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External Validity: From Do-Calculus to
Transportability Across Populations
Judea Pearl and Elias Bareinboim

Abstract. The generalizability of empirical findings to new environments,
settings or populations, often called “external validity,” is essential in most
scientific explorations. This paper treats a particular problem of generaliz-
ability, called “transportability,” defined as a license to transfer causal effects
learned in experimental studies to a new population, in which only observa-
tional studies can be conducted. We introduce a formal representation called
“selection diagrams” for expressing knowledge about differences and com-
monalities between populations of interest and, using this representation,
we reduce questions of transportability to symbolic derivations in the do-
calculus. This reduction yields graph-based procedures for deciding, prior to
observing any data, whether causal effects in the target population can be in-
ferred from experimental findings in the study population. When the answer
is affirmative, the procedures identify what experimental and observational
findings need be obtained from the two populations, and how they can be
combined to ensure bias-free transport.

Key words and phrases: Experimental design, generalizability, causal ef-
fects, external validity.

1. INTRODUCTION: THREATS VS. ASSUMPTIONS

Science is about generalization, and generalization
requires that conclusions obtained in the laboratory be
transported and applied elsewhere, in an environment
that differs in many aspects from that of the laboratory.

Clearly, if the target environment is arbitrary, or dras-
tically different from the study environment nothing
can be transferred and scientific progress will come
to a standstill. However, the fact that most studies are
conducted with the intention of applying the results
elsewhere means that we usually deem the target envi-
ronment sufficiently similar to the study environment
to justify the transport of experimental results or their
ramifications.

Remarkably, the conditions that permit such trans-
port have not received systematic formal treatment. In
statistical practice, problems related to combining and
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generalizing from diverse studies are handled by meth-
ods of meta analysis (Glass, 1976; Hedges and Olkin,
1985; Owen, 2009), or hierarchical models (Gelman
and Hill, 2007), in which results of diverse studies are
pooled together by standard statistical procedures (e.g.,
inverse-variance reweighting in meta-analysis, partial
pooling in hierarchical modeling) and rarely make ex-
plicit distinction between experimental and observa-
tional regimes; performance is evaluated primarily by
simulation.

To supplement these methodologies, our paper pro-
vides theoretical guidance in the form of limits on what
can be achieved in practice, what problems are likely to
be encountered when populations differ significantly
from each other, what population differences can be
circumvented by clever design and what differences
constitute theoretical impediments, prohibiting gener-
alization by any means whatsoever.

On the theoretical front, the standard literature on
this topic, falling under rubrics such as “external va-
lidity” (Campbell and Stanley, 1963, Manski, 2007),
“heterogeneity” (Höfler, Gloster and Hoyer, 2010),
“quasi-experiments” (Shadish, Cook and Campbell,
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2002, Chapter 3; Adelman, 1991),1 consists primar-
ily of “threats,” namely, explanations of what may go
wrong when we try to transport results from one study
to another while ignoring their differences. Rarely do
we find an analysis of “licensing assumptions,” namely,
formal conditions under which the transport of re-
sults across differing environments or populations is
licensed from first principles.2

The reasons for this asymmetry are several. First,
threats are safer to cite than assumptions. He who
cites “threats” appears prudent, cautious and thought-
ful, whereas he who seeks licensing assumptions risks
suspicions of attempting to endorse those assumptions.

Second, assumptions are self-destructive in their
honesty. The more explicit the assumption, the more
criticism it invites, for it tends to trigger a richer space
of alternative scenarios in which the assumption may
fail. Researchers prefer therefore to declare threats in
public and make assumptions in private.

Third, whereas threats can be communicated in plain
English, supported by anecdotal pointers to familiar
experiences, assumptions require a formal language
within which the notion “environment” (or “popula-
tion”) is given precise characterization, and differences
among environments can be encoded and analyzed.

The advent of causal diagrams (Wright, 1921; Heise,
1975; Davis, 1984; Verma and Pearl, 1988; Spirtes,
Glymour and Scheines, 1993; Pearl, 1995) together
with models of interventions (Haavelmo, 1943; Strotz
and Wold, 1960) and counterfactuals (Neyman, 1923;
Rubin, 1974; Robins, 1986; Balke and Pearl, 1995)
provides such a language and renders the formalization
of transportability possible.

Armed with this language, this paper departs from
the tradition of communicating “threats” and embarks

1Manski (2007) defines “external validity” as follows: “An ex-
periment is said to have “external validity” if the distribution of
outcomes realized by a treatment group is the same as the distri-
bution of outcome that would be realized in an actual program.”
Campbell and Stanley (1963), page 5, take a slightly broader view:
““External validity” asks the question of generalizability: to what
populations, settings, treatment variables, and measurement vari-
ables can this effect be generalized?”

2Hernán and VanderWeele (2011) studied such conditions in the
context of compound treatments, where we seek to predict the ef-
fect of one version of a treatment from experiments with a different
version. Their analysis is a special case of the theory developed
in this paper (Petersen, 2011). A related application is reported in
Robins, Orellana and Rotnitzky (2008) where a treatment strategy
is extrapolated between two biological similar populations under
different observational regimes.

instead on the task of formulating “licenses to trans-
port,” namely, assumptions that, if they held true,
would permit us to transport results across studies.

In addition, the paper uses the inferential machinery
of the do-calculus (Pearl, 1995; Koller and Friedman,
2009; Huang and Valtorta, 2006; Shpitser and Pearl,
2006) to derive algorithms for deciding whether trans-
portability is feasible and how experimental and ob-
servational findings can be combined to yield unbiased
estimates of causal effects in the target population.

The paper is organized as follows. In Section 2, we
review the foundations of structural equations model-
ing (SEM), the question of identifiability and the do-
calculus that emerges from these foundations. (This
section can be skipped by readers familiar with these
concepts and tools.) In Section 3, we motivate the ques-
tion of transportability through simple examples, and
illustrate how the solution depends on the causal story
behind the problem. In Section 4, we formally define
the notion of transportability and reduce it to a problem
of symbolic transformations in do-calculus. In Sec-
tion 5, we provide a graphical criterion for deciding
transportability and estimating transported causal ef-
fects. We conclude in Section 6 with brief discussions
of related problems of external validity, these include
statistical transportability, and meta-analysis.

2. PRELIMINARIES: THE LOGICAL FOUNDATIONS
OF CAUSAL INFERENCE

The tools presented in this paper were developed
in the context of nonparametric Structural Equations
Models (SEM), which is one among several approaches
to causal inference, and goes back to (Haavelmo, 1943;
Strotz and Wold, 1960). Other approaches include,
for example, potential-outcomes (Rubin, 1974), Struc-
tured Tree Graphs (Robins, 1986), decision analytic
(Dawid, 2002), Causal Bayesian Networks (Spirtes,
Glymour and Scheines, 2000; Pearl, 2000, Chapter 1;
Bareinboim, Brito and Pearl, 2012), and Settable Sys-
tems (White and Chalak, 2009). We will first describe
the generic features common to all such approaches,
and then summarize how these features are represented
in SEM.3

3We use the acronym SEM for both parametric and nonpara-
metric representations though, historically, SEM practitioners pre-
ferred the former (Bollen and Pearl, 2013). Pearl (2011) has used
the term Structural Causal Models (SCM) to eliminate this con-
fusion. While comparisons of the various approaches lie beyond
the scope of this paper, we nevertheless propose that their merits
be judged by the extent to which each facilitates the functions de-
scribed below.
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2.1 Causal Models as Inference Engines

From a logical viewpoint, causal analysis relies on
causal assumptions that cannot be deduced from (non-
experimental) data. Thus, every approach to causal in-
ference must provide a systematic way of encoding,
testing and combining these assumptions with data.
Accordingly, we view causal modeling as an inference
engine that takes three inputs and produces three out-
puts. The inputs are:

I-1. A set A of qualitative causal assumptions which
the investigator is prepared to defend on scientific
grounds, and a model MA that encodes these as-
sumptions mathematically. (In SEM, MA takes the
form of a diagram or a set of unspecified func-
tions. A typical assumption is that no direct effect
exists between a pair of variables (known as ex-
clusion restriction), or that an omitted factor, rep-
resented by an error term, is independent of other
such factors observed or unobserved, known as
well as unknown.

I-2. A set Q of queries concerning causal or counter-
factual relationships among variables of interest.
In linear SEM, Q concerned the magnitudes of
structural coefficients but, in general, Q may ad-
dress causal relations directly, for example:
Q1: What is the effect of treatment X on outcome

Y ?
Q2: Is this employer practicing gender discrimi-

nation?
In principle, each query Qi ∈ Q should be “well
defined,” that is, computable from any fully spec-
ified model M compatible with A. (See Defini-
tion 1 for formal characterization of a model, and
also Section 2.4 for the problem of identification
in partially specified models.)

I-3. A set D of experimental or non-experimental
data, governed by a joint probability distribution
presumably consistent with A.

The outputs are:

O-1. A set A∗ of statements which are the logical im-
plications of A, separate from the data at hand.
For example, that X has no effect on Y if we hold
Z constant, or that Z is an instrument relative to
{X, Y }.

O-2. A set C of data-dependent claims concerning the
magnitudes or likelihoods of the target queries
in Q, each contingent on A. C may contain, for
example, the estimated mean and variance of a
given structural parameter, or the expected effect

of a given intervention. Auxiliary to C, a causal
model should also yield an estimand Qi(P ) for
each query in Q, or a determination that Qi is
not identifiable from P (Definition 2).

O-3. A list T of testable statistical implications of A
(which may or may not be part of O-2), and the
degree g(Ti), Ti ∈ T , to which the data agrees
with each of those implications. A typical im-
plication would be a conditional independence
assertion, or an equality constraint between two
probabilistic expressions. Testable constraints
should be read from the model MA (see Defi-
nition 3), and used to confirm or disconfirm the
model against the data.

The structure of this inferential exercise is shown
schematically in Figure 1. For a comprehensive review
on methodological issues, see Pearl (2009a, 2012a).

2.2 Assumptions in Nonparametric Models

A structural equation model (SEM) M is defined as
follows.

DEFINITION 1 (Structural equation model (Pearl,
2000, page 203)).

1. A set U of background or exogenous variables, rep-
resenting factors outside the model, which neverthe-
less affect relationships within the model.

2. A set V = {V1, . . . , Vn} of endogenous variables,
assumed to be observable. Each of these variables
is functionally dependent on some subset PAi of
U ∪ V .

3. A set F of functions {f1, . . . , fn} such that each fi

determines the value of Vi ∈ V , vi = fi(pai , u).
4. A joint probability distribution P(u) over U .

A simple SEM model is depicted in Figure 2(a),
which represents the following three functions:

z = fZ(uZ),

x = fX(z,uX),(2.1)

y = fY (x,uY ),

where in this particular example, UZ , UX and UY are
assumed to be jointly independent but otherwise ar-
bitrarily distributed. Whenever dependence exists be-
tween any two exogenous variables, a bidirected arrow
will be added to the diagram to represent this depen-
dence (e.g., Figure 4).4 Each of these functions repre-

4More precisely, the absence of bidirected arrows implies
marginal independences relative of the respective exogenous vari-
ables. In other words, the set of all bidirected edges constitute an
i-map of P(U) (Richardson, 2003).
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FIG. 1. Causal analysis depicted as an inference engine converting assumptions (A), queries (Q), and data (D) into logical implications
(A∗), conditional claims (C), and data-fitness indices (g(T )).

sents a causal process (or mechanism) that determines
the value of the left variable (output) from the values
on the right variables (inputs), and is assumed to be in-
variant unless explicitly intervened on. The absence of
a variable from the right-hand side of an equation en-
codes the assumption that nature ignores that variable
in the process of determining the value of the output
variable. For example, the absence of variable Z from
the arguments of fY conveys the empirical claim that
variations in Z will leave Y unchanged, as long as vari-
ables UY and X remain constant.

It is important to distinguish between a fully specified
model in which P(U) and the collection of functions F
are specified and a partially specified model, usually in
the form of a diagram. The former entails one and only
one observational distribution P(V ); the latter entails
a set of observational distributions P(V ) that are com-
patible with the graph (those that can be generated by
specifying 〈F,P (u)〉).
2.3 Representing Interventions, Counterfactuals

and Causal Effects

This feature of invariance permits us to derive pow-
erful claims about causal effects and counterfactuals,

FIG. 2. The diagrams associated with (a) the structural model of
equation (2.1) and (b) the modified model of equation (2.2), repre-
senting the intervention do(X = x0).

even in nonparametric models, where all functions and
distributions remain unknown. This is done through
a mathematical operator called do(x), which simu-
lates physical interventions by deleting certain func-
tions from the model, replacing them with a constant
X = x, while keeping the rest of the model unchanged
(Haavelmo, 1943; Strotz and Wold, 1960; Pearl, 2014).
For example, to emulate an intervention do(x0) that
sets X to a constant x0 in model M of Figure 2(a), the
equation for x in equation (2.1) is replaced by x = x0,
and we obtain a new model, Mx0 ,

z = fZ(uZ),

x = x0,(2.2)

y = fY (x,uY ),

the graphical description of which is shown in Fig-
ure 2(b).

The joint distribution associated with this modi-
fied model, denoted P(z, y|do(x0)) describes the post-
intervention distribution of variables Y and Z (also
called “controlled” or “experimental” distribution), to
be distinguished from the preintervention distribution,
P(x, y, z), associated with the original model of equa-
tion (2.1). For example, if X represents a treatment
variable, Y a response variable, and Z some covari-
ate that affects the amount of treatment received, then
the distribution P(z, y|do(x0)) gives the proportion of
individuals that would attain response level Y = y and
covariate level Z = z under the hypothetical situation
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in which treatment X = x0 is administered uniformly
to the population.5

In general, we can formally define the postinterven-
tion distribution by the equation

PM
(
y|do(x)

) = PMx(y).(2.3)

In words, in the framework of model M , the postin-
tervention distribution of outcome Y is defined as the
probability that model Mx assigns to each outcome
level Y = y. From this distribution, which is readily
computed from any fully specified model M , we are
able to assess treatment efficacy by comparing aspects
of this distribution at different levels of x0.6

2.4 Identification, d-Separation and Causal
Calculus

A central question in causal analysis is the question
of identification of causal queries (e.g., the effect of in-
tervention do(X = x0)) from a combination of data and
a partially specified model, for example, when only the
graph is given and neither the functions F nor the dis-
tribution of U . In linear parametric settings, the ques-
tion of identification reduces to asking whether some
model parameter, β , has a unique solution in terms of
the parameters of P (say the population covariance ma-
trix). In the nonparametric formulation, the notion of
“has a unique solution” does not directly apply since
quantities such as Q(M) = P(y|do(x)) have no para-
metric signature and are defined procedurally by simu-
lating an intervention in a causal model M , as in equa-
tion (2.2). The following definition captures the re-
quirement that Q be estimable from the data:

DEFINITION 2 (Identifiability). A causal query
Q(M) is identifiable, given a set of assumptions A,
if for any two (fully specified) models, M1 and M2,
that satisfy A, we have 7

P(M1) = P(M2) ⇒ Q(M1) = Q(M2).(2.4)

5Equivalently, P(z, y|do(x0)) can be interpreted as the joint
probability of (Z = z,Y = y) under a randomized experiment
among units receiving treatment level X = x0. Readers versed in
potential-outcome notations may interpret P(y|do(x), z) as the
probability P(Yx = y|Zx = z), where Yx is the potential outcome
under treatment X = x.

6Counterfactuals are defined similarly through the equation
Yx(u) = YMx

(u) (see Pearl, 2009b, Chapter 7), but will not be
needed for the discussions in this paper.

7An implication similar to (2.4) is used in the standard statistical
definition of parameter identification, where it conveys the unique-
ness of a parameter set θ given a distribution Pθ (Lehmann and
Casella, 1998). To see the connection, one should think about the
query Q = P(y|do(x)) as a function Q = g(θ) where θ is the pair
F ∪ P(u) that characterizes a fully specified model M .

In words, the functional details of M1 and M2 do
not matter; what matters is that the assumptions in A
(e.g., those encoded in the diagram) would constrain
the variability of those details in such a way that equal-
ity of P ’s would entail equality of Q’s. When this hap-
pens, Q depends on P only, and should therefore be
expressible in terms of the parameters of P .

When a query Q is given in the form of a do-
expression, for example, Q = P(y|do(x), z), its iden-
tifiability can be decided systematically using an al-
gebraic procedure known as the do-calculus (Pearl,
1995). It consists of three inference rules that permit
us to map interventional and observational distribu-
tions whenever certain conditions hold in the causal
diagram G.

The conditions that permit the application these
inference rules can be read off the diagrams using
a graphical criterion known as d-separation (Pearl,
1988).

DEFINITION 3 (d-separation). A set S of nodes is
said to block a path p if either

1. p contains at least one arrow-emitting node that is
in S, or

2. p contains at least one collision node that is outside
S and has no descendant in S.

If S blocks all paths from set X to set Y , it is said to
“d-separate X and Y ,” and then, it can be shown that
variables X and Y are independent given S, written
X⊥⊥Y |S.8

D-separation reflects conditional independencies
that hold in any distribution P(v) that is compatible
with the causal assumptions A embedded in the dia-
gram. To illustrate, the path UZ → Z → X → Y in
Figure 2(a) is blocked by S = {Z} and by S = {X},
since each emits an arrow along that path. Conse-
quently, we can infer that the conditional independen-
cies UZ⊥⊥Y |Z and UZ⊥⊥Y |X will be satisfied in any
probability function that this model can generate, re-
gardless of how we parameterize the arrows. Likewise,
the path UZ → Z → X ← UX is blocked by the null
set {∅}, but it is not blocked by S = {Y } since Y is
a descendant of the collision node X. Consequently,
the marginal independence UZ⊥⊥UX will hold in the
distribution, but UZ⊥⊥UX|Y may or may not hold.9

8See Hayduk et al. (2003), Glymour and Greenland (2008) and
Pearl (2009b), page 335, for a gentle introduction to d-separation.

9This special handling of collision nodes (or colliders, e.g.,
Z → X ← UX) reflects a general phenomenon known as Berkson’s
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FIG. 3. Causal diagrams depicting Examples 1–3. In (a) Z represents “age.” In (b), Z represents “linguistic skills” while age (in hollow
circle) is unmeasured. In (c), Z represents a biological marker situated between the treatment (X) and a disease (Y ).

2.5 The Rules of do-Calculus

Let X, Y , Z and W be arbitrary disjoint sets of nodes
in a causal DAG G. We denote by GX the graph ob-
tained by deleting from G all arrows pointing to nodes
in X. Likewise, we denote by GX the graph obtained
by deleting from G all arrows emerging from nodes in
X. To represent the deletion of both incoming and out-
going arrows, we use the notation GXZ .

The following three rules are valid for every inter-
ventional distribution compatible with G:

RULE 1 (Insertion/deletion of observations).

P
(
y|do(x), z,w

)

(2.5)
= P

(
y|do(x),w

)
if (Y⊥⊥Z|X,W)GX

.

RULE 2 (Action/observation exchange).

P
(
y|do(x),do(z),w

)

(2.6)
= P

(
y|do(x), z,w

)
if (Y⊥⊥Z|X,W)GXZ

.

RULE 3 (Insertion/deletion of actions).

P
(
y|do(x),do(z),w

)

(2.7)
= P

(
y|do(x),w

)
if (Y⊥⊥Z|X,W)GXZ(W)

,

where Z(W) is the set of Z-nodes that are not ancestors
of any W -node in GX .

To establish identifiability of a query Q, one needs
to repeatedly apply the rules of do-calculus to Q,
until the final expression no longer contains a do-
operator;10 this renders it estimable from nonexperi-
mental data. The do-calculus was proven to be com-
plete for the identifiability of causal effects in the form

paradox (Berkson, 1946), whereby observations on a common con-
sequence of two independent causes render those causes dependent.
For example, the outcomes of two independent coins are rendered
dependent by the testimony that at least one of them is a tail.

10Such derivations are illustrated in graphical details in Pearl
(2009b), page 87.

Q = P(y|do(x), z) (Shpitser and Pearl, 2006; Huang
and Valtorta, 2006), which means that if Q cannot be
expressed in terms of the probability of observables P
by repeated application of these three rules, such an
expression does not exist. In other words, the query is
not estimable from observational studies without mak-
ing further assumptions, for example, linearity, mono-
tonicity, additivity, absence of interactions, etc.

We shall see that, to establish transportability, the
goal will be different; instead of eliminating do-
operators from the query expression, we will need to
separate them from a set of variables S that represent
disparities between populations.

3. INFERENCE ACROSS POPULATIONS:
MOTIVATING EXAMPLES

To motivate the treatment of Section 4, we first
demonstrate some of the subtle questions that trans-
portability entails through three simple examples, in-
formally depicted in Figure 3.

EXAMPLE 1. Consider the graph in Figure 3(a)
that represents cause-effect relationships in the pre-
treatment population in Los Angeles. We conduct a
randomized trial in Los Angeles and estimate the
causal effect of exposure X on outcome Y for every
age group Z = z.11,12 We now wish to generalize the
results to the population of New York City (NYC),
but data alert us to the fact that the study distribu-
tion P(x, y, z) in LA is significantly different from
the one in NYC (call the latter P ∗(x, y, z)). In par-
ticular, we notice that the average age in NYC is sig-
nificantly higher than that in LA. How are we to es-
timate the causal effect of X on Y in NYC, denoted
P ∗(y|do(x))?

11Throughout the paper, each graph represents the causal structure
of the population prior to the treatment, hence X stands for the level
of treatment taken by an individual out of free choice.

12The arrow from Z to X represents the tendency of older people
to seek treatment more often than younger people, and the arrow
from Z to Y represents the effect of age on the outcome.
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Our natural inclination would be to assume that age-
specific effects are invariant across cities and so, if the
LA study provides us with (estimates of) age-specific
causal effects P(y|do(x),Z = z), the overall causal ef-
fect in NYC should be

P ∗(
y|do(x)

) =
∑

z

P
(
y|do(x), z

)
P ∗(z).(3.1)

This transport formula combines experimental re-
sults obtained in LA, P(y|do(x), z), with observa-
tional aspects of NYC population, P ∗(z), to obtain an
experimental claim P ∗(y|do(x)) about NYC.13

Our first task in this paper will be to explicate the
assumptions that renders this extrapolation valid. We
ask, for example, what must we assume about other
confounding variables beside age, both latent and ob-
served, for equation (3.1) to be valid, or, would the
same transport formula hold if Z was not age, but some
proxy for age, say, language proficiency. More intri-
cate yet, what if Z stood for an exposure-dependent
variable, say hyper-tension level, that stands between
X and Y ?

Let us examine the proxy issue first.

EXAMPLE 2. Let the variable Z in Example 1
stand for subjects language proficiency, and let us as-
sume that Z does not affect exposure (X) or outcome
(Y ), yet it correlates with both, being a proxy for age
which is not measured in either study [see Figure 3(b)].
Given the observed disparity P(z) *= P ∗(z), how are
we to estimate the causal effect P ∗(y|do(x)) for the
target population of NYC from the z-specific causal ef-
fect P(y|do(x), z) estimated at the study population of
LA?

The inequality P(z) *= P ∗(z) in this example may
reflect either age difference or differences in the way
that Z correlates with age. If the two cities enjoy iden-
tical age distributions and NYC residents acquire lin-
guistic skills at a younger age, then since Z has no
effect whatsoever on X and Y , the inequality P(z) *=
P ∗(z) can be ignored and, intuitively, the proper trans-
port formula would be

P ∗(
y|do(x)

) = P
(
y|do(x)

)
.(3.2)

13At first glance, equation (3.1) may be regarded as a routine ap-
plication of “standardization” or “recalibration”—a statistical ex-
trapolation method that can be traced back to a century-old tradi-
tion in demography and political arithmetic (Westergaard, 1916;
Yule, 1934; Lane and Nelder, 1982). On a second thought, it raises
the deeper question of why we consider age-specific effects to be
invariant across populations. See discussion following Example 2.

If, on the other hand, the conditional probabilities
P(z|age) and P ∗(z|age) are the same in both cities, and
the inequality P(z) *= P ∗(z) reflects genuine age dif-
ferences, equation (3.2) is no longer valid, since the age
difference may be a critical factor in determining how
people react to X. We see, therefore, that the choice
of the proper transport formula depends on the causal
context in which population differences are embedded.

This example also demonstrates why the invariance
of Z-specific causal effects should not be taken for
granted. While justified in Example 1, with Z = age, it
fails in Example 2, in which Z was equated with “lan-
guage skills.” Indeed, using Figure 3(b) for guidance,
the Z-specific effect of X on Y in NYC is given by

P ∗(
y|do(x), z

)

=
∑

age
P ∗(

y|do(x), z, age
)
P ∗(

age|do(x), z
)

=
∑

age
P ∗(

y|do(x), age
)
P ∗(age|z)

=
∑

age
P

(
y|do(x), age

)
P ∗(age|z).

Thus, if the two populations differ in the relation be-
tween age and skill, that is,

P(age|z) *= P ∗(age|z)
the skill-specific causal effect would differ as well.

The intuition is clear. A NYC person at skill level
Z = z is likely to be in a totally different age group
from his skill-equals in Los Angeles and, since it is
age, not skill that shapes the way individuals respond
to treatment, it is only reasonable that Los Angeles res-
idents would respond differently to treatment than their
NYC counterparts at the very same skill level.

The essential difference between Examples 1 and 2
is that age is normally taken to be an exogenous vari-
able (not assigned by other factors in the model) while
skills may be indicative of earlier factors (age, educa-
tion, ethnicity) capable of modifying the causal effect.
Therefore, conditional on skill, the effect may be dif-
ferent in the two populations.

EXAMPLE 3. Examine the case where Z is a X-
dependent variable, say a disease bio-marker, standing
on the causal pathways between X and Y as shown in
Figure 3(c). Assume further that the disparity P(z|x) *=
P ∗(z|x) is discovered and that, again, both the average
and the z-specific causal effect P(y|do(x), z) are esti-
mated in the LA experiment, for all levels of X and Z.
Can we, based on information given, estimate the aver-
age (or z-specific) causal effect in the target population
of NYC?
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Here, equation (3.1) is wrong because the overall
causal effect (in both LA and NYC) is no longer a sim-
ple average of the z-specific causal effects. The correct
weighing rule is

P ∗(
y|do(x)

)

(3.3)
=

∑

z

P ∗(
y|do(x), z

)
P ∗(

z|do(x)
)
,

which reduces to (3.1) only in the special case where
Z is unaffected by X. Equation (3.2) is also wrong
because we can no longer argue, as we did in Exam-
ple 2, that Z does not affect Y , hence it can be ignored.
Here, Z lies on the causal pathway between X and Y
so, clearly, it affects their relationship. What then is the
correct transport formula for this scenario?

To cast this example in a more realistic setting, let us
assume that we wish to use Z as a “surrogate endpoint”
to predict the efficacy of treatment X on outcome
Y , where Y is too difficult and/or expensive to mea-
sure routinely (Prentice, 1989; Ellenberg and Hamil-
ton, 1989). Thus, instead of considering experimental
and observational studies conducted at two different
locations, we consider two such studies taking place
at the same location, but at different times. In the first
study, we measure P(y, z|do(x)) and discover that Z
is a good surrogate, namely, knowing the effect of treat-
ment on Z allows prediction of the effect of treatment
on the more clinically relevant outcome (Y ) (Joffe and
Greene, 2009). Once Z is proclaimed a “surrogate end-
point,” it invites efforts to find direct means of control-
ling Z. For example, if cholesterol level is found to
be a predictor of heart diseases in a long-run trial, drug
manufacturers would rush to offer cholesterol-reducing
substances for public consumption. As a result, both
the prior P(z) and the treatment-dependent probabil-
ity P(z|do(x)) would undergo a change, resulting in
P ∗(z) and P ∗(z|do(x)), respectively.

We now wish to reassess the effect of the drug
P ∗(y|do(x)) in the new population and do it in the
cheapest possible way, namely, by conducting an ob-
servational study to estimate P ∗(z, x), acknowledging
that confounding exists between X and Y and that the
drug affects Y both directly and through Z, as shown
in Figure 3(c).

Using a graphical representation to encode the as-
sumptions articulated thus far, and further assuming
that the disparity observed stems only from a difference
in people’s susceptibility to X (and not due to a change
in some unobservable confounder), we will prove in
Section 5 that the correct transport formula should be

P ∗(
y|do(x)

) =
∑

z

P
(
y|do(x), z

)
P ∗(z|x),(3.4)

which is different from both (3.1) and (3.2). It calls
instead for the z-specific effects to be reweighted by
the conditional probability P ∗(z|x), estimated in the
target population.14

To see how the transportability problem fits into the
general scheme of causal analysis discussed in Sec-
tion 2.1 (Figure 1), we note that, in our case, the data
comes from two sources, experimental (from the study)
and nonexperimental (from the target), assumptions are
encoded in the form of selection diagrams, and the
query stands for the causal effect (e.g., P ∗(y|do(x))).
Although this paper does not discuss the goodness-of-
fit problem, standard methods are available for testing
the compatibility of the selection diagram with the data
available.

4. FORMALIZING TRANSPORTABILITY

4.1 Selection Diagrams and Selection Variables

The pattern that emerges from the examples dis-
cussed in Section 3 indicates that transportability is a
causal, not statistical notion. In other words, the con-
ditions that license transport as well as the formulas
through which results are transported depend on the
causal relations between the variables in the domain,
not merely on their statistics. For instance, it was im-
portant in Example 3 to ascertain that the change in
P(z|x) was due to the change in the way Z is affected
by X, but not due to a change in confounding con-
ditions between the two. This cannot be determined
solely by comparing P(z|x) and P ∗(z|x). If X and
Z are confounded [e.g., Figure 6(e)], it is quite pos-
sible for the inequality P(z|x) *= P ∗(z|x) to hold, re-
flecting differences in confounding, while the way that
Z is affected by X (i.e., P(z|do(x))) is the same in
the two populations—a different transport formula will
then emerge for this case.

Consequently, licensing transportability requires
knowledge of the mechanisms, or processes, through
which population differences come about; different lo-
calization of these mechanisms yield different trans-
port formulae. This can be seen most vividly in Exam-
ple 2 [Figure 3(b)] where we reasoned that no reweigh-
ing is necessary if the disparity P(z) *= P ∗(z) origi-
nates with the way language proficiency depends on

14Quite often the possibility of running a second randomized ex-
periment to estimate P ∗(z|do(x)) is also available to investigators,
though at a higher cost. In such cases, a transport formula would be
derivable under more relaxed assumptions, for example, allowing
for X and Z to be confounded.
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FIG. 4. Selection diagrams depicting specific versions of Examples 1–3. In (a), the two populations differ in age distributions. In (b), the
populations differs in how Z depends on age (an unmeasured variable, represented by the hollow circle) and the age distributions are the
same. In (c), the populations differ in how Z depends on X. In all diagrams, dashed arcs (e.g., X !""""# Y ) represent the presence of latent
variables affecting both X and Y .

age, while the age distribution itself remains the same.
Yet, because age is not measured, this condition can-
not be detected in the probability distribution P , and
cannot be distinguished from an alternative condition,

P(age) *= P ∗(age) and P(z|age) = P ∗(z|age),

one that may require reweighting according to equa-
tion (3.1). In other words, every probability distribu-
tion P(x, y, z) that is compatible with the process of
Figure 3(b) is also compatible with that of Figure 3(a)
and, yet, the two processes dictate different transport
formulas.

Based on these observations, it is clear that if we are
to represent formally the differences between popula-
tions (similarly, between experimental settings or envi-
ronments), we must resort to a representation in which
the causal mechanisms are explicitly encoded and in
which differences in populations are represented as lo-
cal modifications of those mechanisms.

To this end, we will use causal diagrams augmented
with a set, S, of “selection variables,” where each mem-
ber of S corresponds to a mechanism by which the two
populations differ, and switching between the two pop-
ulations will be represented by conditioning on differ-
ent values of these S variables.15

Intuitively, if P(v|do(x)) stands for the distribution
of a set V of variables in the experimental study (with
X randomized) then we designate by P ∗(v|do(x)) the
distribution of V if we were to conduct the study on

15Disparities among populations or subpopulations can also arise
from differences in design; for example, if two samples are drawn
by different criteria from a given population. The problem of gen-
eralizing between two such subpopulations is usually called sam-
pling selection bias (Heckman, 1979; Hernán, Hernández-Díaz and
Robins, 2004; Cole and Stuart, 2010; Pearl, 2013; Bareinboim,
Tian and Pearl, 2014). In this paper, we deal only with nature-
induced, not man-made disparities.

population #∗ instead of #. We now attribute the dif-
ference between the two to the action of a set S of se-
lection variables, and write16,17

P ∗(
v|do(x)

) = P
(
v|do(x), s∗)

.

The selection variables in S may represent all factors
by which populations may differ or that may “threaten”
the transport of conclusions between populations. For
example, in Figure 4(a) the age disparity P(z) *= P ∗(z)
discussed in Example 1 will be represented by the in-
equality

P(z) *= P(z|s),
where S stands for all factors responsible for drawing
subjects at age Z = z to NYC rather than LA.

Of equal importance is the absence of an S variable
pointing to Y in Figure 4(a), which encodes the as-
sumption that age-specific effects are invariant across
the two populations.

This graphical representation, which we will call
“selection diagrams” is defined as follows:18

16Alternatively, one can represent the two populations’ distribu-
tions by P(v|do(x), s), and P(v|do(x), s∗), respectively. The re-
sults, however, will be the same, since only the location of S enters
the analysis.

17Pearl (1993, 2009b, page 71), Spirtes, Glymour and Scheines
(1993) and Dawid (2002), for example, use conditioning on aux-
iliary variables to switch between experimental and observational
studies. Dawid (2002) further uses such variables to represent
changes in parameters of probability distributions.

18The assumption that there are no structural changes between
domains can be relaxed starting with D = G∗ and adding S-nodes
following the same procedure as in Definition 4, while enforcing
acyclicity. In extreme cases in which the two domains differ in
causal directionality (Spirtes, Glymour and Scheines, 2000, pages
298–299), acyclicity cannot be maintained. This complication as
well as one created when G is a edge-super set of G∗ require a
more elaborated graphical representation and lie beyond the scope
of this paper.
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DEFINITION 4 (Selection diagram). Let 〈M,M∗〉
be a pair of structural causal models (Definition 1) rel-
ative to domains 〈#,#∗〉, sharing a causal diagram G.
〈M,M∗〉 is said to induce a selection diagram D if D
is constructed as follows:

1. Every edge in G is also an edge in D.
2. D contains an extra edge Si → Vi whenever there

might exist a discrepancy fi *= f ∗
i or P(Ui) *=

P ∗(Ui) between M and M∗.

In summary, the S-variables locate the mechanisms
where structural discrepancies between the two popu-
lations are suspected to take place. Alternatively, the
absence of a selection node pointing to a variable rep-
resents the assumption that the mechanism responsi-
ble for assigning value to that variable is the same in
the two populations. In the extreme case, we could add
selection nodes to all variables, which means that we
have no reason to believe that the populations share
any mechanism in common, and this, of course would
inhibit any exchange of information among the pop-
ulations. The invariance assumptions between popula-
tions, as we will see, will open the door for the trans-
port of some experimental findings.

For clarity, we will represent the S variables by
squares, as in Figure 4, which uses selection diagrams
to encode the three examples discussed in Section 3.
(Besides the S variables, these graphs also include
additional latent variables, represented by bidirected
edges, which makes the examples more realistic.) In
particular, Figures 4(a) and 4(b) represent, respectively,
two different mechanisms responsible for the observed
disparity P(z) *= P ∗(z). The first [Figure 4(a)] dictates
transport formula (3.1), while the second [Figure 4(b)]
calls for direct, unadjusted transport (3.2). This dif-
ference stems from the location of the S variables in
the two diagrams. In Figure 4(a), the S variable repre-
sents unspecified factors that cause age differences be-
tween the two populations, while in Figure 4(b), S rep-
resents factors that cause differences in reading skills
(Z) while the age distribution itself (unobserved) re-
mains the same.

In this paper, we will address the issue of transporta-
bility assuming that scientific knowledge about invari-
ance of certain mechanisms is available and encoded
in the selection diagram through the S nodes. Such
knowledge is, admittedly, more demanding than that
which shapes the structure of each causal diagram in
isolation. It is, however, a prerequisite for any attempt
to justify transfer of findings across populations, which
makes selection diagrams a mathematical object wor-
thy of analysis.

4.2 Transportability: Definitions and Examples

Using selection diagrams as the basic representa-
tional language, and harnessing the concepts of inter-
vention, do-calculus, and identifiability (Section 2), we
can now give the notion of transportability a formal
definition.

DEFINITION 5 (Transportability). Let D be a
selection diagram relative to domains 〈#,#∗〉. Let
〈P, I 〉 be the pair of observational and interven-
tional distributions of #, and P ∗ be the observa-
tional distribution of #∗. The causal relation R(#∗) =
P ∗(y|do(x), z) is said to be transportable from #
to #∗ in D if R(#∗) is uniquely computable from
P,P ∗, I in any model that induces D.

Two interesting connections between identifiability
and transportability are worth noting. First, note that all
identifiable causal relations in D are also transportable,
because they can be computed directly from P ∗ and
require no experimental information from #. Second,
note that given causal diagram G, one can produce a
selection diagram D such that identifiability in G is
equivalent to transportability in D. First set D = G,
and then add selection nodes pointing to all variables
in D, which represents that the target domain does
not share any mechanism with its counterpart—this is
equivalent to the problem of identifiability because the
only way to achieve transportability is to identify R
from scratch in the target population.

While the problems of identifiability and transporta-
bility are related, proofs of nontransportability are
more involved than those of nonidentifiability for they
require one to demonstrate the nonexistence of two
competing models compatible with D, agreeing on
{P,P ∗, I }, and disagreeing on R(#∗).

Definition 5 is declarative, and does not offer an ef-
fective method of demonstrating transportability even
in simple models. Theorem 1 offers such a method us-
ing a sequence of derivations in do-calculus.

THEOREM 1. Let D be the selection diagram
characterizing two populations, # and #∗, and S
a set of selection variables in D. The relation R =
P ∗(y|do(x), z) is transportable from # to #∗ if the ex-
pression P(y|do(x), z, s) is reducible, using the rules
of do-calculus, to an expression in which S appears
only as a conditioning variable in do-free terms.

PROOF. Every relation satisfying the condition of
Theorem 1 can be written as an algebraic combination
of two kinds of terms, those that involve S and those
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that do not. The former can be written as P ∗-terms and
are estimable, therefore, from observations on #∗, as
required by Definition 5. All other terms, especially
those involving do-operators, do not contain S; they are
experimentally identifiable therefore in #. $

This criterion was proven to be both sufficient and
necessary for causal effects, namely R = P ∗(y|do(x))
(Bareinboim and Pearl, 2012). Theorem 1, though pro-
cedural, does not specify the sequence of rules leading
to the needed reduction when such a sequence exists.
Bareinboim and Pearl (2013b) derived a complete pro-
cedural solution for this, based on graphical method
developed in (Tian and Pearl, 2002; Shpitser and Pearl,
2006). Despite its completeness, however, the proce-
dural solution is not trivial, and we take here an alter-
native route to establish a simple and transparent pro-
cedure for confirming transportability, guided by two
recognizable subgoals.

DEFINITION 6 (Trivial transportability). A causal
relation R is said to be trivially transportable from #
to #∗, if R(#∗) is identifiable from (G∗,P ∗).

This criterion amounts to an ordinary test of identi-
fiability of causal relations using graphs, as given by
Definition 2. It permits us to estimate R(#∗) directly
from observational studies on #∗, unaided by causal
information from #.

EXAMPLE 4. Let R be the causal effect P ∗(y|
do(x)) and let the selection diagram of # and #∗ be
given by X → Y ← S, then R is trivially transportable,
since R(#∗) = P ∗(y|x).

Another special case of transportability occurs when
a causal relation has identical form in both domains—
no recalibration is needed.

DEFINITION 7 (Direct transportability). A causal
relation R is said to be directly transportable from #
to #∗, if R(#∗) = R(#).

A graphical test for direct transportability of R =
P ∗(y|do(x), z) follows from do-calculus and reads:
(S⊥⊥Y |X,Z)GX

; in words, X blocks all paths from S to
Y once we remove all arrows pointing to X and condi-
tion on Z. As a concrete example, this test is satisfied in
Figure 4(a) and, therefore, the z-specific effects is the
same in both populations; it is directly transportable.

REMARK. The notion of “external validity” as de-
fined by Manski (2007) (footnote 1) corresponds to Di-
rect Transportability, for it requires that R retains its
validity without adjustment, as in equation (3.2). Such

conditions preclude the use of information from #∗ to
recalibrate R.

EXAMPLE 5. Let R be the causal effect of X on Y ,
and let D have a single S node pointing to X, then R is
directly transportable, because causal effects are inde-
pendent of the selection mechanism (see Pearl, 2009b,
pages 72 and 73).

EXAMPLE 6. Let R be the z-specific causal effect
of X on Y P ∗(y|do(x), z) where Z is a set of vari-
ables, and P and P ∗ differ only in the conditional
probabilities P(z|pa(Z)) and P ∗(z|pa(Z)) such that
(Z⊥⊥Y |pa(Z)), as shown in Figure 4(b). Under these
conditions, R is not directly transportable. However,
the pa(Z)-specific causal effects P ∗(y|do(x),pa(Z))

are directly transportable, and so is P ∗(y|do(x)). Note
that, due to the confounding arcs, none of these quan-
tities is identifiable.

5. TRANSPORTABILITY OF CAUSAL EFFECTS—A
GRAPHICAL CRITERION

We now state and prove two theorems that permit
us to decide algorithmically, given a selection diagram,
whether a relation is transportable between two popu-
lations, and what the transport formula should be.

THEOREM 2. Let D be the selection diagram char-
acterizing two populations, # and #∗, and S the set of
selection variables in D. The strata-specific causal ef-
fect P ∗(y|do(x), z) is transportable from # to #∗ if Z

d-separates Y from S in the X-manipulated version of
D, that is, Z satisfies (Y⊥⊥S|Z,X)DX

.

PROOF.

P ∗(
y|do(x), z

) = P
(
y|do(x), z, s∗).

From Rule 1 of do-calculus we have: P(y|do(x), z,

s∗) = P(y|do(x), z) whenever Z satisfies (Y⊥⊥S|Z,

X) in DX . This proves Theorem 2. $
DEFINITION 8 (S-admissibility). A set T of vari-

ables satisfying (Y⊥⊥S|T ,X) in DX will be called
S-admissible (with respect to the causal effect of
X on Y ).

COROLLARY 1. The average causal effect P ∗(y|
do(x)) is transportable from # to #∗ if there exists
a set Z of observed pretreatment covariates that is
S-admissible. Moreover, the transport formula is given
by the weighting of equation (3.1).
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FIG. 5. Selection diagrams illustrating S-admissibility. (a) Has
no S-admissible set while in (b), W is S-admissible.

EXAMPLE 7. The causal effect is transportable
in Figure 4(a), since Z is S-admissible, and in Fig-
ure 4(b), where the empty set is S-admissible. It is
also transportable by the same criterion in Figure 5(b),
where W is S-admissible, but not in Figure 5(a) where
no S-admissible set exists.

COROLLARY 2. Any S variable that is pointing di-
rectly into X as in Figure 6(a), or that is d-separated
from Y in DX can be ignored.

This follows from the fact that the empty set is
S-admissible relative to any such S variable. Conceptu-
ally, the corollary reflects the understanding that differ-
ences in propensity to receive treatment do not hinder
the transportability of treatment effects; the randomiza-
tion used in the experimental study washes away such
differences.

We now generalize Theorem 2 to cases involving
treatment-dependent Z variables, as in Figure 4(c).

THEOREM 3. The average causal effect P ∗(y|
do(x)) is transportable from # to #∗ if either one of
the following conditions holds:

1. P ∗(y|do(x)) is trivially transportable.
2. There exists a set of covariates, Z (possibly affected

by X) such that Z is S-admissible and for which
P ∗(z|do(x)) is transportable.

3. There exists a set of covariates, W that satisfy
(X⊥⊥Y |W)DX(W)

and for which P ∗(w|do(x)) is
transportable.

PROOF. 1. Condition 1 entails transportability.
2. If condition 2 holds, it implies

P ∗(
y|do(x)

)

(5.1)
= P

(
y|do(x), s

)

=
∑

z

P
(
y|do(x), z, s

)
P

(
z|do(x), s

)
(5.2)

=
∑

z

P
(
y|do(x), z

)
P ∗(

z|do(x)
)
.(5.3)

We now note that the transportability of P(z|do(x))
should reduce P ∗(z|do(x)) to a star-free expression
and would render P ∗(y|do(x)) transportable.

3. If condition 3 holds, it implies

P ∗(
y|do(x)

)

(5.4)
= P

(
y|do(x), s

)

=
∑

w

P
(
y|do(x),w, s

)
P

(
w|do(x), s

)
(5.5)

=
∑

w

P (y|w, s)P ∗(
w|do(x)

)
(5.6)

(by Rule 3 of do-calculus)

=
∑

w

P ∗(y|w)P ∗(
w|do(x)

)
.(5.7)

We similarly note that the transportability of P ∗(w|
do(x)) should reduce P(w|do(x), s) to a star-free ex-
pression and would render P ∗(y|do(x)) transportable.
This proves Theorem 3. $

EXAMPLE 8. To illustrate the application of The-
orem 3, let us apply it to Figure 4(c), which corre-
sponds to the surrogate endpoint problem discussed
in Section 3 (Example 3). Our goal is to estimate
P ∗(y|do(x))—the effect of X on Y in the new pop-
ulation created by changes in how Z responds to X.
The structure of the problem permits us to satisfy con-
dition 2 of Theorem 3, since Z is S-admissible and
P ∗(z|do(x)) is trivially transportable. The former can
be seen from (S⊥⊥Y |X,Z)GX

, hence P ∗(y|do(x), z) =
P(y|do(x), z)); the latter can be seen from the fact
that X and Z and unconfounded, hence P ∗(z|do(x)) =
P ∗(z|x). Putting the two together, we get

P ∗(
y|do(x)

) =
∑

z

P
(
y|do(x), z

)
P ∗(z|x),(5.8)

which proves equation (3.4).

REMARK. The test entailed by Theorem 3 is re-
cursive, since the transportability of one causal effect
depends on that of another. However, given that the di-
agram is finite and acyclic, the sets Z and W needed in
conditions 2 and 3 of Theorem 3 would become closer
and closer to X, and the iterative process will terminate
after a finite number of steps. This occurs because the
causal effects P ∗(z|do(x)) (likewise, P ∗(w|do(x))) is
trivially transportable and equals P(z) for any Z node
that is not a descendant of X. Thus, the need for re-
iteration applies only to those members of Z that lie
on the causal pathways from X to Y . Note further that
the analyst need not terminate the procedure upon sat-
isfying the conditions of Theorem 3. If one wishes to
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FIG. 6. Selection diagrams illustrating transportability. The causal effect P(y|do(x)) is (trivially) transportable in (c) but not in (b) and
(f). It is transportable in (a), (d) and (e) (see Corollary 2).

reduce the number of experiments, it can continue until
no further reduction is feasible.

EXAMPLE 9. Figure 6(d) requires that we invoke
both conditions of Theorem 3, iteratively. To satisfy
condition 2, we note that Z is S-admissible, and we
need to prove the transportability of P ∗(z|do(x)).
To do that, we invoke condition 3 and note that W

d-separates X from Z in D. There remains to confirm
the transportability of P ∗(w|do(x)), but this is guar-
anteed by the fact that the empty set is S-admissible
relative to W , since (W⊥⊥S). Hence, by Theorem 2
(replacing Y with W ) P ∗(w|do(x)) is transportable,
which bestows transportability on P ∗(y|do(x)). Thus,
the final transport formula (derived formally in the Ap-
pendix) is:

P ∗(
y|do(x)

)

=
∑

z

P
(
y|do(x), z

)
(5.9)

·
∑

w

P
(
w|do(x)

)
P ∗(z|w).

The first two factors of the expression are estimable
in the experimental study, and the third through ob-
servational studies on the target population. Note that
the joint effect P(y,w, z|do(x)) need not be estimated
in the experiment; a decomposition that results in de-
crease of measurement cost and sampling variability.

A similar analysis proves the transportability of the
causal effect in Figure 6(e) (see Pearl and Bareinboim,
2011). The model of Figure 6(f), however, does not
allow for the transportability of P ∗(y|do(x)) as wit-
nessed by the absence of S-admissible set in the dia-
gram, and the inapplicability of condition 3 of Theo-
rem 3.

EXAMPLE 10. To illustrate the power of Theo-
rem 3 in discerning transportability and deriving trans-
port formulae, Figure 7 represents a more intricate se-
lection diagram, which requires several iteration to dis-
cern transportability. The transport formula for this di-
agram is given by (derived formally in the Appendix):

P ∗(
y|do(x)

)

=
∑

z

P
(
y|do(x), z

)
(5.10)

·
∑

w

P ∗(z|w)
∑

t

P
(
w|do(x), t

)
P ∗(t).

The main power of this formula is to guide investi-
gators in deciding what measurements need be taken
in both the experimental study and the target popula-
tion. It asserts, for example, that variables U and V
need not be measured. It likewise asserts that the W -
specific causal effects need not be estimated in the ex-
perimental study and only the conditional probabilities
P ∗(z|w) and P ∗(t) need be estimated in the target pop-
ulation. The derivation of this formulae is given in the
Appendix.

Despite its power, Theorem 3 in not complete,
namely, it is not guaranteed to approve all transportable

FIG. 7. Selection diagram in which the causal effect is shown to
be transportable in multiple iterations of Theorem 3 (see the Ap-
pendix).
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relations or to disapprove all nontransportable ones. An
example of the former is contrived in Bareinboim and
Pearl (2012), where an alternative, necessary and suf-
ficient condition is established in both graphical and
algorithmic form. Theorem 3 provides, nevertheless, a
simple and powerful method of establishing transporta-
bility in practice.

6. CONCLUSIONS

Given judgements of how target populations may
differ from those under study, the paper offers a for-
mal representational language for making these assess-
ments precise and for deciding whether causal relations
in the target population can be inferred from those ob-
tained in an experimental study. When such inference
is possible, the criteria provided by Theorems 2 and
3 yield transport formulae, namely, principled ways
of calibrating the transported relations so as to prop-
erly account for differences in the populations. These
transport formulae enable the investigator to select the
essential measurements in both the experimental and
observational studies, and thus minimize measurement
costs and sample variability.

The inferences licensed by Theorem 2 and 3 repre-
sent worst case analysis, since we have assumed, in the
tradition of nonparametric modeling, that every vari-
able may potentially be an effect-modifier (or moder-
ator). If one is willing to assume that certain relation-
ships are noninteractive, or monotonic as is the case
in additive models, then additional transport licenses
may be issued, beyond those sanctioned by Theorems
2 and 3.

While the results of this paper concern the transfer
of causal information from experimental to observa-
tional studies, the method can also benefit in transport-
ing statistical findings from one observational study
to another (Pearl and Bareinboim, 2011). The ratio-
nale for such transfer is two-fold. First, information
from the first study may enable researchers to avoid
repeated measurement of certain variables in the tar-
get population. Second, by pooling data from both
populations, we increase the precision in which their
commonalities are estimated and, indirectly, also in-
crease the precision by which the target relationship
is transported. Substantial reduction in sampling vari-
ability can be thus achieved through this decomposi-
tion (Pearl, 2012b).

Clearly, the same data-sharing philosophy can be
used to guide Meta-Analysis (Glass, 1976; Hedges and
Olkin, 1985; Rosenthal, 1995; Owen, 2009), where one

attempts to combine results from many experimental
and observational studies, each conducted on a differ-
ent population and under a different set of conditions,
so as to construct an aggregate measure of effect size
that is “better,” in some formal sense, than any one
study in isolation. While traditional approaches aims to
average out differences between studies, our theory ex-
ploits the commonalities among the populations stud-
ied and the target population. By pooling together com-
monalities and discarding areas of disparity, we gain
maximum use of the available samples (Bareinboim
and Pearl, 2013c).

To be of immediate use, our method relies on the as-
sumption that the analyst is in possession of sufficient
background knowledge to determine, at least quali-
tatively, where two populations may differ from one
another. This knowledge is not vastly different from
that required in any principled approach to causation
in observational studies, since judgement about pos-
sible effects of omitted factors is crucial in any such
analysis. Whereas such knowledge may only be par-
tially available, the analysis presented in this paper is
nevertheless essential for understanding what knowl-
edge is needed for the task to succeed and how sensi-
tive conclusions are to knowledge that we do not pos-
sess.

Real-life situations will be marred, of course, with
additional complications that were not addressed di-
rectly in this paper; for example, measurement errors,
selection bias, finite sample variability, uncertainty
about the graph structure and the possible existence of
unmeasured confounders between any two nodes in the
diagram. Such issues are not unique to transportability;
they plague any problem in causal analysis, regardless
of whether they are represented formally or ignored by
avoiding formalism. The methods offered in this paper
are representative of what theory permits us to do in
ideal situations, and the graphical representation pre-
sented in this paper makes the assumptions explicit and
transparent. Transparency is essential for reaching ten-
tative consensus among researchers and for facilitating
discussions to distinguish that which is deemed plausi-
ble and important from that which is negligible or im-
plausible.

Finally, it is important to mention two recent exten-
sions of the results reported in this article. Bareinboim
and Pearl (2013a) have addressed the problem of trans-
portability in cases where only a limited set of exper-
iments can be conducted at the source environment.
Subsequently, the results were generalized to the prob-
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lem of “meta-transportability,” that is, pooling experi-
mental results from multiple and disparate sources to
synthesize a consistent estimate of a causal relation
at yet another environment, potentially different from
each of the former (Bareinboim and Pearl, 2013c). It is
shown that such synthesis may be feasible from multi-
ple sources even in cases where it is not feasible from
any one source in isolation.

APPENDIX

Derivation of the transport formula for the causal ef-
fect in the model of Figure 6(d) [equation (5.9)]:

P ∗(
y|do(x)

)

= P
(
y|do(x), s

)

=
∑

z

P
(
y|do(x), s, z

)
P

(
z|do(x), s

)

=
∑

z

P
(
y|do(x), z

)
P

(
z|do(x), s

)

(
2nd condition of Theorem 3,

S-admissibility of Z of CE(X,Y )
)

=
∑

z

P
(
y|do(x), z

)

·
∑

w

P
(
z|do(x),w, s

)
P

(
w|do(x), s

)

=
∑

z

P
(
y|do(x), z

)

·
∑

w

P (z|w, s)P
(
w|do(x), s

)
(A.1)

(
3rd condition of Theorem 3,

(X⊥⊥Z|W,S)DX(W)

)

=
∑

z

P
(
y|do(x), z

)

·
∑

w

P (z|w, s)P
(
w|do(x)

)

(
2nd condition of Theorem 3,

S-admissibility of the

empty set {} of CE(X,W)
)

=
∑

z

P
(
y|do(x), z

)

·
∑

w

P ∗(z|w)P
(
w|do(x)

)
.

Derivation of the transport formula for the causal effect
in the model of Figure 7 [equation (5.10)]:

P ∗(
y|do(x)

)

= P
(
y|do(x), s, s′)

=
∑

z

P
(
y|do(x), s, s′, z

)
P

(
z|do(x), s, s′)

=
∑

z

P
(
y|do(x), z

)
P

(
z|do(x), s, s′)

(
2nd condition of Theorem 3,

S-admissibility of Z of CE(X,Z)
)

=
∑

z

P
(
y|do(x), z

)

·
∑

w

P
(
z|do(x), s, s′,w

)
P

(
w|do(x), s, s′)

=
∑

z

P
(
y|do(x), z

)

·
∑

w

P
(
z|s, s′,w

)
P

(
w|do(x), s, s′)

(
3rd condition of Theorem 3,
(
X⊥⊥Z|W,S,S′)

DX(W)

)

(A.2)
=

∑

z

P
(
y|do(x), z

)∑

w

P
(
z|s, s′,w

)

·
∑

t

P
(
w|do(x), s, s′, t

)
P

(
t |do(x), s, s′)

=
∑

z

P
(
y|do(x), z

)∑

w

P
(
z|s, s′,w

)

·
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t

P
(
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)
P

(
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(
2nd condition of Theorem 3,

S-admissibility of T on CE(X,W)
)

=
∑

z

P
(
y|do(x), z
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w

P
(
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)

·
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P
(
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)
P

(
t |s, s′)

(
1st condition of Theorem 3/

Rule 3 of do-calculus,
(
X⊥⊥T |S,S′)

D

)

=
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z

P
(
y|do(x), z

)∑

w

P ∗(z|w)

·
∑

t

P
(
w|do(x), t

)
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