
Information synergy, part 1:
The Kelly-Ross Theorem

In an uncertain world, synergy derives from information. For instance, infor-
mation regarding interactions amongst productive inputs, outputs, or projects
yields information-based economies of scale and/or scope.
A Kelly investment strategy produces maximum long-run wealth where weights,

k, on Arrow-Debreu portfolios match assigned state probabilities, k = p, and
information revising state probabilities, Pr (s)  p, is met with portfolio rebal-
ancing accordingly.
Long-run wealth maximization implies maximizing the geometric mean of

portfolio returns

max
k

nY

i1


ki
yi

Pr(si)

s.t.
Pn

i=1 ki = 1

or equivalently, and perhaps more familiarly, (arithmetic) mean of logarithmic
returns

max
k

E
h
log ky

i
 Pr (s)T log (k)

s.t.
Pn

i=1 ki = 1

where ki is the fraction of wealth invested in project i, y > 0 is a vector of
no-arbitrage state prices (or Arrow-Debreu prices) derived from Ay = x,  is
a diagonal matrix comprised of 1

yi
, A is an n  n matrix of returns with rows

referring to projects and columns to states, and x is a vector of investments
(normalized to unity).1

These notes are organized in three parts. The first part develops and briefly
illustrates the combination of Ross’ recovery theorem and a Kelly investment
strategy culminating in the Kelly-Ross theorem. Part two explores the ex ante
impact of additional coarse accounting information along with finer other infor-
mation that may relate to the initial state, the post-transition state, or both.
Part three focuses on ex post (probability) belief revision based on realized
information signals.

Kelly criterion. The first order conditions for the Lagrangian associated with
the logarithmic returns frame above regarding long-run wealth maximization is

L =
nX

i=1

pi ln


ki
1

yi


 

 
nX

i=1

k  1

!

are
pi
ki
  = 0, for all i

1Weights on the nominal assets are

wT = kTA1

1



Since
P
ki = 1 =

P pi
 = 1

 ,  = 1 and ki = pi. In other words, probability
assignment to state i identifies the optimal fractional investment in state i.
It’s straightforward to show (demonstrated later) for a Kelly strategy the

expected gain due to information, z, equals mutual information. Mutual infor-
mation is

I (s; z) = H (s) +H (z)H (s, z)

where H (·) = 
P
p (·) log p (·), Shannon’s entropy.2

1 Static information

Suppose returns in state i are the same regardless of the initial state. We refer
to this case as a static information setting. A richer process allows returns,
even riskless returns, to di§er across initial states as described in Ross’ recovery
theorem. We regard this case as a dynamic information setting. A static infor-
mation setting implies state prices and probability assignments are independent
of the initial state. Consequently, the initial state can be ignored without loss
of information. On the other hand, the initial state potentially carries valuable
information in a dynamic information setting. This is reflected in a bounty of
state-transition Arrow-Debreu (state) prices and probability assignments.

2 Dynamic information

2.1 Recovery theorem

Ross’ [2011,2015]3 recovery theorem says linear no arbitrage equilibrium state
prices convey a representative investor’s state probability assignments. That
is, state prices convey Markovian state-transition probabilities (and preferences
regarding timing of consumption and risk) for a representative investor. This is
in the spirit of assigning probabilities based on what we know, in other words,
maximum entropy probability assignment.
The key is the pricing kernel which says the (state) price, yij , per unit

probability, Fij , is equal to a personal discount factor, , times the ratio of
marginal utilities for consumption in the future state, cj , to current, c0, where

2For continuous support, summation is replaced by integration, probability mass by density
function, and the measure is referred to as di§erential entropy.

3Ross, S. 2011, "The recovery theorem," MIT working paper and Ross, S. 2015, "The
recovery theorem," The Journal of Finance.
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j refers to the future state.4

yij
Fij

= 
U

0
(cj)

U 0 (c0)

In other words, a representative investor with wealth or endowment, W0,
solves for optimal consumption subject to a budget or wealth constraint.

max
c0,cj0

U (c0) + 

nX

j=1

FijU (cj)

s.t. c0 +
Pn

j=1 yijcj W0

The first order conditions for the Lagrangian representation of the above opti-
mization problem yield the pricing kernel.

 = U
0
(c0)

FijU
0
(cj) = yijU

0
(c0)

For Markovian state-transition probabilities assigned as F = 1
DPD

1 where
D is a diagonal matrix with elements U

0
(c1) , . . . , U

0
(cn) and with U

0
(c0) =

U
0
(ci), then the pricing kernel for the representative investor is

yij
Fij

= 
U

0
(cj)

U 0 (ci)

State-transition probability assignment follows from eigensystem decompo-
sition of the dynamic system of state prices P along with the requirement the
rows of F sum to one.

P  = 

where, by the Perron-Frobenius theorem,  is the positive-valued eigenvector
associated with the largest eigenvalue . The Perron-Frobenius theorem says
for a nonnegative matrix the largest eigenvalue and its associated eigenvector

4Constant relative risk aversion is represented as

U (c) =
c1

1 

where ! 1 leads to U (c) = ln c. Constant relative risk aversion is attractive as a change in
wealth leads to no change in the relative composition of an individual’s portfolio (fraction of
wealth invested in various assets). For constant relative risk aversion, relative marginal utility
is

U
0
(cj)

U 0 (ci)
=


cj

ci



and logarithmic relative marginal utility is

U
0
(cj)

U 0 (ci)
=


cj

ci

1

3



are nonnegative. Since P is a matrix of state prices, P is a positive matrix (oth-
erwise, there exist arbitrage opportunities) with positive maximum eigenvalue
and associated eigenvector.
Let  be a vector of ones. Recall eigenvectors are scale-free, P () =  ()

implies P  =  for any . Then, we can write

D1 = 

with  scaled appropriately. Notice, the pricing kernel is also scale-free as only
ratios of marginal utilities enter. Collecting terms, we have

P  = 

PD1 = D1
1


DPD1 = 

F  = 

which confirms that F is a proper probability assignment as the terms are
nonnegative and sum to one.
This eigensystem decomposition of P follows directly from the pricing kernel

and risk preference independence over initial states.

yij
Fij

= 
U

0
(cj)

U 0 (ci)

yij
U

0
(ci)

U 0 (cj)
= Fij

Since Fij is a probability distribution given initial state i,
P

j Fij = 1. Therefore,

X

j

yij
U

0
(ci)

U 0 (cj)
= 

X

j

Fij = 

yi1
U

0
(ci)

U 0 (c1)
+ · · ·+ yin

U
0
(ci)

U 0 (cn)
= 

yi1
1

U 0 (c1)
+ · · ·+ yin

1

U 0 (cn)
= 

1

U 0 (ci)

For initial states, i = 1, . . . , n, we have n equations which in matrix form is

P

2

664

1
U 0 (c1)

...
1

U 0 (cn)

3

775 = 

2

664

1
U 0 (c1)

...
1

U 0 (cn)

3

775

This is the eigensystem decomposition of P

PD1 = D1
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where the eigenvector associated with the largest eigenvalue  is

D1 =

2

664

1
U 0 (c1)

0 0

0
. . . 0

0 0 1
U 0 (cn)

3

775

2

64
1
...
1

3

75

=

2

664

1
U 0 (c1)

...
1

U 0 (cn)

3

775

The pricing kernel, yijFij = 
U
0
(cj)

U 0 (ci)
or
P

j yij
U
0
(ci)

U 0 (cj)
= 1, indicates the repre-

sentative agent invests U
0
(ci)

U 0 (cj)
units in Arrow-Debreu portfolio ADij (the port-

folio formed in initial state i that pays one in state j and nothing in any other
state) at equilibrium unit price yij when wealth to be invested is normalized
to one. In other words, the equilibrium fractional wealth invested in ADij is

yij
U
0
(ci)

U 0 (cj)
, but this equals the assigned probability Fij by the recovery theorem

and also is the long-run wealth maximizing strategy indicated by the Kelly cri-
terion. Hence, the recovery theorem describes the equilibrium strategy for the
representative investor as long-run wealth maximization.

2.2 Mutual information theorem

The mutual information theorem says the expected gain from information z
equals mutual information.

E [r | z] E [r] = I (s; z)

We consider the components and then show they are equal. First, consider
expected gains from information, z, E [r | z] E [r].

E [r | z] =

nX

j=1

Pr (zj)E [r | zj ]

=

nX

j=1

Pr (zj)

nX

i=1

Pr (si | zj) log
Pr (si | zj)

yi

=

nX

i=1

nX

j=1

Pr (si, zj) log
Pr (si | zj)

yi

=

nX

i=1

nX

j=1

Pr (si, zj) log Pr (si | zj)
nX

i=1

Pr (si) log yi
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E [r] =

nX

i=1

Pr (si) log
Pr (si)

yi

=

nX

i=1

Pr (si) log Pr (si)
nX

i=1

Pr (si) log yi

and

E [r | z] E [r] =

nX

i=1

nX

j=1

Pr (si, zj) log Pr (si | zj)
nX

i=1

Pr (si) log yi



 
nX

i=1

Pr (si) log Pr (si)
nX

i=1

Pr (si) log yi

!

=

nX

i=1

nX

j=1

Pr (si, zj) log Pr (si | zj)
nX

i=1

Pr (si) log Pr (si)

On the other hand,

I (s; z) = H (s) +H (z)H (s, z)

where

H (s) = 
nX

i=1

Pr (si) log Pr (si)

H (z) = 
nX

j=1

Pr (zj) log Pr (zj)

and

H (s, z) = 
nX

i=1

nX

j=1

Pr (si, zj) log Pr (si, zj)

= 
nX

i=1

nX

j=1

Pr (si, zj) {log Pr (si | zj) + log Pr (zj)}

= 
nX

i=1

nX

j=1

Pr (si, zj) log Pr (si | zj)
nX

j=1

Pr (zj) log Pr (zj)

Then,

I (s; z) = 
nX

i=1

Pr (si) log Pr (si)
nX

j=1

Pr (zj) log Pr (zj)

+

nX

i=1

nX

j=1

Pr (si, zj) log Pr (si | zj) +
nX

j=1

Pr (zj) log Pr (zj)

= 
nX

i=1

Pr (si) log Pr (si) +

nX

i=1

nX

j=1

Pr (si, zj) log Pr (si | zj)
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Thus, we have the remarkable result – while one quantity appears denom-
inated in returns and the other denominated in entropy, they are nevertheless
equal.

I (s; z) = E [r | z] E [r]

2.3 Scalable investments and mutual information

Construction of Arrow-Debreu portfolios from a given return profile involves
scalable investments. That is, investment projects are borrowed and loaned to
create "natural" (Arrow-Debreu) assets. Hence, nurturing of long-term rela-
tions with business partners facilitates such trade of productive processes. Fully
exploiting the information advantage indicated by mutual information further
involves rebalancing of scalable investment projects. An example illustrates
these ideas.

Example 2.1 (scalable investments & mutual information) Suppose three
equally likely states and three scalable assets exhibit the following return profile.

A =

2

4
0.5 1. 1.5
1. 1.5 0.5
1.5 0.5 1.

3

5 x =

2

4
1
1
1

3

5

Then, Arrow-Debreu portfolios are constructed from the rows of A1 so that
row one creates an Arrow-Debreu asset that pays 1 in state 1, row two creates
an Arrow-Debreu asset that pays 1 in state 2, and row three creates an Arrow-
Debreu asset that pays 1 in state 3.

A1 =

2

64

 5
9

1
9

7
9

1
9

7
9  5

9
7
9  5

9
1
9

3

75

State (Arrow-Debreu) prices are

y = A1x =

2

64

1
3
1
3
1
3

3

75

and expected logarithmic returns are


1
3

1
3

1
3


log

0

B@

2

4
3 0 0
0 3 0
0 0 3

3

5

2

64

1
3
1
3
1
3

3

75

1

CA = 0

or expected growth equal to exp (0) = 1.
Now, suppose the manager acquires perfect state information. First glance

suggests the maximum growth rate is 1.5 (the maximum payo§ from selecting
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the asset with greatest return given the state). However, mutual information
indicates the gain is log 3 or, in other words, the growth rate is exp (0 + log 3) =
3. This is where scalability comes to the fore. If the information reveals state 1,
then the Arrow-Debreu portfolio is 3 times row one of A1 or


 15

9
3
9

21
9



to reflect updated beliefs. Similarly, if the information reveals state 2, then the
Arrow-Debreu portfolio is 3 times row two of A1 or


3
9

21
9  15

9


and if the

information reveals state 3, then the Arrow-Debreu portfolio is 3 times row three
of A1 or


21
9  15

9
3
9


. Each Arrow-Debreu portfolio yields logarithmic

return equal to log 3 or growth rate 3 which is twice the growth rate achievable
without exploiting scalability.

2.4 Kelly criterion and the recovery theorem

Suppose an investor utilizes the information in price dynamics in accordance
with the recovery theorem to assign (state-transition) probabilities and employs
a Kelly (long-run) investment strategy where the initial state is known prior to
asset (re)allocation. The short (but remarkable) answer is the expected long-
run logarithm of returns equals the logarithm of the reciprocal of the personal
discount factor .

E [r | z] = pTss

2

666664

E [r1]

E [r2]

...

E [rn]

3

777775

= pTss

2

666664

F1 log

1F

T
1



F2 log

2F

T
2



...

Fn log

nF

T
n



3

777775

= log


1





where z refers to initial state information Fj is the jth row of F and pss =2

666664

Pr (sss1 )

Pr (sss2 )

...

Pr (sssn )

3

777775
is the long-run steady-state probability distribution such that

pTssF = p
T
ss

Alternatively stated, the expected growth rate in assets given a Kelly investment
strategy equals the reciprocal of  (the largest eigenvalue of the state price
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matrix, P ).

exp (E [r | z]) =
1



Hence, similar to the mutual information theorem, the Kelly-Ross combina-
tion produces an answer almost immediately to the expected long-run growth
rate simply by assigning probabilities based on price information dynamics
and following through with the long-run optimal investment strategy. The re-
sult is almost immediately evident when the riskless return is (initial) state-
independent.
When riskless returns are equal across all initial states (state-independent),

the sum of the rows of P are equal and their sum is delta. In this case, D is the
identity matrix and F is a scalar multiple of P where the scalar is 1 . Also, the
Kelly criterion generates expected growth equal to (one plus) the riskless rate in
the state-independent case. Since expected returns are the same in every initial
state, the long-run average expected return equals the expected return in each
initial state, log 1 , (steady-state probability weights play little role since it’s the
expected value of a constant in this state-independent case). This is illustrated
in examples 2.3 and 2.4.
However, the result is quite general. It applies to the case where riskless

returns are state-dependent (vary across initial states) so long as spanning is
satisfied and state prices are positive (the conditions of both the recovery theo-
rem and the Kelly criterion). This latter result is less apparent. The eigenvector
of P , , associated with the largest eigenvalue, , applies the appropriate weights
to the rows of P to produce a scalar multiple of itself. Perhaps, this result is less
surprising than at first blush as the recovery theorem is an equilibrium frame.
If a representative agent’s time preference for consumption is represented by 1


then the clearing condition is that the expected growth rate equals the agent’s
time preference. This result is illustrated in example 2.7. Next, we consider
some variations in initial state information then we state and prove the Kelly-
Ross theorem.

2.4.1 Kelly criterion when initial state is ignored

As a benchmark for the value of initial state (and price dynamics) information,
suppose Arrow-Debreu portfolios are formed in each initial state but the initial
state information is otherwise ignored. Then, the myopic Kelly strategy is to
invest wealth in the same proportions, k, as the state probabilities (i.e., the
unconditional steady-state probabilities, pss). The program is

max
k

Pn
j=1

Pn
i=1 p

ss
i Fij log

kj
yij

s.t.
Pn

j=1 kj = 1

After replacing kn with 1 k1  · · · kn1, first order conditions are

pss1


F1j
kj
 F1n

1k1···kn1


+ pss2


F2j
kj
 F2n

1k1···kn1


+

· · ·+ pssn

Fnj
kj
 Fnn

1k1···kn1


= 0 j = 1, . . . , n 1

9



Solving for investment proportions k gives

kj =

Pn
i=1 p

ss
i FijPn

j=1

Pn
i=1 p

ss
i Fij

=

nX

i=1

pssi Fij

= pssj j = 1, . . . , n

Hence, the long-run wealth maximizing strategy when the initial state is ignored
is to invest fractional wealth equal to the steady-state probability, pss, in each
Arrow-Debreu portfolio.
Mutual information identifies the gain from utilizing rather than ignoring

initial state information.

E [r | z] E [r] = I (s, z)

= H (s) +H (z)H (s, z)

where

H (s) = pTss log pss
H (z) = pTss log pss

H (s, z) = p (s, z)T log p (s, z)

and

E [r | z] E [r] = pTss

2

64
F1 log


1

FT1  pss



...
Fn log


n

FTn  pss



3

75

2.4.2 Kelly criterion when initial state is unknown

Unlike the case above where the initial state is ignored, when the initial state is
unknown Arrow-Debreu portfolios cannot be identified as there are e§ectively
n2 states and only n assets. Let

A 

A1 A2 · · · An



f 

2

6664

FT1
FT2
...
FTn

3

7775

and

 

2

6664

1 0 0 0
0 2 0 0

0 0
. . . 0

0 0 0 n

3

7775

10



then expected logarithmic returns when the initial state is unknown is

E [r0] = log

wTA


Pr (s, z)

s.t. wT  = 

Since we can define z0 so that wTA = (z0)
T , we can also write

E [r0] = Pr (s, z)
T
log (z0)

and the expected gain due to initial state information is

E [r | z] E [r0] = Pr (s, z)
T
log (f) Pr (s, z)T log (z0)

= Pr (s, z)
T
[log (f) log (z0)]

This expected gain can be identified via a "modified" mutual information.

E [r | z] E [r0] = bI (s, z0)
 H (s) + bH (z0)H (s, z)

where
bH (z0) = Pr (s, z)T log z0

In a state-independent riskless returns setting where a riskless asset is readily
identified and the initial state is unknown the long-run growth rate equals one
plus the riskless rate as in the case when the initial state is known. However,
when a riskless asset is formed via a portfolio of assets and this portfolio varies
across initial states the long-run growth rate is less when the initial state is
unknown than when it is known. This result is illustrated in example 2.5.
Likewise, in a state-dependent riskless returns setting the long-run growth rate
is less when the initial states are unknown than when the investor is informed.
We present a corollary describing "modified" mutual information and a proof
next.

Corollary 2.1 ("modified" mutual information) The expected gain from
initial state information is

E [r | z] E [r0] = bI (s, z0)
 H (s) + bH (z0)H (s, z)

where
bH (z0) = Pr (s, z)T log z0

Proof. First, consider the expected gain

E [r | z] E [r0] = Pr (s, z)
T
[log (f) log (z0)]

= Pr (s, z)
T
[log+ log f  log log z0]

= Pr (s, z)
T
log f  Pr (s, z)T log z0
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Now, "modified" mutual information is

bI (s, z0) = H (s) + bH (z0)H (s, z)
= pTss log pss  Pr (s, z)

T
log z0 + Pr (s, z)

T
log Pr (s, z)

The proof is complete if we show

Pr (s, z)
T
log f = pTss log pss + Pr (s, z)

T
log Pr (s, z)

Since

Pr (s, z)
T
[log Pr (s, z) log f ] = Pr (s, z)

T
[log pss + log f  log f ]

= pTss log pss

the proof is complete.5

Now, the stage is set for the Kelly-Ross theorem.

Theorem 2.2 (Kelly-Ross Theorem) If state-transition probabilities are as-
signed in accordance with Ross’ recovery theorem

F =
1


DPD1

where spanning is satisfied, P > 0, and investments are made in accordance
with the Kelly criterion to maximize expected long-run wealth based on known
initial states (z) then the expected long-run rate of return, E [r | z], equals log 1
and the expected long-run growth rate, exp (E [r | z]), equals 1

 .

Proof. Let
P  = 

and

D1 =  =

2

6664

1
2
...
n

3

7775

5A few more details regarding the last step.

p (s, z)T [log p (s, z) log f ] =
nX

i=1

nX

j=1

pssi Fij {log (p
ss
i Fij) logFij}

=

nX

i=1

nX

j=1

pssi Fij {log p
ss
i + logFij  logFij}

=

nX

i=1

nX

j=1

pssi Fij log p
ss
i

=
nX

i=1

pssi log pssi

= pTss log pss
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then price dynamic information yields the state-transition probability assign-
ment

F =
1


DPD1

where steady-state probabilities are

pTssF = p
T
ss =


pss1 pss2 · · · pssn



Combining the Kelly criterion with the above probability distribution and initial
state information produces

E [r | z] = pTss

2

6664

E [r1 | z]
E [r2 | z]

...
E [rn | z]

3

7775

= pTss

2

6664

F1 log

1F

T
1



F2 log

2F

T
2



...
Fn log


nF

T
n



3

7775

=

2

6664

pss1 F1 log

1F

T
1



pss2 F2 log

2F

T
2



...
pssn Fn log


nF

T
n



3

7775

= pss1 F11 log
1


+ pss1 F12 log

2
1

+ · · ·+ pss1 F1n log
n
1

+pss2 F21 log
1
2

+ pss2 F22 log
1


+ · · ·+ pss2 F2n log

n
2

+ · · ·

+pssn Fn1 log
1
n

+ pssn Fn2 log
2
n

+ · · ·+ pssn Fnn log
1



= log
1


+ (pss1 F12  p

ss
2 F21) log

2
1
+ · · ·+ (pss1 F1n  p

ss
n Fn1) log

n
1

+(pss2 F2n  p
ss
n Fn2) log

n
2
+ · · ·

= log
1


+ (pss1 F12  p

ss
2 F21) log 2 + (p

ss
2 F21  p

ss
1 F12) log 1 + · · ·

+(pss1 F1n  p
ss
n Fn1) log n + (p

ss
n Fn1  p

ss
1 F1n) log 1

+(pss2 F2n  p
ss
n Fn2) log n + (p

ss
n Fn2  p

ss
2 F2n) log 2 + · · ·

= log
1


+ (pss2 F21  p

ss
1 F12 + · · ·+ p

ss
n Fn1  p

ss
1 F1n) log 1

+(pss1 F12  p
ss
2 F21 + · · ·+ p

ss
n Fn2  p

ss
2 F2n) log 2 + · · ·

+


pss1 F1n  pssn Fn1 + pss2 F2n  pssn Fn2 + · · ·

+pssn1Fn1,n  pssn Fn,n1


log n
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Since
pTssF = p

T
ss

then

pss1 F11 + p
ss
2 F21 + · · ·+ p

ss
n Fn1 = pss1

pss1 F12 + p
ss
2 F22 + · · ·+ p

ss
n Fn2 = pss2

...

pss1 F1n + p
ss
2 F2n + · · ·+ p

ss
n Fnn = pssn

Consider the coe¢cients on the logarithm term, log 1.

(pss2 F21  p
ss
1 F12 + · · ·+ p

ss
n Fn1  p

ss
1 F1n) log 1

= ({pss2 F21 + · · ·+ p
ss
n Fn1} {p

ss
1 F12 + · · ·+ p

ss
1 F1n}) log 1

The first term in brackets is

pss2 F21 + · · ·+ p
ss
n Fn1 = p

ss
1  p

ss
1 F11

while the second term in brackets is

pss1 F12 + · · ·+ p
ss
1 F1n = p

ss
1  p

ss
1 F11

since F1 is a proper probability distribution (sums to one). Hence,

({pss2 F21 + · · ·+ p
ss
n Fn1} {p

ss
1 F12 + · · ·+ p

ss
1 F1n}) log 1 = 0

Each of the other log j terms is zero by analogous arguments. Therefore, the
long-run expected rate of return is

E [r | z] = log
1



and the long-run expected growth rate is

exp (E [r | z]) =
1



The Kelly-Ross theorem indicates the maximum eigenvalue of P , , is the
key to gauging long-run growth. Of course, this derives from the set of transition
state prices and components of P , yi. Connections amongst the components can
be expressed for each initial state i as

 =
1

Rii

yi

yi

where Ri is one plus the riskless return in initial state i. This result follows
from two observations.

yi = i

14



and
yi =

1

Ri

This implies

Riyi =
yi

i

and rearrangement yields the result above.
This result provides bounds on  in terms of the riskless returns.

minRi 
1


 maxRi

Suppose we order initial states by riskless rates such that R1  R2  · · ·  Rn.
Then,

yi =
1

Ri

along with
yi

i
= 

leads to 1  2  · · ·  n and

Riyi
yi
i

=
1



Collectively, this indicates

R1 
1


 Rn

In a state-independent riskless returns setting, minRi = maxRi = , i =
j , and  =

1
Ri
for all i, j.

Next, we present a corollary to the Kelly-Ross theorem that says optimal
long-run investment strategies when riskless returns are equal in all initial states
produce zero net present value portfolios but when riskless returns vary across
initial states optimal portfolios almost surely yield positive net present value.

Corollary 2.3 (net present value) In a state-independent riskless return econ-
omy, a Kelly investment strategy results in no risk taking and a long-run growth
rate equal to one plus the riskless return. In a state-dependent riskless return
economy, a Kelly investment strategy results in risk taking and a long-run growth
rate at least as great as one plus the riskless return in each initial state.

First, since spanning is satisfied (along with positive state prices or no arbi-
trage) the riskless portfolio is always achievable when the initial state is known
and the Kelly strategy is optimal in the long-run, a Kelly investor cannot do
worse in expectation than the riskless return. The pricing kernel indicates that
an investor cannot do better than the riskless return in a state-independent
riskless return economy as the riskless return is the same in all initial states.

15



However, the pricing kernel reveals there are potential gains in a state-dependent
riskless return economy.

Proof. The state-independent riskless returns case is immediate from the Kelly-
Ross theorem. A Kelly strategy generates growth equal to 1

 in each initial state
and one plus the riskless rate of return, R, equals 1 in all states. The expected
logarithmic return in initial state i given initial state knowledge is

E [ri | z] = Fi1 log
1
i

+ · · ·+ Fin log
n
i

Since i = j for all i, j,

E [ri | z] = Fi1 log
1


+ · · ·+ Fin log

1



= log
1



= log

1 + rf



The state-dependent riskless returns case also follows from the theorem but in
this informationally richer setting the pricing kernel allows greater returns in all
except knife-edge cases.

E [ri | z] = Fi1 log
1
i

+ · · ·+ Fin log
n
i

=
1yi1
i

log
1
i

+ · · ·+
nyin
i

log
n
i

where
nX

j=1

yij =
1

1 + rfi

and
yi =  for all i

Since the Kelly criterion is optimal given the initial state and spanning ensures
the riskless return is accessible, a Kelly investor generates an expected growth
rate at least as large as one plus the riskless rate.
To illustrate the corollary for the state-dependent riskless returns case, con-

sider a knife-edge (pathological) example. Suppose

A1 =

"
2
3

2
3

1 1.5

#

and

A2 =


1.1 1.1
1.1 1

1.1
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Then,

P =


0.5 1
1
1.1 0



and

F =


0.404631 0.595369

1 0



This produces expected logarithmic returns and growth rates as follows.

E [r1 | z] = 0.394376

exp (E [r1 | z]) = 0.674101 >
2

3

and
E [r2 | z] = 0.0953102

exp (E [r2 | z]) = 1.1

Hence, the growth in initial state two equals the riskless return but the growth
rate for initial state one is greater than the riskless return. Knife-edge cases such
as this one exist but, as subsequent examples illustrate, the long-run growth
rate typically exceeds one plus the riskless rate in all initial states for the state-
dependent riskless return setting.
Now, we illustrate the combination of Ross’ recovery theorem probability

assignment with a Kelly (long-term wealth maximizing) investment strategy
with some numerical examples.

Example 2.2 (static information) Suppose there are three assets and three
states

A =

2

64

1 1 1

1.1 1
1.1 1

1
1.1 1 1.1

3

75 , x =

2

4
1
1
1

3

5

and y =

2

4
0.332326
0.365559
0.302115

3

5. As returns are static (don’t depend on the initial state),

the state price matrix involves the same row repeated

P =

2

4
0.332326 0.365559 0.302115
0.332326 0.365559 0.302115
0.332326 0.365559 0.302115

3

5

17



and since the riskless rate is zero, state-transition probabilities are equal to P .

F =
1


DPD1

=
1

1

2

4
1 0 0
0 1 0
0 0 1

3

5

2

4
0.332326 0.365559 0.302115
0.332326 0.365559 0.302115
0.332326 0.365559 0.302115

3

5

2

4
1 0 0
0 1 0
0 0 1

3

5
1

=

2

4
0.332326 0.365559 0.302115
0.332326 0.365559 0.302115
0.332326 0.365559 0.302115

3

5

Since  = 1, E [r | z] = log 11 = 0 and the expected long-run growth rate is
exp (0) = 1

 = 1 as indicated by the Kelly-Ross theorem.

Next, we illustrate a dynamic information setting but with state-independent
riskless returns. That is, riskless returns are the same in all initial states.

Example 2.3 (dynamic information, state-independent riskless returns)
Suppose returns associated with initial state one are

A1 =

2

4
1.03 1.03 1.03
1.1 1

1.1 1
1
1.1 1 1.1

3

5

initial state two returns are

A2 =

2

4
1.03 1.03 1.03
1.2 1

1.1 1
1
1.1 1 1.2

3

5

and for initial state three returns are

A3 =

2

4
1.03 1.03 1.03
1.3 1

1.1 1
1
1.1 1 1.3

3

5

Then, the matrix of state-transition prices is

P =

2

4
0.332326 0.0451706 0.593377
0.313481 0.36927 0.288122
0.259432 0.535738 0.175703

3

5

where

P

2

4
1
1
1

3

5 = 0.970874

2

4
1
1
1

3

5
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and the matrix of state-transition probabilities is

F =
1

0.970874

2

4
1 0 0
0 1 0
0 0 1

3

5



2

4
0.332326 0.0451706 0.593377
0.313481 0.36927 0.288122
0.259432 0.535738 0.175703

3

5

2

4
1 0 0
0 1 0
0 0 1

3

5

=

2

4
0.342296 0.0465257 0.611178
0.322886 0.380348 0.296766
0.267215 0.55181 0.180974

3

5

Steady-state probabilities (initial state probabilities equal state probabilities fol-
lowing transition given state-transition probabilities, F )6 are

pTssF = p
T
ss

pTss =

0.30923 0.337664 0.353105



A Kelly investment strategy produces an expected return in initial state one equal
to

E [r1 | z] =

0.342296 0.0465257 0.611178



 log

0

@

2

4
1

0.332326 0 0
0 1

0.0451706 0
0 0 1

0.593377

3

5

2

4
0.342296
0.0465257
0.611178

3

5

1

A

= 0.0295588

or expected periodic growth in value equal to exp [0.0295588] = 1.03, initial state
two involves

E [r2 | z] =

0.322886 0.380348 0.296766



 log

0

@

2

4
1

0.313481 0 0
0 1

0.36927 0
0 0 1

0.288122

3

5

2

4
0.322886
0.380348
0.296766

3

5

1

A

= 0.0295588

or expected periodic growth in value equal to exp [0.0295588] = 1.03, and initial
state three involves

E [r3 | z] =

0.267215 0.55181 0.180974



 log

0

@

2

4
1

0.259432 0 0
0 1

0.535738 0
0 0 1

0.175703

3

5

2

4
0.267215
0.55181
0.180974

3

5

1

A

= 0.0295588
6 Steady-state probabilities are the normalized (sum to one) eigenvector associated with

a unit eigenvalue for FT , FT pss = 1pss. In this setting, the state probability distribution
converges quickly.
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or expected periodic growth in value equal to exp [0.0295588] = 1.03. Hence,
expected steady-state return is

E [r | z] = pTss

2

4
E [r1 | z]
E [r2 | z]
E [r3 | z]

3

5

=

0.30923 0.337664 0.353105


2

4
0.0295588
0.0295588
0.0295588

3

5

= 0.0295588

or expected periodic growth exp [0.0295588] = 1.03 = 1
 =

1
0.970874 as indi-

cated by the Kelly-Ross theorem. Briefly, mutual information indicates initial
state information is quite valuable as I (s; z) = 0.127712 or growth equal to
exp (0.127712) = 1.13623.

Spanning supplies a derived riskless asset even when it’s not obvious one
exists. If the derived riskless rates are the same across all initial states then
the long-run expected growth rate equals one plus this riskless rate or 1

 as in
the foregoing example. This case is illustrated next with minor modification of
example 2.3.

Example 2.4 (derived state-independent riskless return) Suppose returns
associated with initial state one are

A1 =

2

4
1.04 1.03 1.0244
1.1 1

1.1 1
1
1.1 1 1.1

3

5

initial state two returns are

A2 =

2

4
1.04 1.03 1.01912
1.2 1

1.1 1
1
1.1 1 1.2

3

5

and for initial state three returns are

A3 =

2

4
1.04 1.03 1.01523
1.3 1

1.1 1
1
1.1 1 1.3

3

5

Then, the matrix of state-transition prices is

P =

2

4
0.332326 0.0451706 0.593377
0.313481 0.36927 0.288122
0.259432 0.535738 0.175703

3

5

where

P

2

4
1
1
1

3

5 = 0.970874

2

4
1
1
1

3

5
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and the matrix of state-transition probabilities is

F =
1

0.970874

2

4
1 0 0
0 1 0
0 0 1

3

5



2

4
0.332326 0.0451706 0.593377
0.313481 0.36927 0.288122
0.259432 0.535738 0.175703

3

5

2

4
1 0 0
0 1 0
0 0 1

3

5

=

2

4
0.342296 0.0465257 0.611178
0.322886 0.380348 0.296766
0.267215 0.55181 0.180974

3

5

Steady-state probabilities are
pTssF = p

T
ss

pTss =

0.30923 0.337664 0.353105



The derived riskless portfolio for initial state one is also the long-run optimal
investment (Kelly) strategy.

wT1 = F11A
1
1

=

0.948428 0.0170178 0.0685903



with constant (riskless) state-by-state returns

wT1 A1 =

1.03 1.03 1.03



The derived riskless portfolio for initial state two is

wT2 = F22A
1
2

=

0.955926 0.0145426 0.0586164



with constant (riskless) state-by-state returns

wT2 A2 =

1.03 1.03 1.03



The derived riskless portfolio for initial state three is

wT3 = F33A
1
3

=

0.961506 0.0126929 0.051187



with constant (riskless) state-by-state returns

wT3 A3 =

1.03 1.03 1.03



A Kelly investment strategy produces an expected return in initial state one equal
to

E [r1 | z] =

0.342296 0.0465257 0.611178



 log

0

@

2

4
1

0.332326 0 0
0 1

0.0451706 0
0 0 1

0.593377

3

5

2

4
0.342296
0.0465257
0.611178

3

5

1

A

= 0.0295588
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or expected periodic growth in value equal to exp [0.0295588] = 1.03, initial state
two involves

E [r2 | z] =

0.322886 0.380348 0.296766



 log

0

@

2

4
1

0.313481 0 0
0 1

0.36927 0
0 0 1

0.288122

3

5

2

4
0.322886
0.380348
0.296766

3

5

1

A

= 0.0295588

or expected periodic growth in value equal to exp [0.0295588] = 1.03, and initial
state three involves

E [r3 | z] =

0.267215 0.55181 0.180974



 log

0

@

2

4
1

0.259432 0 0
0 1

0.535738 0
0 0 1

0.175703

3

5

2

4
0.267215
0.55181
0.180974

3

5

1

A

= 0.0295588

or expected periodic growth in value equal to exp [0.0295588] = 1.03. Hence,
expected steady-state return is

E [r | z] = pTss

2

4
E [r1 | z]
E [r2 | z]
E [r3 | z]

3

5

=

0.30923 0.337664 0.353105


2

4
0.0295588
0.0295588
0.0295588

3

5

= 0.0295588

or expected periodic growth exp [0.0295588] = 1.03 = 1
 =

1
0.970874 as indicated

by the Kelly-Ross theorem.

Example 2.5 ("modified" mutual information) Continue with example 2.4.
Now, suppose the initial state is unknown. Clearly, an investor cannot replicate
the above Kelly strategy as di§erent portfolios across initial states produce risk-
less returns. However, long-run expected logarithmic returns are maximized via

max
w

log

wTA


Pr (s, z)

s.t. wT  = 1

The solution is

w =

2

4
0.95591
0.01334
0.05743

3

5

with
wTA =

22




1.0317 1.0299 1.0291 1.0304 1.0299 1.0298 1.0290 1.0299 1.0318



or little variation in returns (but nonconstant returns). Now, solve

wTA = (z0)
T


w1 w2 1 w1  w2

 
A1 A2 A3


=

0

@

2

4
1 0 0
0 2 0
0 0 3

3

5 z0

1

A
T

for z0. This gives zT0 =

0.3429 0.0465 0.6106 0.3230 0.3803 0.2967 0.2670 0.5518 0.1813



Hence,

E [r0] = Pr (s, z)
T
log (z0)

= 0.0295584

and the expected gain from initial state information is

E [r | z] E [r0] = log 1.03 0.0295584
= 0.0295588 0.0295584
= 0.0000004

which equals "modified" mutual information

bI (s, z0) = H (s) + bH (z0)H (s, z)
= 1.09712 + 0.969404 2.06652
= 0.0000004

or long-run expected growth di§erential, exp (0.0000004) = 1.0000004.

State-dependent riskless returns present a greater challenge. However, the
expected long-run periodic growth rate continues to be equal to 1

 as indicated
by the Kelly-Ross theorem. This case is illustrated next along with discussion
of the value of initial state information.

Example 2.6 (mutual information and state-dependent riskless returns)
Suppose returns associated with initial state one are

A1 =


1.01 1.01
1.1 1

1.1



and for initial state two returns are

A2 =


1.05 1.05
1
1.1 1.1
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Then, the matrix of state-transition prices is

P =


0.523338 0.466761
0.249433 0.702948



and the matrix of state-transition probabilities is

F =
1

0.965975


1.37815 0
0 1.45326





0.523338 0.466761
0.249433 0.702948

 
0.725609 0

0 0.688107



=


0.541772 0.458228
0.272292 0.727708



Steady-state probabilities are
pTssF = p

T
ss

pTss =

0.372737 0.627263



The long-run optimal investment (Kelly) strategy for initial state one is

wT1 = F11A
1
1

=

0.719741 0.280259



with nonconstant (unlike the state-independent case) state-by-state returns

wT1 A1 =

1.03522 0.981719



The long-run optimal investment (Kelly) strategy for initial state two is

wT2 = F22A
1
2

=

1.29553 0.295533



with nonconstant state-by-state returns

wT2 A2 =

1.09164 1.03522



A Kelly investment strategy produces an expected return in initial state one equal
to

E [r1 | z] =

0.541772 0.458228



 log


1
0.523338 0
0 1

0.466761

 
0.541772
0.458228



= 0.0103004

or expected periodic growth in value equal to exp [0.0103004] = 1.01035, while
initial state two involves

E [r2 | z] =

0.272292 0.727708



 log


1
0.249433 0
0 1

0.702948

 
0.272292
0.727708



= 0.0490669

24



or expected periodic growth in value equal to exp [0.0490669] = 1.05029. Hence,
expected steady-state return is

E [r | z] = pTss


E [r1]
E [r2]



=

0.372737 0.627263

  0.0103004
0.0490669



= 0.0346172

or expected periodic growth is exp [0.0346172] = 1.03522 = 1
 =

1
0.965975 as indi-

cated by the Kelly-Ross theorem. The expected value of state-dependent initial
state information is reflected in mutual information. The long-run joint distri-
bution of transition and initial states assigned to reflect the price dynamics of
this setting is


0.372737 0.541772 0.372737 0.458228
0.627263 0.272292 0.627263 0.727708



=


0.201938 0.170799
0.170799 0.456464



where rows refer to initial state information (z) and columns refer to states (s).
Thus, mutual information is

I (s; z) = H (s) +H (z)H (s, z)
= 0.660396 + 0.660396 1.28473
= 0.0360587

or expected gains in the growth rate due to the initial state information in price
dynamics equals exp [0.0360587] = 1.03672. This quantity is confirmed by com-
paring expected returns based on a Kelly strategy employing initial state infor-
mation (E [r | z] = log 1 = 0.0346172) with a Kelly strategy that ignores the
initial state information. The latter strategy involves a constant investment
strategy (ignoring initial state information) reflecting steady-state probabilities
that generates an expected return in initial state one equal to

E [r1] =

0.541772 0.458228



 log


1
0.523338 0
0 1

0.466761

 
0.372737
0.627263



= 0.0484239

or expected periodic growth in value equal to exp [0.0484239] = 0.95273, and
initial state two generates

E [r2] =

0.272292 0.727708



 log


1
0.249433 0
0 1

0.702948

 
0.372737
0.627263



= 0.0264767
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or expected periodic growth in value equal to exp [0.0264767] = 1.02683. Hence,
expected steady-state returns ignoring the initial state information is

E [r] = pTss


E [r1]
E [r2]



=

0.372737 0.627263

  0.0484239
0.0264767



= 0.00144155

or expected periodic growth exp [0.00144155] = 0.998559. As indicated by the
mutual information theorem, expected gains from the initial state information
equals mutual information.

E [r | z] E [r] = 0.0346172 (0.00144155)
= 0.0360587

= I (s; z)

Example 2.7 (mutual information – expanded example) Suppose returns
associated with initial state one are

A1 =

2

4
1 1 1
1.1 1

1.1 1
1
1.1 1 1.1

3

5

initial state two returns are

A2 =

2

4
1.05 1.05 1.05
1.2 1

1.1 1
1
1.1 1 1.2

3

5

and for initial state three returns are

A3 =

2

4
1.1 1.1 1.1
1.3 1

1.1 1
1
1.1 1 1.3

3

5

Then, the matrix of state-transition prices is

P =

2

4
0.332326 0.365559 0.302115
0.338782 0.221511 0.392087
0.348914 0.151415 0.408762

3

5
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and the matrix of state-transition probabilities is

F =
1

0.952747

2

4
1.64931 0 0
0 1.73825 0
0 0 1.82142

3

5



2

4
0.332326 0.365559 0.302115
0.338782 0.221511 0.392087
0.348914 0.151415 0.408762

3

5

2

4
0.606314 0 0

0 0.57529 0
0 0 0.549021

3

5

=

2

4
0.348809 0.364057 0.287135
0.374761 0.232498 0.392742
0.404436 0.166529 0.429035

3

5

Steady-state probabilities are
pTssF = p

T
ss

pTss =

0.375877 0.257781 0.366342



The long-run optimal investment (Kelly) strategy for initial state one is

wT1 = F11A
1
1

=

1.45064 0.0452009 0.495843



with nonconstant state-by-state returns

wT1 A1 =

1.0496 0.995891 0.950416



The Kelly strategy for initial state two is

wT2 = F22A
1
2

=

1.18248 0.104797 0.287273



with nonconstant state-by-state returns

wT2 A2 =

1.1062 1.0496 1.00167



The Kelly strategy for initial state three is

wT3 = F33A
1
3

=

1.09396 0.105368 0.199332



with nonconstant state-by-state returns

wT3 A3 =

1.15913 1.09982 1.0496



A Kelly investment strategy produces an expected return in initial state one equal
to

E [r1 | z] =

0.348809 0.364057 0.287135



 log

0

@

2

4
1

0.332326 0 0
0 1

0.365559 0
0 0 1

0.302115

3

5

2

4
0.348809
0.364057
0.287135

3

5

1

A

= 0.000782916
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or expected periodic growth in value equal to exp [0.000782916] = 1.00078, initial
state two involves

E [r2 | z] =

0.374761 0.232498 0.392742



 log

0

@

2

4
1

0.338782 0 0
0 1

0.221511 0
0 0 1

0.392087

3

5

2

4
0.374761
0.232498
0.392742

3

5

1

A

= 0.0497338

or expected periodic growth in value equal to exp [0.0497338] = 1.05099, and
initial state three involves

E [r3 | z] =

0.404436 0.166529 0.429035



 log

0

@

2

4
1

0.348914 0 0
0 1

0.151415 0
0 0 1

0.408762

3

5

2

4
0.404436
0.166529
0.429035

3

5

1

A

= 0.0963344

or expected periodic growth in value equal to exp [0.0963344] = 1.10113. Hence,
expected steady-state return is

E [r | z] = pTss

2

4
E [r1 | z]
E [r2 | z]
E [r3 | z]

3

5

=

0.375877 0.257781 0.366342


2

4
0.000782916
0.0497338
0.0963344

3

5

= 0.048406

or expected periodic growth exp [0.048406] = 1.0496 = 1
 =

1
0.952747 as indi-

cated by the Kelly-Ross theorem. Let’s explore this long-run expected growth
rate from another perspective. Suppose state realizations arise at the steady-
state frequency. Four draws produce

2

4
1 1 0
0 0 0
1 0 1

3

5

where rows refer to initial states and columns refer to state transitions. An
initial investment of 1 grows to 1.27171 or a geometric mean (average periodic

growth rate) equal to (1.27171)
1
4 = 1.06193. Seven draws produce
2

4
1 1 1
1 0 1
1 0 1

3

5
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An initial investment of 1 grows to 1.33924 or a geometric mean (average peri-

odic growth rate) equal to (1.33924)
1
7 = 1.04261. Ten draws produce

2

4
1 1 1
1 1 1
1 1 2

3

5

An initial investment of 1 grows to 1.62265 or a geometric mean (average pe-

riodic growth rate) equal to (1.62265)
1
10 = 1.0496  1

 . Hence, this setting con-
verges quickly to the expected long-run growth rate. If initial state information
is ignored a Kelly investment strategy invests fractions of wealth equal to the
steady-state probabilities resulting in the following expected returns by initial
state.

E [r1] =

0.348809 0.364057 0.287135
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1

CA

= 0.0288693

E [r2] =

0.374761 0.232498 0.392742
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1

CA

= 0.0475205

E [r3] =

0.404436 0.166529 0.429035
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2

64

0.375877

0.257781

0.366342

3

75

1

CA

= 0.0717054

and

E [r] =

E [r1] E [r2] E [r3]


pss

=

0.0288693 0.0475205 0.0717054


2

64

0.375877

0.257781

0.366342

3

75

= 0.0276672
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Hence, the expected gain from utilizing the information in initial states is E [r | z]
E [r] = 0.048406  0.0276672 = 0.0207388. Of course, this equals mutual in-
formation. The joint distribution of state (columns) and information (rows)
is

Pr (s, z) =

2

4
0.131109 0.136841 0.107927
0.0966061 0.0599334 0.101241
0.148162 0.0610067 0.157174

3

5

The probability distribution over the information (initial state, z) equals the sum
of the rows which produces the steady-state probabilities while the probability
distribution over the states (s) is the sum of the columns which also equals the
steady-state probabilities. Consequently, mutual information is

I (s; z) = H (s) +H (z)H (s, z)
= 1.08513 + 1.08513 2.14952
= 0.0207388

equal to expected gains as indicated by the mutual information theorem, or ex-
pected gains in long-run growth rate due to initial state information is equal
to

exp (0.0207388) = 1.02096

Next, we consider the expected marginal (or incremental) gain from addi-
tional information.7

2.5 Mutual marginal information

Suppose z1 information is in place (such as initial state information), what is the
expected marginal or incremental gain from additional information z2? Unlike
one-shot opportunities, long-run wealth maximization makes this straightfor-
ward via a direct extension of the mutual information theorem. The expected
marginal gain is

E [gain (z2 | z1)] = I (s; z2 | z1)
= H (s | z1) +H (z2 | z1)H (s, z2 | z1)
= I (s; z1, z2) I (s; z1)

The connection between the second and third lines follows primarily from en-
tropy additivity: H (x, y) = H (x | y) +H (y) = H (y | x) +H (x).

I (s; z1, z2) = H (s) +H (z1, z2)H (s, z1, z2)
= H (s) +H (z2 | z1) +H (z1)H (s, z2 | z1)H (z1)
= H (s) +H (z2 | z1)H (s, z2 | z1)

7Part 2 reports more extensive examples of accounting and other initial state and/or post-
transition state information.
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and

I (s; z1) = H (s) +H (z1)H (s, z1)
= H (s) +H (z1)H (s | z1)H (z1)
= H (s)H (s | z1)

Then,

I (s; z1, z2) I (s; z1) = H (s | z1) +H (z2 | z1)H (s, z2 | z1)

which is the result.

Example 2.8 (other information) This is a continuation of example 2.7 but
with other information, z2, in the mix. Everything (including state prices) is
the same as before except information z2 is added with conditional probability of
z2 given transition state s and initial state z1

Pr (z2 | s, z1) z2 = 0 z2 = 1
s = 1, z1 = 1 0.4910536 0.5089464
s = 1, z1 = 2 0.5035406 0.4964594
s = 1, z1 = 3 0.5063793 0.4936207
s = 2, z1 = 1 0.5050147 0.4949853
s = 2, z1 = 2 0.4840381 0.5159619
s = 2, z1 = 3 0.5046641 0.4953359
s = 3, z1 = 1 0.5046469 0.4953531
s = 3, z1 = 2 0.5077393 0.4922607
s = 3, z1 = 3 0.4926152 0.5073848

This implies the state-transition probabilities are equally likely to be8

F0 =

2

4
0.342567 0.366635 0.290798
0.378519 0.225076 0.396405
0.408194 0.169107 0.422698

3

5

or

F1 =

2

4
0.35505 0.361479 0.283471
0.371002 0.23992 0.389078
0.400677 0.163952 0.435372

3

5

where
F = 0.5F0 + 0.5F1

Pr (z2 | z1) = Pr (z2) =
0.5 z2 = 0
0.5 z2 = 1

8This is an atypical case in which other information z2 is independent of initial state

information z1 and the matrices F , F0, and F1 are simultaneously diagonalizable (have the
same eigenvectors) but di§erent eigenvalues except they all share a maximum eigenvalue equal
to one.
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and the steady-state probability distribution for each of these state-transition
distributions is

pTss =

0.375877 0.257781 0.366342



The joint distribution of states, s, and information, (z1, z2), is
2

6666664

0.0643816 0.0689048 0.0546522
0.0487875 0.0290101 0.0510928
0.0747694 0.0309755 0.0774261
0.0667275 0.0679358 0.0532752
0.0478186 0.0309234 0.0501484
0.0733924 0.0300312 0.0797475

3

7777775

the state distribution (sum of the columns) equals the steady-state distribution

Pr (s) = pss

and the distribution for the information signals (sum of the rows) is

Pr (z1, z2) = 0.5

2

66666666666664

pss1
P3

i=1 F
0
1i

pss2
P3

i=1 F
0
2i

pss3
P3

i=1 F
0
3i

pss1
P3

i=1 F
1
1i

pss2
P3

i=1 F
1
2i

pss3
P3

i=1 F
1
3i

3

77777777777775

Pr (z1, z2) =

2

6666664

0.187939
0.12889
0.183171
0.187939
0.12889
0.183171

3

7777775

Now, the expected gain from information, (z1, z2), equals mutual information.

I (s; z1, z2) = H (s) +H (z1, z2)H (s, z1, z2)
= 1.08513 + 1.77828 2.84256
= 0.0208427

or expected gain in growth rate equal to exp [0.0208427] = 1.02106. This exceeds
the expected gain from initial state information alone by the di§erence in mutual
information.

I (s; z1, z2) I (s; z1) = 0.0208427 0.0207388
= 0.000103864
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or di§erence in expected growth rate equal to exp [0.000103864] = 1.0001. For
clarity, we report the expected returns from each information signal and relate
them to E [r | z1, z2] as well as

I (s; z2 | z1) = E [r | z2, z1] E [r | z1]

and
I (s; z2 | z1) = I (s; z1, z2) I (s; z1)

The long-run expected return conditional on (z1, z2) is as follows.

E [r1 | z2 = 0] =

0.342567 0.366635 0.290798
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0.342567

0.366635

0.290798
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75

1

CA

= 0.000372432

E [r2 | z2 = 0] =

0.378519 0.225076 0.396405
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2

64

0.378519

0.225076

0.396405

3

75

1

CA

= 0.0499156

E [r3 | z2 = 0] =

0.408194 0.169107 0.422698
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2

64

0.408194

0.169107

0.422698

3

75

1

CA

= 0.0969123

E [r1 | z2 = 1] =

0.35505 0.361479 0.283471
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0.35505

0.361479

0.283471
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1

CA

= 0.00137008

E [r2 | z2 = 1] =

0.371002 0.23992 0.389078
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E [r3 | z2 = 1] =

0.400677 0.163952 0.435372
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0.400677

0.163952

0.435372

3

75

1

CA

= 0.0959249

Then,

E [r | z1, z2] = 0.5pTss

0

@

2

4
E [r1 | z2 = 0]
E [r2 | z2 = 0]
E [r3 | z2 = 0]

3

5+

2

4
E [r1 | z2 = 1]
E [r2 | z2 = 1]
E [r3 | z2 = 1]

3

5

1

A

= 0.0485099

or expected long-run growth rate equal to exp [0.0485099] = 1.04971. Again, the
expected gain from information (z1, z2) equals mutual information

E [r | z1, z2] E [r] = I (s; z1, z2)

0.0485099 0.0276673 = 0.0208427

or expected long-run gain in growth rate equals exp [0.0208427] = 1.02106. Also,
the long-run expected marginal gain from the additional information z2 equals
the di§erence in mutual information.

(E [r | z1, z2] E [r]) (E [r | z1] E [r]) = E [r | z1, z2] E [r | z1]
(0.0208427) (0.0207388) = 0.0485099 0.04840605

= 0.000103864

I (s; z2 | z1) = I (s; z1, z2) I (s; z1)

or di§erence in expected growth rate equal to exp [0.000103864] = 1.0001.

The above example is a special case in which z2 is independent of z1. The
next example illustrates a more typical complementary scenario; z2 is also con-
ditionally more informative than the preceding case.

Example 2.9 (a more informative case) Continue with the same setting as
in example 2.8 except the conditional probability distributions of z2 given tran-
sition state s and initial state z1 are

Pr (z2 | s, z1) z2 = 0 z2 = 1
s = 1, z1 = 1 0.7 0.3
s = 1, z1 = 2 0.7 0.3
s = 1, z1 = 3 0.3 0.7
s = 2, z1 = 1 0.3 0.7
s = 2, z1 = 2 0.3 0.7
s = 2, z1 = 3 0.7 0.3
s = 3, z1 = 1 0.7 0.3
s = 3, z1 = 2 0.3 0.7
s = 3, z1 = 3 0.7 0.3
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This implies the state-transition probabilities are

F0 =

2

4
0.4172736 0.43551468 0.1472118
0.2459615 0.15259206 0.6014465
0.4469691 0.07887546 0.4741554

3

5

or

F1 =

2

4
0.2522396 0.2632663 0.4844941
0.4832028 0.2997742 0.2170230
0.3309515 0.3179672 0.3510812

3

5

and

F =

2

4
Pr (z2 = 0 | z1 = 1) 0 0

0 Pr (z2 = 0 | z1 = 2) 0
0 0 Pr (z2 = 0 | z1 = 3)

3

5F0

+

2

4
Pr (z2 = 1 | z1 = 1) 0 0

0 Pr (z2 = 1 | z1 = 2) 0
0 0 Pr (z2 = 1 | z1 = 3)

3

5F1

=

2

4
0.5851461 0 0

0 0.4570967 0
0 0 0.6333883

3

5F0

+

2

4
0.4148539 0 0

0 0.5429033 0
0 0 0.3666117

3

5F1

=

2

4
0.348809 0.364057 0.287135
0.374761 0.232498 0.392742
0.404436 0.166529 0.429035

3

5

The joint distribution of states, s, and information, (z1, z2), is
2

6666664

0.09177641 0.09578841 0.03237820
0.02898182 0.01798003 0.07086887
0.10371330 0.01830201 0.11002154
0.03933275 0.04105218 0.07554913
0.06762424 0.04195341 0.03037237
0.04444856 0.04270470 0.04715209

3

7777775

the state distribution (sum of the columns) equals the steady-state distribution

Pr (s) = pss

and the distribution for the information signals (sum of the rows) is

Pr (z1, z2) =

2

6666664

0.2199430
0.1178307
0.2320368
0.1559341
0.1399500
0.1343053

3

7777775
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Now, the expected gain from information, (z1, z2), equals mutual information.

I (s; z1, z2) = H (s) +H (z1, z2)H (s, z1, z2)
= 1.08513 + 1.75865 2.76038
= 0.083399

or expected gain in growth rate equal to exp [0.083399] = 1.08698. This exceeds
the expected gain from initial state information alone by the di§erence in mutual
information.

I (s; z1, z2) I (s; z1) = 0.083399 0.020739
= 0.062660

or di§erence in expected growth rate equal to exp [0.062660] = 1.06467. Again
for completeness, we report the expected returns from each information signal
and E [r | z1, z2] then relate them to

I (s; z2 | z1) = E [r | z2, z1] E [r | z1]

and
I (s; z2 | z1) = I (s; z1, z2) I (s; z1)

The long-run expected return conditional on (z1, z2) is as follows.

E [r1 | z2 = 0] =

0.4172736 0.43551468 0.1472118
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= 0.06540519

E [r2 | z2 = 0] =

0.2459615 0.15259206 0.6014465
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= 0.1217062

E [r3 | z2 = 0] =

0.4469691 0.0788755 0.4741554
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E [r1 | z2 = 1] =

0.2522396 0.2632663 0.4844941
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= 0.07285352

E [r2 | z2 = 1] =

0.4832028 0.2997742 0.2170230
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E [r3 | z2 = 1] =

0.3309515 0.3179672 0.3510812
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= 0.1650103

Then,

E [r | z1, z2] = Pr (z1, z2)
T

2

6666664

E [r1 | z2 = 0]
E [r2 | z2 = 0]
E [r3 | z2 = 0]
E [r1 | z2 = 1]
E [r2 | z2 = 1]
E [r3 | z2 = 1]

3

7777775

= 0.1110666

or expected long-run growth rate equal to exp [0.1110666] = 1.117469. Again,
the expected gain from information (z1, z2) equals mutual information

E [r | z1, z2] E [r] = I (s; z1, z2)

0.1110666 0.0276673 = 0.0833993

or expected long-run gain in growth rate equals exp [0.0833993] = 1.086976.
Also, the long-run expected marginal gain from the additional information z2
equals the di§erence in mutual information.

(E [r | z1, z2] E [r]) (E [r | z1] E [r]) = E [r | z1, z2] E [r | z1]
(0.0833993) (0.0207388) = 0.1110666 0.04840605

= 0.062660

I (s; z2 | z1) = I (s; z1, z2) I (s; z1)

or di§erence in expected growth rate equal to exp [0.062660] = 1.06467.
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2.6 Joint distribution from full set of conditional distrib-
utions

In the foregoing analyses we’ve derived the joint distribution associated with
initial and post-transition states by utilizing the steady-state distribution in
conjunction with the state-transition (state at t+1) distribution conditional on
the initial state (state at t), F . In this section, we o§er another but equivalent
approach illustrating the power of the recovery theorem.
Since Markov processes are reversible,9 we can utilize the recovery theorem

frame to derive the reverse state-transition (state at t  1 conditional on state
at t) distribution. Label this conditional distribution G. Together F and G
represent the full set of conditional distributions from which we can derive the
joint distribution (Besag [1974]).
The reverse state-transition distribution utilizes PT in place of P

G =
1


DGP

TD1
G

where eigensystem decomposition of PT involves

PT G = G

PT G = PTD1
G 

D1
G is a diagonal matrix composed of the elements of the eigenvector G and

Gij refers to transitioning from state i at t to state j at t 1.10
The joint distribution can be derived from the full set of conditional distri-

butions. Let s0 equal the state at t and s1 the state at t + 1 for one set of
draws and t0 and t1 the analogous states for another set of draws. The joint
distribution is

Pr (s0, s1) = Pr (s1 | s0) Pr (s0)

The first term on the right hand side is a row from F , but the second term, the
marginal distribution p (s0), is unknown. However,

Pr (s0) =
Pr (s0, t1)

Pr (t1 | s0)

therefore,

Pr (s0, s1) =
Pr (s1 | s0) Pr (s0, t1)

Pr (t1 | s0)
9Fundamentally, there is no substantive distinction between forecasting and "backcasting".
10Diagonalization of P can be written

P = SS1

where S is a matrix of eigenvectors and  is a diagonal matrix of eigenvalues. Then,

PT =

S1

T
ST
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This leaves Pr (s0, t1). Repeating a similar strategy leads to11

Pr (s0, t1) =
Pr (s0 | t1) Pr (t0, t1)

Pr (t0 | t1)

Again, substitute

Pr (s0, s1) =
Pr (s1 | s0) Pr (s0 | t1) Pr (t0, t1)

Pr (t1 | s0) Pr (t0 | t1)

and we have the ratio of unknown joint likelihoods expressed in terms of the
ratios of known conditional likelihoods.

Pr (s0, s1)

Pr (t0, t1)
=
Pr (s1 | s0) Pr (s0 | t1)
Pr (t1 | s0) Pr (t0 | t1)

In the recovery theorem frame, this can be expressed

Pr (s0 = i, s1 = j)

Pr (t0 = k, t1 = `)
=
Fij
Fi`

G`i
G`k

Since we can derive the relative joint likelihoods and the sum of the joint like-
lihoods equals one, we have a simple linear system from which the joint proba-
bility assignment can be deduced. Next, we illustrate these ideas by returning
to example 2.7.

Example 2.10 (joint dynamic distribution) This is a continuation of ex-
ample 2.7. Recall,

F =
1

0.952747

2

4
1.64931 0 0
0 1.73825 0
0 0 1.82142

3

5



2

4
0.332326 0.365559 0.302115
0.338782 0.221511 0.392087
0.348914 0.151415 0.408762

3

5

2

4
0.606314 0 0

0 0.57529 0
0 0 0.549021

3

5

=

2

4
0.348809 0.364057 0.287135
0.374761 0.232498 0.392742
0.404436 0.166529 0.429035

3

5

Steady-state probabilities are
pTssF = p

T
ss

11To verify this claim, notice

Pr (s0, t1) =
Pr (s0 | t1) Pr (t0, t1)

Pr (t0 | t1)

Pr (t1)

Pr (t1)

=
Pr (s0, t1) Pr (t0, t1)

Pr (t0, t1)

= Pr (s0, t1)
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pTss =

0.375877 0.257781 0.366342



Then,

G =
1

0.952747

2

4
1.61307 0 0
0 2.2317 0
0 0 1.49866

3

5



2

4
0.332326 0.365559 0.302115
0.338782 0.221511 0.392087
0.348914 0.151415 0.408762

3

5
T 2

4
0.619938 0 0

0 0.448088 0
0 0 0.667264

3

5

=

2

4
0.348809 0.257015 0.394176
0.530841 0.232498 0.236661
0.294608 0.276357 0.429035

3

5

The (same) steady-state distribution can be derived as well from G.

pTssG = p
T
ss

pTss =

0.375877 0.257781 0.366342



With the full set of conditional distributions, we can now derive the joint proba-
bility distribution of the state at t and the state at t+1. We employ Pr (s0 = 1, s1 = 1)
as the reference joint likelihood and develop all likelihood ratios with it as the
numerator.

Pr (s0 = 1, s1 = 1)

Pr (t0 = 1, t1 = 2)
=

F11G21
F12G21

=
(0.348809) (0.530841)

(0.364057) (0.530841)

= 0.958116

Pr (s0 = 1, s1 = 1)

Pr (t0 = 1, t1 = 3)
=

F11G31
F13G31

=
(0.348809) (0.294608)

(0.287135) (0.294608)

= 1.21479

Pr (s0 = 1, s1 = 1)

Pr (t0 = 2, t1 = 1)
=

F11G11
F11G12

=
(0.348809) (0.348809)

(0.348809) (0.257015)

= 1.35715

Pr (s0 = 1, s1 = 1)

Pr (t0 = 2, t1 = 2)
=

F11G21
F12G22

=
(0.348809) (0.530841)

(0.364057) (0.232498)

= 2.18758
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Pr (s0 = 1, s1 = 1)

Pr (t0 = 2, t1 = 3)
=

F11G31
F13G32

=
(0.348809) (0.294608)

(0.287135) (0.276357)

= 1.29502

Pr (s0 = 1, s1 = 1)

Pr (t0 = 3, t1 = 1)
=

F11G11
F11G13

=
(0.348809) (0.348809)

(0.348809) (0.394176)

= 0.884905

Pr (s0 = 1, s1 = 1)

Pr (t0 = 3, t1 = 2)
=

F11G21
F12G23

=
(0.348809) (0.530841)

(0.364057) (0.236661)

= 2.14909

Pr (s0 = 1, s1 = 1)

Pr (t0 = 3, t1 = 3)
=

F11G31
F13G33

=
(0.348809) (0.294608)

(0.287135) (0.429035)

= 0.834168

Now, we solve
Ap = b

where12

A =

2

6666666666664

1 0.958 0 0 0 0 0 0 0
1 0 1.214 0 0 0 0 0 0
1 0 0 1.357 0 0 0 0 0
1 0 0 0 2.187 0 0 0 0
1 0 0 0 0 1.295 0 0 0
1 0 0 0 0 0 0.884 0 0
1 0 0 0 0 0 0 2.149 0
1 0 0 0 0 0 0 0 0.834
1 1 1 1 1 1 1 1 1

3

7777777777775

12We have dropped some digits in A (relative to that reported earlier) to better fit the
space.
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p =

2

6666666666664

Pr (s0 = 1, s1 = 1)
Pr (s0 = 1, s1 = 2)
Pr (s0 = 1, s1 = 3)
Pr (s0 = 2, s1 = 1)
Pr (s0 = 2, s1 = 2)
Pr (s0 = 2, s1 = 3)
Pr (s0 = 3, s1 = 1)
Pr (s0 = 3, s1 = 2)
Pr (s0 = 3, s1 = 3)

3

7777777777775

and

b =

2

6666666666664

0
0
0
0
0
0
0
0
1

3

7777777777775

The solution is
2

6666666666664

Pr (s0 = 1, s1 = 1)
Pr (s0 = 1, s1 = 2)
Pr (s0 = 1, s1 = 3)
Pr (s0 = 2, s1 = 1)
Pr (s0 = 2, s1 = 2)
Pr (s0 = 2, s1 = 3)
Pr (s0 = 3, s1 = 1)
Pr (s0 = 3, s1 = 2)
Pr (s0 = 3, s1 = 3)

3

7777777777775

=

2

6666666666664

0.131109
0.136841
0.107927
0.0966061
0.0599334
0.101241
0.148162
0.0610067
0.157174

3

7777777777775

This matches the joint distribution reported earlier which was derived via

[F1p
ss
1 , F2p

ss
2 , F3p

ss
3 ]

The Kelly-Ross theorem applies to reverse probability assignment as well as for-
ward assignment, therefore the long-run expected growth rate equals 1

 = 1.0496.
To support this claim, we enumerate state-by-state expected returns and growth
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rates. For initial state one, the long-run expected return is

E

rG1 | z


= G1 log


G1 G

T
1



=

0.348809 0.257015 0.394176



 log

0

@

2

4
1

0.332326 0 0
0 1

0.338782 0
0 0 1

0.348914

3

5

2

4
0.348809
0.257015
0.394176

3

5

1

A

=

0.348809 0.257015 0.394176


log

2

4
1.0496
0.758644
1.12972

3

5

= 0.0060299

or the long-run expected growth rate equals exp [0.0060299] = 0.993988. For
initial state two, the long-run expected return is

E

rG2 | z


= G2 log


G2 G

T
2



=

0.530841 0.232498 0.236661



 log

0

@

2

4
1

0.365559 0 0
0 1

0.221511 0
0 0 1

0.151415

3

5

2

4
0.530841
0.232498
0.236661

3

5

1

A

=

0.530841 0.232498 0.236661


log

2

4
1.45214
1.0496
1.56299

3

5

= 0.31497

or the long-run expected growth rate equals exp [0.31497] = 1.37022. For initial
state three, the long-run expected return is

E

rG3 | z


= G3 log


G3 G

T
3



=

0.294608 0.276357 0.429035



 log

0

@

2

4
1

0.365559 0 0
0 1

0.221511 0
0 0 1

0.151415

3

5

2

4
0.294608
0.276357
0.429035

3

5

1

A

=

0.294608 0.276357 0.429035


log

2

4
0.975152
0.704836
1.0496

3

5

= 0.083312

or the long-run expected growth rate equals exp [0.083312] = 0.920064. Hence,
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the expected long-run logarithmic return is

E

rG | z


= pTss

2

64

E

rG1 | z



E

rG2 | z



E

rG3 | z



3

75

=

0.375877 0.257781 0.366342


2

4
0.0060299
0.31497
0.083312

3

5

= 0.048406

or the expected long-run growth rate equals exp [0.048406] = 1.0496 = 1
 .

3 Discussion

We have discussed and illustrated information synergy. The marriage of recovery
theorem probability assignment and a Kelly investment strategy highlights the
importance of covering all bases (spanning the state space) to guard against
bankruptcy ruin in the long-run. While maximization of long-run wealth or the
expected growth rate easily translates into a financial wealth perspective, the
idea applies more broadly to anything valued – that is, utility. Organizational
synergy, broadly construed, is enhanced via careful attention to what is known
in assigning likelihoods and diversifying so that states are spanned. In other
words, this implies organizational complementarities are vital to the long-run.
Unfortunately, short-run focused performance rewards may discourage build-

ing complementarities.13 The omnipresent dwelling on short-run performance
appears ironic as accounting is often the source of performance measurement and
though accounting is e§ective as a long-run score card it su§ers many deficien-
cies as a short-run performance measure. With its ability to map likelihoods
into returns (seemingly entirely di§erent quantities), the mutual information
theorem a§ords accounting an opportunity to convey long-run performance in-
formation without revealing proprietary details. Accounting supplies events
data that can be utilized to update state beliefs and, if allowed time, sound
long-run performance measures as short-run deviations are settled up over the
long term.
Future work (parts 2 and 3) involves exploration of the implications of finer

short-term focussed other information, coarser long-term focussed accounting
information, and their combined information. Fine information may be self-
reinforcing but lead economic agents astray from their long-term wealth goals.
Coarse information may be relatively slow to adapt but eventually provide a
compass toward long-term wealth creation.

13 In game theory terms, contrast one-shot games or known end-point games with repeated
games or unknown end-point games to which the folk theorems apply.
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