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Abstract: The central result is an equality connecting accounting numbers

with information. ln
!
1 + income

assets

"
= rf + I (X;Y ), rf is the risk free rate, ln is

the natural logarithm, Y is the outcome of interest, X is the information signal

about Y , and I(X;Y ) is a Shannon information measure. The equality is de-

rived using economic income accounting; it is shown to hold, under appropriate

conditions, for declining balance and straight line depreciation methods. Some

social welfare implications are explored.

1We thank the editor Jonathan Glover, Douglas Schroeder, Dave Ziebart, and an anony-

mous reviewer for their helpful comments and excellent suggestions.
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1 Introduction

The paper is a modest attempt at a positive answer to the question about

accounting being an information science. The main result is that accounting

numbers are a statement about how much information the reporting entity has

access to. We do not analyze the communication of the details of the information

available to the reporting entity; the entity conveys a measure of the amount of

information it holds, not the information itself. In a way, the accounting problem

is changed from the question "What is the value of the asset?" to the question

"How much information does the asset possess?" In order to confront the latter

question, a metric is required which speciÖes the amount of information. That

is, information is treated as something physical which can be manipulated and

processed like other physical quantities such as mass or energy.

The metric for amount of information is Shannon entropyóa function of

probabilities (Shannon 1948). Shannonís entropy concept has ampliÖed the

importance of information. Some other sciences are routinely referred to as

"information sciences," physics, for example, where quantum information is a

central idea. Biology, as well, studies the information content of the genetic

code. The title of the paper questions whether accounting is properly included

as a similar and complementary scientiÖc inquiry.

Roughly speaking, the result herein is that the accounting rate of return is

equal to the amount of information possessed by the reporting entity. Account-

ing, then, is a consistent ranking of information systems. As this conclusion

is counter to Blackwellóa general, context free ranking of information systems

does not exist (see Demski 1973)óthere must necessarily be some theoretical

restrictions placed upon the environment in which accounting operates. There

are three such restrictions. The Örst is that the decision makerís preferences are

distinctly long run in nature. Further, the opportunities available to the deci-

sion maker are characterized by a state-act-payo§ matrix and a price vector for

the opportunities. While the state-act-payo§ format is not restrictive, there are

some restrictions on the form of the matrix and the price vector. The matrix

must be full rank. Also, the price vector must be free of arbitrage opportunities:

a fairly weak, but nonetheless quite instructive equilibrium condition.
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In notation the accounting and information relation is the following:

ln

#
1 +

income

assets

$
= rf + I (X;Y ) .

The left hand side utilizes accounting stocks and áows: income áow is divided

by the stock of assets available for production and investment activities. ln is

the natural logarithm. On the right hand side rf is the risk free rate of return,

Y is the payo§/outcome of interest, X is the information signal about Y , and

I(X;Y ) is an entropy measure of increase in amount of information about Y

due to X. The measure I (X;Y ) consists entirely of probabilities, and is, then,

free of decision context.

The next section introduces the information numbers as entropy measures.

Section 3 presents conditions under which accounting numbers are connected

with information numbers. The relation is derived in a setting in which ac-

counting is done under the economic income depreciation. The relation is also

derived for declining balance depreciation and straight line depreciation. Sec-

tion 4 confronts what happens when the explicit long run preference assumption

for the decision maker is relaxed, and some speculations about accounting and

social welfare are o§ered. We conclude in section 5.

2 Information and Rate of Return

2.1 Entropy and mutual information

Shannon entropy is a measure of uncertainty associated with a random variable,

say Y , taking discrete values y. The variable Y represents some payo§/outcome

of interest. The greater the measure, the larger the uncertainty.

DeÖnition 1 Shannon entropy is a function of probabilities p (y),

H (Y ) = !
X

y

p (y) ln p (y) . (1)

Using the sum rule, p(y) =
P
x
p (x; y), for joint probabilities, there is a simple

rearrangement of (1),

H (Y ) = !
X

y

X

x

p (x; y) ln p (y) . (2)
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The measure is elegantly designed so it is natural to think of the working deÖ-

nition of information as whatever reduces entropy.

Of interest is the entropy associated with the payo§ Y when an information

system X is available. The information system X produces discrete signals x

about Y . Conditional entropy, deÖned by summing over all possible signals,

measures the uncertainty in the payo§ Y for a given information system X.

H (Y jX) = !
X

x

p (x)
X

y

p (yjx) ln p (yjx)

= !
X

x

X

y

p (x; y) ln p (yjx) (3)

It is sensible to subtract which gives an expression for the reduction of uncer-

tainty in Y if an information system X is available.

DeÖnition 2 Mutual information is deÖned as

I (X;Y ) = H (Y )!H (Y jX) . (4)

That is, mutual information I (X;Y ) measures the reduction in entropy associ-

ated with Y due to an information system X.

An important property of entropy is additivity. The following proposition

holds for any random variables X and Y .

Proposition 1 Conditional and marginal entropies add to joint entropy.

H (Y jX) +H (X) = H (X;Y ) (5)

Proof. The entropy measure of the variable X is written as

H (X) = !
X

x

X

y

p (x; y) ln p (x) . (6)

Adding the expressions (3) and (6) yields

H (Y jX) +H (X) = !
X

x

X

y

p (x; y) [ln p (yjx) + ln p (x)]

= !
X

x

X

y

p (x; y) ln p (x; y)

= H (X;Y ) . (7)

The last equality of (7) is the deÖnition of joint entropy.
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Substituting the additivity relationship (5) into the deÖnition (4) yields a

convenient expression for the computation of mutual information.

I (X;Y ) = H (X) +H (Y )!H (X;Y ) (8)

The right-hand side of (8) consists entirely of marginal probabilities of X and Y

and their joint probability. We next formulate a decision problem that demands

information.

2.2 A decision problem

The decision problem can be completely speciÖed with a state-act-payo§ matrix

A and a price vector v. Each row of A is an act, or investment opportunity; the

acts are controllable by the decision maker. The columns of A are the possible

states of the world, uncontrollable by the decision maker, and v is a vector with

the prices of the various acts.

Example 1 For a simple example, let A be a 2# 2 matrix with two states and
two acts.

A =

"
1 1

1 4

#

The Örst act is a risk-free security which returns a payo§ of one in each of the

two states. The second act is a security which pays o§ one unit in state one and

four in state two. The security prices are denoted in the price vector v.

v =

"
1

2

#

The state prices, s, solve the linear system

As = v;

and the solution is

s =

"
2=3

1=3

#
.

The payo§s can be framed in scaled Arrow-Debreu format. The acts are

the investments of Arrow-Debreu securities.
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DeÖnition 3 An Arrow-Debreu security is one that returns one unit in state i

and zero elsewhere. The price of an Arrow-Debreu security is referred to as the

state price, since it is the amount which must be paid to yield a payo§ of one

unit in a particular state.

Scaling sets the price of the security equal to one; the payo§s are scaled up

accordingly. The revised state-act-payo§ matrix faced by the decision maker,

then, is a diagonal matrix with the scaled payo§s on the diagonal, denoted by

yi, equal to 1=si.

actnstate state 1 state 2 ... state i

act 1 y1 0 ... 0

act 2 0 y2 ... 0

... ... ... ... 0

act i 0 0 0 yi

(9)

Back to Example 1, the scaled matrix eA is written as

eA =
"
3=2 0

0 3

#

so that it is easy to verify

eAs =
"
3=2 0

0 3

#"
2=3

1=3

#
=

"
1

1

#
.

Any state-act-payo§ matrix, A, can be scaled to the form (9) as long as A

has full rankóa complete set of independent rows and columns, that is, the

states are spanned by the acts. This is where the full rank requirement is used.

An interpretation of the full rank requirement is that there exists an Arrow-

Debreu security for every state of the world. So failure of the requirement can be

characterized as an incomplete market conditionóArrow-Debreu security does

not exist in some states. It is well known that information asymmetries cause

incompleteness. However, repeated encounters ease the information asymmetry

problem.2 Consider, for example, the sale of a used car. The seller has private

information about the carís history: how well it has been maintained, and col-

lisions, and so forth. The buyer, of course, is in the dark, and, hence, is likely

2Accounting references on this topic include Antle and Fellingham (1990) and Arya et al

(1997).
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reluctant to buy something the privately informed seller would like to dispose

of. This is the famous "market for lemons" problem posed by George Akerlof

(1970).

Attempts to alleviate the private information problem naturally, and perhaps

inevitably, turn to ways of extending the time horizon. Warranties, maintenance

contracts, and the corporate form, itself, are examples of multi-period contracts.

If the relationship is an enduring one, the uninformed buyer becomes more

willing to purchase, made more secure in the knowledge that there will be future

interactions down the road. And the privately informed seller, aware of potential

beneÖts in the future, will be less apt to make an early exploitative decision. In

any event the full rank requirement is consistent with the long run orientation

of the analysis. Indeed, one plausible purpose of accounting statements is to

facilitate repeated encounters.3

Now the problem confronted by the decision maker can be entirely charac-

terized by a vector of scaled payo§s y. Each payo§ yi is the return for every

dollar of investment in an Arrow-Debreu (AD) security i (which pays o§ in state

i). If a decision maker bets a fraction bi of the initial wealth P0 on security i,

the payo§ in state i is biP0# yi. Without loss of generality, the initial wealth is
normalized to a dollar. A decision makerís problem looks like the following:

state 1 2 ... i

AD security payo§ y1 y2 ... yi

bet payo§ b1y1 b2y2 ... biyi

bet rate of return ln (b1y1) ln (b2y2) ... ln (biyi)

probability p (y1) p (y2) ... p (yi)

(10)

Using continuous compounding, the rate of return in state i, denoted by ri, is

determined as

biyi = e
ri ) ri = ln (biyi) . (11)

Notice that a negative yi will cause trouble, as we must take the natural

logarithm of biyi and the natural log of a negative number is not well-deÖned

for this purpose. (bi must also be non-negative, but we will confront that issue

in the next subsection.) As yi is the reciprocal of the state price, the existence

of positive state prices is su¢cient to avoid the problem. A direct implication

3As Basu and Waymire (2006) hypothesize, recordkeeping provides e§ective memory of

past exchanges and therefore expandes economic exchanges among agents.
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of Rossís (2005) fundamental theorem of Önance is that the absence of arbitrage

opportunities guarantees a positive set of state prices. So a su¢cient condition

for positive y is arbitrage free prices. The assumption is that market forces have

enough time to work so that arbitrage opportunities have been competed away.

The equilibrium characterized by arbitrage free prices is consistent with a long

run perspective associated with the accounting activity.

For convenience at this stage, we will also specify a vector of probabilities,

p (y), the likelihood that each state is realized (the last row of Table (10)). The

derivation of these probability numbers will be discussed in section 3.2.

2.3 Kelly criterion

A decision maker, called a Kelly decision maker, chooses a vector of bets b

to invest in each state so as to maximize the expected rate of return (more

speciÖcally, expected continuously compounded rate of return).

max
b

E [r] =
X

p (yi) ln (biyi) (12)

subject to
X

bi = 1

Maximizing the expected rate of return is equivalent to maximizing the terminal

wealth as long as the decision maker repeats the bets for a su¢cient number of

rounds. This is where the law of large numbers is used. (Additional discussions

are provided in section 3.1.)4

To solve the optimization problem (12), the Lagrange multiplier method

yields that the fraction of wealth bet in each state is equal to the state proba-

bility, that is, for all i,

bi = p (yi) . (13)

This is the Kelly "bet your beliefs" criterion (Kelly 1956).5 The optimal bets

are always positive, implying a Kelly decision maker never goes short in an

Arrow-Debreu security.
4An alternative interpretation of a Kelly decision makerís problem (12), based on Von

Neumann-Morgenstern expected utility representation theorem, is that a Kelly decision maker

is equivalent to an expected utility maximizer with log utility.
5The Lagrangian function is written as

L(b;#) =
X

p (yi) ln (biyi)! #
hX

bi ! 1
i
,

where # is the multiplier. Solving @L(!)
@bi

= 0 yields bi =
p(yi)
'
. Since

P
bi = 1, the multiplier

is # = 1 and the optimal bet is bi = p (yi).
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Note that the equilibrium we consider is one in which some decision-makers

have private information. The uninformed decision-makers will, of course, try

to infer the privately held information. And everyone will attempt to acquire

private information. This information gathering process is outside the scope of

our analysis.

Substituting the optimal bets (13) into the expression E [r] in (12) yields

the maximum rate of return available,

E [r] =
X

p (yi) ln [p (yi) yi] . (14)

The expression (14), in turn, allows computing the expected rate of return with,

and without, an information source.

A Kelly decision maker can extract information about payo§s y from the

background knowledge consisting of a state-act-payo§ matrix A and a price

vector v (as long as A has full rank). In the absence of information, the decision

maker faces the uncertainty associated with Y measured by H (Y ); and obtains

the expected rate of return E [r]. Observing signal x from an information source

X, the decision maker faces the uncertainty H (Y jX); and obtains the expected
rate of return E [rjX].6

The following theorem establishes the equivalence relation between the in-

crease of the expected rate of return and the reduction of uncertainty due to

information X.

Theorem 1 (Mutual Information Theorem) Mutual information measures

the increase in the expected rate of return.

E [rjX]! E [r] = I(X;Y ) (15)

Proof. The expected rate of return absent an information source E [r] is deÖned

in (14) and further derived as

E [r] =
X

y

p (y) ln [p (y) y] = !H (Y ) +
X

y

p (y) ln y. (16)

With information X, the bets can be adjusted using conditional probabilities,

and then summing over all possible signals x.

E [rjX] =
X

x

p (x)
X

y

p (yjx) ln [p (yjx) y]

6 Information is only available to one decision maker (or one Örm). More conventional

notations include W (Y ) and W (Y jX) representing the expected rate of return without or
with information X, respectively (see for example, Cover and Thomas 1991).
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= !H (Y jX) +
X

x

X

y

p (x; y) ln y

= !H(Y jX) +
X

y

p(y) ln y (17)

Comparing (16) and (17) yields

E [rjX]! E [r] = H (Y )!H (Y jX) = I (X;Y ) . (18)

The increase of the expected rate of return due to information X is the mutual

information as stated in DeÖnition 2.

Theorem 1 connects the entropy measure to a decision problem. Informa-

tion reduces uncertainty (measured by an entropy associated with payo§); and

increases the expected rate of return by the exact same amount.

3 Accounting and Rate of Return

Now it is time to connect entropy and mutual information to accounting num-

bers. Accounting is done initially using the economic income method; that is,

assets are reported at an amount equal to discounted cash áows. Economic in-

come is the discount rate multiplied by the beginning asset value. The discount

rate is the periodic accounting rate of return, denoted by rp.

rp =
income

assets
(19)

In this setting, the periodic rate rp is related to the observed rate of return,

the latter is a continuously compounded rate of return based on all the available

information (say X) and denoted by r (X).

rp = er(X) ! 1

) r (X) = ln (1 + rp) (20)

The Mutual Information Theorem (Theorem 1) provides the connection between

the expected rate of return and mutual information,

E [rjX] = E [r] + I (X;Y ) . (21)

It is very tempting to specify conditions under which the two relations, (20)

and (21), can be combined. Two steps are necessary. The Örst step is to consider
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when the observed rate of return (r (X)) converges to the expected rate of return

(E [rjX]). This will be done in section 3.1. The second step is to establish the
connection between the rate of return without information (E (r)) and the risk-

free rate (rf ). This will be done in section 3.2. Then we will establish the main

result in section 3.3.

3.1 The law of large numbers

The law of large numbers states that the mean of several observations of a

random variable approaches the expected value of the random variable as the

number of observations becomes large. Let rj be the actual rate of return

in the jth round (based on any information available). The initial wealth is

normalized to one dollar. Using continuous compounding, the wealth after t

rounds, denoted by Pt, is determined as

Pt = er1er2 :::ert = er1+r2+:::+rt

)
1

t
lnPt =

r1+r2+:::+rt

t
. (22)

Applying the law of large numbers yields

lim
t!1

r1+r2+:::+rt

t
= E [rj&] . (23)

The notation E [rj&] denotes the expected rate of return conditional on any
information available or no information at all. The equality (23) holds true in

any information environment.

The accounting numbers are generated by actual rates of return. As there

are more and more observed returns, the e§ect is as if the observed returns were

all the expected returns. This e§ect, of course, requires many observations. It

is also consistent with our long run accounting frame. The Örm is a "going

concern" whose expected life is long relative to individuals who comprise the

Örm.

Recall a Kelly decision maker maximizes the expected rate of return which

leads to the maximization of the terminal wealth. This is immediate after

combining (22) and (23).

E [rj&] =
1

t
lnPt

) Pt = eE[rj$]t. (24)
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That is, Pt is a monotonic transformation of E [rj&], and hence, maximizing
Pt is the same as maximizing E [rj&] for large t. We establish the equivalence
between the actual rate of return (which determines Pt) and the expected rate

of return. Note also a Kelly decision maker repeatedly betting for many rounds

is consistent with the emphasis on the long run.

3.2 Maximum entropy probability assignment

We now establish that the expected rate of return without information is the

risk free rate. From (14), the expected rate of return (E [r]) is a function of the

probabilities (p (y)). Therefore, determining E [r] requires assigning probabili-

ties based on prior information (background knowledge). Assigning probabilities

from scratch is a fairly hard problem. Nonetheless, there is some broad guidance

to keep in mind, as well as some tools at our disposal. A reasonable goal is to

translate all the information available (including background knowledge) into

probability assignments. See Jaynes (2003) on this topic who chooses to work

with entropy measure to assign probabilities.

To search for reasonable probabilities that deÖne the entropy H(Y ), we

could proceed in two ways: (i) we could pick probabilities that minimize the

residual uncertainty until we bump into something we donít know, or (ii) we

could pick probabilities that maximize the residual uncertainty until we bump

into something we know. Both approaches seem hard, but the Örst one appears

impossible. How can we write constraints which describe the unknown? So

the approach we are left with is to maximize uncertainty (entropy) subject to

the information available. This is the well-known maximum entropy probability

assignment technique. (For an accounting application of maximum entropy

probability assignment see Lev and Theil, 1978.)

Consistently, the initial probability vector p maximizes the entropy measure

H (Y ) subject to the background knowledge (matrix A and vector v).

max
p

H (Y ) = !
X

y

p (y) ln p (y) (25)

s:t: fA; vg

Applying the Mutual Information Theorem, as H(Y ) increases, E[r] declines by

the same amount. So maximizing the entropy H(Y ) is equivalent to minimizing

the expected rate of return. Reframe the decision makerís problem (25) as
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choosing p to minimize E [r] using the payo§ vector y. It is noted that the

payo§ vector y is a su¢cient statistics for the state-act-payo§ matrix A and the

price vector v. The only constraint is that the probabilities sum to one. The

problem now looks like

min
p
E[r] =

X
p (yi) ln [p (yi) yi] (26)

s:t:
X

p (yi) = 1

Proposition 2 presents the solution to the problem (26) and summarizes the

maximum entropy probability assignment absent any information other than

the background knowledge (A and v).7

Proposition 2 The prior probabilities are assigned as

p (yi) =

1
yiP
1
yi

. (27)

Proof. Once again the Lagrange multiplier method is fruitful and yields8

p (yi) = =
1

yi
. (28)

The probabilities sum to one so that = is determined as = = 1=
hP

1
yi

i
. Plugging

= in (28) provides (27).

An immediate corollary from Proposition 2 is to determine the expected rate

of return with no information. Substituting the optimal probabilities (27) in the

expected rate of return (26) yields

E [r] =
X 1

yiP
1
yi

ln

 
1
yiP
1
yi

yi

!

= ! ln
#X 1

yi

$
. (29)

7Proposition 2 states that the probability distribution can be directly inferred from the

state price (as the inverse of the Arrow-Debreu security payo§). This result is a special case

of the Recovery Theorem in Ross (2015).
8The Lagrangian function of the problem (26) is written as

L(p;#) = !
X

p (yi) ln [p (yi) yi]! #
hX

p (yi)! 1
i
,

where # is the multiplier. Solving @L(!)
@p(yi)

= 0 yields

p (yi) =
e"1"'

yi
.

DeÖne * = e"1"' as a function of the multiplier #.
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Corollary 1 The expected rate of return absent information is the risk free

rate, that is, E [r] = rf .

Proof. Recall yi is the payo§ to a scaled Arrow-Debreu security, so 1=yi is the

price of an Arrow-Debreu security with a state payo§ of one (previously denoted

si). Hence,
P
1=yi is the price of a risk-free security; that is, one which pays

one unit in all states. The continuously compounded interest rate on the risk-

free investmentóthe risk free rate rfócan then be derived from the continuous

interest relationship.

1 =

.X 1

yi

/
erf

) rf = ! ln
#X 1

yi

$
(30)

Comparing (29) and (30) yields E [r] = rf .

Maximum entropy probability assignment implies that the expected rate

of return with no information is the risk free rateóthe rate of return from

a security that promises a constant payout. Combining this result with the

Mutual Information Theorem provides the right hand side of the central result

of this paper,

E [rjX] = rf + I (X;Y ) . (31)

A Kelly decision makerís problem can be parameterized such that information

generates an extra return (relative to the risk free rate) exactly equal to the

mutual information (measure of uncertainty reduction).

A numerical example is in order before we proceed to the main result in

section 3.3.

Example 2 Recall from Example 1, the background knowledge is

A =

"
1 1

1 4

#
and v =

"
1

2

#

which can be framed as the vector of payo§s for Arrow-Debreu securities

y =

"
3=2

3

#
.

As a risk free security is already available in A, it is easy to see the risk free

(and no information) rate of return is

rf = ! ln
#
2

3
+
1

3

$
= 0.
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As 1=yi already sums to one, the maximum entropy state probabilities are p1 =

2=3 and p2 = 1=3.9 An alternative computation of the risk free rate is

E [r] =
X

p (yi) ln p (yi) yi

=
2

3
ln

#
2

3
#
3

2

$
+
1

3
ln

#
1

3
# 3
$
= 0.

Continue with the example to calculate the expected rate of return when addi-

tional information is available. Start with a perfect information system available

where signal xi predicts yi with certainty. The joint probabilities are deÖned as

follows. (Note that the marginal probabilities for y match up with the no infor-

mation benchmark case.)10

p (x; y) y1 y2

x1 2=3 0

x2 0 1=3

Perfect information means there is no residual uncertainty, that is, H (Y jX) =
0. The expected rate of return with perfect information is H (Y ).

E [rjX] = rf + I (X;Y ) = H (Y )!H (Y jX) = H (Y )

= !
#
2

3
ln
2

3
+
1

3
ln
1

3

$
= ln 3!

2

3
ln 2 ' :6365

Alternatively, a Kelly decision maker can bet all his wealth in the state i after

observing xi (so that bi = 1); and earns the expected rate of return E [rjxi] =
ln yi. The expected rate of return E [rjX] is determined as

E [rjX] = p (x1)E [rjx1] + p (x2)E [rjx2]

=
2

3

.
ln
3

2

/
+
1

3
[ln 3] ' :6365.

Finally, consider an imperfect information system as represented by the fol-

9A risk free rate is positive if and only if the sum of the state prices is less than one. Suppose

the state-act-payo§ matrix is A =

"
3=4 9=5

1 4

#
while keeping all the other parameters intact

in the example. Then the risk free rate is rf ' 29%; and the probabilities are p1 = 4=9 and

p2 = 5=9.
10The probability p (x; y) = 0 is used for numerical convenience. It is intended to represent

an event with very small probability p (x; y) = " so that " approaches to zero. The limiting

case lim
"!0

" ln " = 0 applies.
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lowing joint probabilities.

p (x; y) y1 y2

x1 1=3 0

x2 1=3 1=3

The expected rate of return now is determined as

E [rjX] = I (X;Y ) = H (X) +H (Y )!H (X;Y )

=

.
!
1

3
ln
1

3
!
2

3
ln
2

3

/
+

.
!
2

3
ln
2

3
!
1

3
ln
1

3

/
!
.
! ln

1

3

/

=

.
ln 3!

2

3
ln 2

/
+

.
ln 3!

2

3
ln 2

/
! ln 3

' :1744.

So the imperfect information rate of return is a little over 17%. Alternatively, a

Kelly decision maker can bet all his wealth in the Örst state after observing x1;

and earns the expected return E [rjx1] = ln y1. After observing x2, the decision
maker equally splits his wealth between the two states and earns the expected

return E [rjx2] = 1
2 ln

0
1
2y1
1
+ 1

2 ln
0
1
2y2
1
. The expected rate of return is then

written as

E [rjX] = p (x1)E [rjx1] + p (x2)E [rjx2]

=
1

3
ln
3

2
+
2

3

2
1

2
ln

.
1

2

#
3

2

$/
+
1

2
ln

.
1

2
(3)

/3

' :1744.

3.3 A fundamental theorem of accounting

In this subsection, the central result of this paper, connecting accounting income

and asset values (computed under the economic income method) with expected

rate of return, is established. Recall under the economic income method of

accounting, assets are discounted cash áows and income is the discount rate

multiplied by the beginning asset value. First, the law of large numbers allows

the combination of (20) and (21).

r (X) = E [rjX]

, ln (1 + rp) = E [r] + I (X;Y ) (32)
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Second, applying Corollary 1, the relationship (32) becomes

ln (1 + rp) = rf + I (X;Y ) . (33)

Theorem 2

ln

#
1 +

income

assets

$
= rf + I (X;Y ) (34)

when economic income accounting is done using the information-conditioned

expected rate of return as the continuously compounded accounting discount rate.

Theorem 2 is fundamental in that it equates accounting numbers with infor-

mation numbers. That is, balance sheets and income statements tell how much

information an entity obtains in terms of reduced entropy (without having to

spell out what the information is).

Theorem 2 holds as long as (i) the state-act-payo§ matrix that describes

a decision problem has full rank in that it can be scaled to an Arrow-Debreu

matrix; (ii) the scaled Arrow-Debreu securitiesí payo§s are positive as implied by

arbitrage-free pricing and prevent taking logarithms of negative amounts; and

(iii) the decision problem is long run in nature so that maximizing the expected

rate of return is equivalent to maximizing terminal wealth, and the expected

rate of return is best approximated by the realized rate of returnóboth are

implied by the law of large numbers.

3.4 Illustration with continuous asset replacement

To illustrate Theorem 2, we consider a setting in which assets are acquired in

a continuous replacement fashionóthat is, one identical asset is acquired each

year. The additional structure allows us to derive the steady state where there

is only one income statement and only one balance sheet so that accounting

numbers are easily assigned. We verify Theorem 2 when the economic income

method of accounting, the declining balance depreciation method, or the straight

line depreciation method is considered, respectively.

3.4.1 Analysis under economic income accounting

Suppose a new asset is acquired at the beginning of each period and generates

periodic cash áows for n periods after acquisition: CF1, CF2, ..., CFn. All

17



assets generate the same cash áow sequence. The present value of discounted

cash áows at the time of investment is denoted by C so that

C =
X

i

CFi

(er)
i
. (35)

Since one asset is acquired each period, the entity will hold n productive

assets for any period + n. The asset valuation converges to a stable amount

after n periods.11 Then there is only one steady state asset amount B to keep

track of. The steady state amount is relatively easy to compute using the asset

T-account.

Asset

!
!
!
B

C
P
CFi ! (er ! 1) (B + C)

B

The economic depreciation is
P
CFi!(er ! 1) (B + C), where (er ! 1) (B + C)

is the income for the period, and
P
CFi while equal to the total cash ináows

over n periods from one asset, is also, conveniently, equal to one periodís total

cash ináows from n assets. So the steady state income statement looks like the

following,

cash revenue
P
CFi

depreciation expense
P
CFi ! (er ! 1) (B + C)

income (er ! 1) (B + C)

From the asset T-account, the following relation must holdóthat is, in

steady state there is always one asset fully depreciated so that the total de-

preciation is equal to the initial cost C,

C =
X

CFi ! (er ! 1) (B + C)

11Our analysis applies to the initial investment C0 of any amount. In particular, if C0 di§ers

from C, there is economic proÖt/loss due to imperfect market (Christensen and Demski 2003).

In this case, at the time of investment, the asset value is written up/down by the economic

proÖt/loss so that new asset = C0 + (C ! C0) = C; which is also the amount of economic

depreciation recognized in each period in steady state. The sum of cash áows (
X

CFi) equals

to the sum of the total economic income and the economic proÖt/loss. The periodic income

is the total cash áows minus depreciation expense, that is, income =
X

CFi ! C.
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) Ber !B + Cer =
X

CFi

) B =

P
CFi ! erC
er ! 1

. (36)

The asset value B in the steady state is the present value of a perpetuity of

the amount of net cash received in each period (
P
CFi less the adjusted cost

erC).12 The relation in Theorem 2 can be veriÖed:13

income

assets
=

P
CFi ! C
B + C

=
(er ! 1) (B + C)

B + C
= er ! 1

) r = ln

#
1 +

income

B + C

$
(37)

To construct illuminating (it is hoped) numerical examples, it is necessary to

specify the time sequence of cash áows. A convenient way to do so is a "timing"

vector, k,

k =
h
k1 k2 ! ! ! kn

i
(38)

where
P
ki = 1. The cash áow for each asset in period i after acquisition is a

function of an optimal information conditioned act, and deÖned as

CFi = ki (e
r)
i . (39)

With this additional structure, the economic value of the acquired asset is scaled

to one.

C =
X

i

ki (e
r)
i

(er)
i
= 1 (40)

12An alternative derivation of (36) does not rely on the assumption of convergence. DeÖne

BVt as the book value at the end of period t. Start with BV0 = 0. The ending book values

for period 1 is BV1 = erC ! CF1. The ending book value for period n is

BVn =
er (1! enr)
1! er

C !
nX

i=1

CFi

"
1! (er)n+1"i

1! er

#
.

Since C is the discounted cash áow, C =
nX

i=1

h
CFi= (e

r)i
i
, it must be (er)n+1 C =

nX

i=1

h
CFi (e

r)n+1"i
i
. Substituting in the expression BVn yields

BVn =
er

1! er
C !

(er)n+1

1! er
C !

nX

i=1

CFi

'
1

1! er

(
+

nX

i=1

CFi

"
(er)n+1"i

1! er

#
,

which can be simpliÖed to (36) in the text.
13This statement holds true for any periodic discount rate (rp) as long as er = 1 + rp.
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Example 3 Let k =
h
0 1

i
so the cash áows for every asset are CF1 = 0

and CF2 = e2r. The steady state asset value B is derived as

B =
e2r ! er

er ! 1
= er.

The periodic income is
P
CFi ! C = e2r ! 1.

The following table numerically computes the expected rate of return and the

accounting measures for the three information environments deÖned in Example

2: null, imperfect, and perfect information.

Information Null Imperfect Perfect

E [rjX]
= rf + I (X;Y )

0
ln 3! 4=3 ln 2
' :1744

ln 3! 2=3 ln 2
' :6365

assets = B + C = er + 1 2 2:1906 2:8899

income = e2r ! 1 0 :4174 2:5717

ln
!
1 + income

assets

"
0 :1744 :6365

As shown, Theorem 2 is veriÖed with the numerical equivalence of the informa-

tion number (Row 2) and the accounting number (Row 5).

3.4.2 Analysis under declining balance accounting

In this subsection, we show Theorem 2 holds for some speciÖed parameters when

declining balance depreciation is considered.

Let D be the declining rate under declining balance depreciation. The pe-

riodic depreciation is the asset available for production at the beginning of the

period multiplied by the declining rate D. The asset value converges in steady

state, denoted by BD where the superscript refers to declining balance account-

ing. The T-account analysis supplies a representation.

Asset

!
!
!
BD

C0 D
!
BD + C0

"

BD
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If under declining balance depreciation, the accounting rate of return (income di-

vided by assets) replicates the discount rate under the economic income method,

then Theorem 2 holds. This requires a well-designed declining rate D.

In general, accounting income seldom coincides with economic income. (Please

see Solomons (1961) and Littleton (2011) on this issue.) We highlight that if the

goal is to convey information numbers through accounting numbers, then an ac-

crual policy must ensure the equivalence relation holdsóthat is, the accounting

rate of return replicates income
asset under the economic income method.

Corollary 2 Assume declining balance accounting is in place. With the con-

tinuous replacement asset structure, the equivalence relation holds

ln

#
1 +

income

BD + C0

$
= rf + I (X;Y ) (41)

where the declining balance rate, book value and the accounting income are

D =
(er ! 1)C0P
CFi ! C0

; (42)

BD =

P
CFi ! erC0
er ! 1

; and (43)

income =
X

CFi ! C0. (44)

Proof. From the T-account depreciation expense is D
!
BD + C0

"
= C0, so the

income statement is

cash revenue
P
CFi

depreciation expense C0

income
P
CFi ! C0

.

In steady state, convergent income is the same for any declining balance depre-

ciation rate. Again from the T-account, we also derive the book value of the

assets in steady state,14

C0 = D
!
BD + C0

"

14Alternatively, BD can be derived without relying on the assumption of convergence. De-

Öne BVt as the book value at the end of period t. At the beginning of each period, a new

asset with cost C0 is purchased and the declining rate is D. The book value at the end of

period t can be written as

BVt = (1!D) (BVt"1 + C0) .

Because BV0 = 0, BVt can be further written as

BVt =

 
tX

i=1

(1!D)i
!
C0 =

"
1! (1!D)t

D

#
(1!D)C0.
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) BD =
C0
D
! C0. (45)

Given the declining rate (42), the accounting rate of return in a steady state

is equal to the discount rate (er ! 1), the discount rate provided by (37) under
the economic income method (which is a special case of Theorem 2).

income

assets
=

income

BD + C0
=

P
CFi ! C0

C0
D ! C0 + C0

=

(er%1)C0P
CFi%C0

C0

hX
CFi ! C0

i

= er ! 1 (46)

The algebra in (46) uses the declining rate (42), the income expression (44) and

the asset expression (45) to verify the equivalence relation (41). Plugging the

expression of D from (42), the asset value in steady state (the expression (45))

is derived as

BD =
C0
D
! C0 =

C0
(er%1)C0P
CFi%C0

! C0

=

P
CFi ! erC0
(er ! 1)

. (47)

Both (43) and (44) are the counterparts of the economic value and the economic

income under the economic income method. In the special case in which C0 = C,

the declining rate is D = (er%1)CP
CFi%C

and the accounting numbers (the book value

of assets and the periodic income) are the same under both methods.

There is some intuition associated with the declining rate: the numerator is

the amount of income generated by the asset in the Örst year, and the denomi-

nator is total income over the entire life of the asset. The rate is the portion of

the economic income realized in the Örst year.15

Example 4 Continue with Example 3 where C = 1 and
X

CFi = e2r. As-

sume the acquisition cost C0 = :8. The declining rate can be simpliÖed as

In the limit, the ending book value converges to a constant BD = lim
t!1

BVt =
+
1"D
D

,
C0, the

same expression as (45) in the text.
15Depreciation has been extensively studied in settings with performance evaluation. For

example, a carefully crafted depreciation policy (in particular, relative beneÖt depreciation),

employed by residual income based performance measure, provides incentives for managers

to invest in positive NPV projects (a line of literature that starts with Rogerson 1997 and

Reichelstein 1997). In contrast, we are interested in the choice of depreciation that helps

establish the connection between accounting numbers and information numbers.

22



D = (er%1)(:8)
e2r%:8 , which varies based on the underlying information. (For the null

information system with r = 0, the book value (BD + C0) goes to inÖnity as

er ! 1 = 0. However, the book value multiplied by the declining rate is :8 if we
evaluate at the limit.)

Information Null Imperfect Perfect

r = E [rjX] 0 :1744 :6365

D = (er%1)(:8)
e2r%:8 0 :2469 :2569

BD + C0 =
e2r%er(:8)
er%1 + :8 1 3:2401 3:1146

Depreciation

= D
!
BD + C0

" 0:8 :2469 (3:2401) = 0:8 :2569 (3:1146) = 0:8

income = e2r ! :8 0:2 :6174 2:7717

ln
4
1 + income

BD+C0

5
0 :1744 :6365

The information number (Row 2) and the accounting number (Row 7) are the

same. Theorem 2 and Corollary 2 are veriÖed. Lastly, the accounting can be

veriÖed by checking the respective asset T-account at steady state (the case of

imperfect information).

Asset(r = 0:1744)

!
!
!

BD = 2:4401

C0 = 0:8 D
!
BD + C0

"
= :2469 (3:2401) = 0:8

2:4401

3.4.3 Analysis under straight line accounting

In this section, we show Theorem 2 holds for some speciÖed parameters when

straight line depreciation is considered.

Under the straight line depreciation, the depreciable cost is evenly allocated

over the useful life of an asset. This requires two accounting estimates: the

useful life of the asset, denoted by N , and the residual value, denoted by eC.
The depreciable cost is

4
C0 ! eC

5
and the periodic depreciation for each asset

is a constant equal to
4
C0 ! eC

5
=N . At the Nth period, one asset is fully
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depreciated; the residual value is written o§ from the book. In steady state

(for any period + n), the total depreciation expense is C0 and the income isP
CFi ! C0. The book value of the assets in the steady state, denoted by

BS , can be found by running through the asset T-account for N periods. The

superscript S refers to straight line accounting.

Asset

C0
1
N

4
C0 ! eC

5

C0
1
N

4
C0 ! eC

5
+ 1

N

4
C0 ! eC

5
= 2

N

4
C0 ! eC

5

! !
! !
C0

N
N

4
C0 ! eC

5
+ eC

NC0

4
*Ni=1i
N

54
C0 ! eC

5
+ eC

From the T-account, the ending book value of the asset at the end of Nth period

(which is also the amount in steady state) is written as

BS = NC0 !
#
8Ni=1i

N

$4
C0 ! eC

5
! eC

= NC0 !
N + 1

2

4
C0 ! eC

5
! eC

= (N ! 1)C0 !
N ! 1
2

4
C0 ! eC

5
. (48)

(The derivation used the sum of the arithmetic series
X

N = N (N + 1) =2.)

A natural interpretation of the expression (48) is that the book value of the

assets in steady state is the cost of (N ! 1) assets minus the total accumulated
depreciation from the (N ! 1) assets. This can also be seen in the T-account.
If under the straight line depreciation method, the accounting rate of return

(income divided by assets) replicates the discount rate under the economic in-

come method, then Theorem 2 holds. This requires a properly estimated pair

N and eC.

Corollary 3 Assume straight line accounting is in place. With the continuous

replacement asset structure, the equivalence relation holds

ln

#
1 +

income

BS + C0

$
= rf + I (X;Y ) (49)

for a particular N and the residual value estimation

eC =
#

2

N ! 1

$.P
CFi ! C0
er ! 1

!
#
N + 1

2

$
C0

/
. (50)
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Proof. The same logic as in Corollary 2 applies here. The accrual estimates

ensure the accounting rate of return in a steady state is equal to the discount

rate (er ! 1), the discount rate provided by Theorem 2. For a particular N ,

applying the estimated residual value (50), the book value of assets in steady

state (48) and the income expression (
P
CFi!C0), the accounting rate of return

is derived as

income

assets
=

income

BS + C0
=

P
CFi ! C0

(N ! 1)C0 !
!
N%1
2

" 4
C0 ! eC

5
+ C0

=

P
CFi ! C0!

N+1
2

"
C0 +

!
N%1
2

" eC

=

P
CFi ! C0

!
N+1
2

"
C0 +

!
N%1
2

"n4
2

N%1

5 hP
CFi%C0
er%1 !

!
N+1
2

"
C0

io

=

P
CFi ! C0

!
N+1
2

"
C0 +

hP
CFi%C0
er%1 !

!
N+1
2

"
C0

i

= er ! 1. (51)

The equivalence relation (49) is veriÖed.

Example 5 Continue with Example 3 where C = 1 and
X

CFi = e2r. As-

sume the acquisition cost C0 = :8. For N = 5, the residual value estimate can

be written as eC = 2
h
e2r%(:8)
er%1 ! (1:2)

i
, which varies based on the underlying in-

formation. (For the null information system with r = 0, the residual value and

the book value go to inÖnity as er ! 1 = 0.)

Information Null Imperfect Perfect

r = E [rjX] 0 :1744 :6365

eC =
!
1
2

" h e2r%(:8)
er%1 ! 3 (:8)

i
1 :4201 :3573

BS + C0 = (3:2)! 2
4
:8! eC

5
+ (:8) 1 3:2401 3:1146

income = e2r ! :8 0:2 :6174 2:7717

ln
4
1 + income

BS+C0

5
0 :1744 :6365

The information number (Row 2) and the accounting number (Row 6) are the

same. Theorem 2 and Corollary 3 are veriÖed.
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4 Long Run Decisions and Social Welfare

We take a long run perspective on the link between accounting numbers and

information numbers. The analysis so far establishes that the accounting rate of

return, with judicious attention to accrual details, can be made the long run rate

of return (Theorem 2). Maximizing long run expected rate of return is equiva-

lent to maximizing the accounting rate of return. However, it is well known that

rational decision makers do not necessarily maximize long run wealth. Samuel-

son (1971) is particularly eloquent on this point. The purpose of this section is

to examine the alternative case where a decision maker is short run oriented.

The following example is illustrative in which a decision maker invests his

entire wealth in the state with the highest expected outcome to maximize the

expected one period return. Indeed, if short selling is allowed, massive borrowing

will occur to Önance even larger investments in the preferred outcome, regardless

of the decision makerís risk preference. This observation stands in contrast

with a Kelly decision maker whose behavior is consistent with long run decision

making. If the decision maker pays attention to accounting numbers, they will

act like long-run decision maker. This induced behavior can be beneÖcial for

social welfare.

Example 6 Recall from Example 2, the payo§s for Arrow-Debreu securities

and the updated probabilities are

state 1 state 2

AD security payo§ y 3=2 3

probability p (yjx2) 1=2 1=2

.

The probabilities are (derived) conditional probabilities of payo§ y in the imper-

fect information case of Example 2 when x2 is observed. One unit investment

in state 1 opportunity yields an expected value of

1

2

#
3

2

$
=
3

4

A similar investment in state 2 yields 3=2. And, if allowed, the individual will

sell one state 1 opportunity in order to buy another state 2, thereby increasing the

expected return by another 3=2!3=4 = 3=4. This investment strategy is optimal
subject to a constraint on the amount of short selling. One will continue selling

short until some constraint is violated.
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This behavior could have socially unfortunate consequences. The individual

has left an Arrow-Debreu state uncovered. When state 1 occurs, the decision-

maker is unable to meet the short position. This, in turn, leads to uncomfortable

consequences in the credit market where some investors are unable to meet their

obligations, and possibly to a "too big to fail" response on the part of Önancial

authorities.

However, introducing risk aversion does not prevent the decision maker from

going short in AD securities. Consider a decision maker with wealth w and the

following constant absolute risk aversion preference:

U (w) = !e%:1w.

Then the decision maker determines wealth allocation b to maximize her expected

utility

Maxb

.
!
1

2
e%:1(b1y1) !

1

2
e%:1(b2y2)

/

s:t: b1 + b2 = 1

and obtains the optimal allocations:

b1 = !:87366

b2 = 1:87366

The risk averse decision maker goes short in state one to the tune of 87% of

initial wealth.

It is important to recall that Kelly "bet your beliefs" behavior will never

go short in an Arrow-Debreu security. As shown in Example 2 (with imperfect

information), a Kelly decision maker, after observing x2, equally splits his wealth

over the two states.

While accounting can not, of course, change preferences, it seems possible

attention paid to accounting numbers could mitigate the tendency to go short

in an Arrow-Debreu security. Non-Kelly behavior necessarily reduces the ac-

counting rate of return calculated in this paper. To the extent that reduced

reported accounting rate of return is a cost decision-makers pay attention to,

a non-Kelly decision maker might act more like a Kelly decision maker. Since

Kelly behavior is socially beneÖcial, accounting performs a social service.
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5 Concluding Remarks

The central result is the equivalence relation between accounting numbers and

an entropy-based information metric.

ln

#
1 +

income

assets

$
= rf + I (X;Y )

The equivalence is derived from a su¢cient set of conditions. The conditions all

depend, to some extent, upon a long run time frame: arbitrage free equilibrium

prices, full rank state-act-outcome matrix, and long run preferences. Any spec-

ulations on implications of the equivalence are implications of the underlying

conditions.

There are, perhaps, implications for how to do accounting: it seems plausible

that the accounting numbers of an entity should be supported by its information

capabilities. But, of course, the equality goes both ways. Just as the information

informs the accounting, it is also the case that accounting can increase our

understanding of information. In this sense the preceding analysis is in the spirit

of HatÖeld (1924): Does accounting deserve a place among other information

sciences in this, the information age? We think the answer is yes.

The mutual information theorem result presented herein relies on a com-

plete set of Arrow-Debreu state securitiesñone security for every state. Accoun-

tants are accustomed to working in an economic environment where information

asymmetry is an important e§ect. An implication of information asymmetry is

that not all states can be traded, that is, there does not exist a complete set of

Arrow-Debreu securities. A natural question which arises is: how is the mutual

information theorem a§ected if markets are incomplete?

Surprisingly, one way to confront the question is to access quantum physics

and the concept of quantum entropy. In the quantum world the quantum state

can never be observed; only probabilistic measurements can be accessed. So in

this world trades can be based only on the measurement, not the unobservable

states. Further it is quite reasonable for the number of measurements to be

exceeded by the number of states: a natural representation of the incomplete

market scenario.

A quantum mutual information theorem can be derived which has the fol-

lowing relationship to the classical mutual information theorem (Theorem 1).
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A reframing of Theorem 1 is

E [rjNo Information] = E [rjPerfect Information]!H (Y )

where H (Y ) is the classical entropy without information. The quantum rela-

tionship is similar,

E [rjNo Information] = E [rjPerfect Information]! S (Y )

where S (Y ) is quantum or Von Neumann entropy, named after mathemati-

cian John Von Neumann. Von Neumann entropy is always (weakly) less than

Shannon entropy, reáecting the (possibly) restricted set of market opportuni-

ties in the quantum world. A quantum mutual information theorem is derived

and explored in a working paper titled "Quantum Entropy and Accounting" by

Fellingham, Lin and Schroeder (2018).
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