 5)
0.4 0 (3, 4) (3, 4) 5
0.5 (2, 3) 4 4 8
0.6 3 (4, 5) (4, 5) 8
0.75 4 6 6 8
0.8 4 6 6 8

θ QTElower (θ |MTR) QTEupper (θ |MTR)
0.2 (0, 2)− (0, 2) = 0 4− 0 = 4
0.25 2− 2 = 0 5− 0 = 5
0.4 (3, 4)− (3, 4) = 0 5− 0 = 5
0.5 4− 4 = 0 8− 2 = 6
0.6 (4, 5)− (4, 5) = 0 8− 3 = 5
0.75 6− 6 = 0 8− 4 = 4
0.8 6− 6 = 0 8− 4 = 4

where non-unique quantiles are indicated by intervals. While these bounds may
not seem very tight, MTR (in conjunction with the data) always results in infor-
mative bounds. Monotone response implies the treatment effect is never negative
but the data alone may not rule out negative treatment effects. The data alone
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identify the following substantially wider quantile treatment effect bounds.

θ QTElower (θ | data) QTEupper (θ | data)
0.2 0− (0, 2) = −2 (5, 6)− 0 = 6
0.25 0− 2 = −2 6− 0 = 6
0.4 0− (3, 4) = −4 8− 0 = 8
0.5 0− (4, 6) = −6 8− 0 = 8
0.6 (0, 4)− (6, 8) = −8 8− (0, 2) = 8
0.75 5− 8 = −3 8− 3 = 5
0.8 6− 8 = −2 8− (3, 4) = 5

As indicated in example 2, treatment effects are homogeneously equal to 2 for
all unique quantiles for this DGP. The existence of a binary instrument leads
to the following bounds on QTE(θ) for the subpopulation of compliers (quartile
treatment effects are not point identified as quartiles are not unique for the DGP
conditional on z1 − z0 = 1).

θ QTElower (θ | z1 − z0 = 1) QTEupper (θ | z1 − z0 = 1)
0.2 2 2
0.25 1 3
0.4 2 2
0.5 1 3
0.6 2 2
0.75 0 4
0.8 2 2
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