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INTRODUCTION

Measurement often appears far from benign. Close to home we have the system-
wide, at times corrosive effects of student evaluations and popular press rankings.
Modern medicine exhibits cycles of advances in measurement, e.g., blood chem-

istry, followed by development of pharmaceuticals designed to improve those measures.
Many are the stories of the athlete more interested in personal than team glory. And then
there is the unfolding case of earnings, where we encounter developments in financial
engineering and organizational arrangements that seem to have no purpose beyond im-
proving the earnings measure.

Economically, we are accustomed to measures being simply a source of information,
where Bayesian revision in decision making or valuation and optimal contracting in trading
arrangements determine the information’s effect on organizational and individual behavior.
Although subtleties surface in a multitask setting, and we know ‘‘bad’’ information can
drive out ‘‘good’’ information (e.g., Holmstrom and Milgrom 1991), it seems the story is
deeper. A commitment to produce a particular set of measures has the potential to affect
the organization’s behavior, to affect productivity, in ways that go beyond traditional in-
formation effects.

Here we put forward and analyze one such setting. Exactly how the act of measurement
produces effects beyond mere information effects is an open question. Our approach is to
look to the physical sciences, where measurement is far from benign, and to import the
natural effect of measurement in that setting to a human organization. We do not claim this
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is the only way to proceed, or even the most enlightening way. But it does produce some
startling, counter-intuitive results.1

The idea, then, is to posit and explore a modest structural model in which measure-
ment’s effects resonate through the organization. We use a single-task setting, so that we
are not confronted by task balance issues and the possibility that turning off explicit in-
centives on one task may improve the supply of another task. Into this setting we import
measurement effects cloned from the way Nature deals with interactions and measurement.
In particular, quantum probabilities form the basis for our structural model.

There are some advantages to this approach. Interaction is an important physical phe-
nomenon, and Nature exploits interactions in a remarkably efficient manner. The analysis
is also subject to some transparency as it is axiomatic; four quantum axioms are reviewed
in Appendix A and form the basis for interaction effects in our model. This offers the
advantage of being able to trace the presumed structural features on which our analysis is
based to its foundational assumptions. But as we stressed at the outset, we do not contend
this analysis is the best way to exhibit the corrosive effects of information. Rather, its
advantage is its background and documentation in the physical sciences.

There are also some disadvantages to this approach. Quantum probabilities take no
prisoners in the sense that interaction between measurement and the (physical) system is
inevitable, and occurs in particular albeit stochastic fashion. We do not claim this transcends
the behavior of social organizations. But we do claim information can have a corrosive
side in such organizations, manifesting itself in undocumented fashion.2

To reiterate, we claim information can be corrosive. We also claim we do not know
how to model this phenomenon. So we resort to a hypothetical exploration, taking license
from the physical sciences.

Quantum probabilities yield two intertwined lessons. First, existence of a ‘‘true’’ state
is fiction. Rather, a superposition of all possibilities exists. Second, measurement is not
benign. Measurement unavoidably involves interaction with the system and any such inter-
action changes the system. It is this systemic effect of measurement that is the highlight of
our exploration.

On the surface, the exploration centers on whether to measure individual or group
performance. Absent any interesting interactions among the members of the group, the
answer is perhaps clear. Obtaining only a group measure cannot increase the ‘‘amount’’ of
usable information. On the other hand, when subtle and complex (and hopefully productive)
interactions exist, the problem is more difficult.

An individual measure may not capture that individual’s contribution to group produc-
tivity. Individually the measure may not look impressive, but taking into account the abilities
and contributions of the other members may yield an entirely different assessment. When
intricate teamwork is a key force, whether the team won or lost is quite informative about
the contributions of team members. Furthermore, productive interactions are the hallmark
of successful organizations. It seems sensible to analyze accounting for organizations in a
setting in which interaction is the key compelling reason giving rise to the organization in
the first place.

1 For related discussions, see Demski et al. (2006, 2009).
2 The large supply of earnings management documentations is a case in point. Precisely how does repetitive

earnings measurement lead to the observed statistical pattern between earnings management proxies and a priori
earnings management temptations? For that matter, might random as opposed to programmed reckoning periods
for earnings measurement be less corrosive? Likewise, might widespread adoption of XBRL have a corrosive
downside as disingenuous benchmarks proliferate?
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Notice, however, we have not included analysis of simultaneously producing individual
and group measures. Importing Nature’s processing of productivity removes that option
from the table. Intuitively, the mere assembling of individual measures in our setting has
the power to affect if not destroy synergy between the agents.3 For that matter, we further
caution the reader. We do not offer new, startling insights into the (well-researched) world
of, say, team production. Rather, the focus is on corrosive possibilities. Think Barry Bonds
in a world where individual statistics are unavailable or a dean deprived of citation counts.

We begin with a standard, reduced form agency problem in the second section. Cost
of control, meaning the risk premia burned in an effort to acquire the exogenously desired
agent action, is the metric used to evaluate alternative information structures.

The third section considers two extreme cases. The first case is a setting with no
interactions. Accordingly, individual measures yield a lower cost of control than does a
group measure. The next case is a setting with maximum coordination. (Synergy is the
term we use for positive interaction effects.) Given maximum synergy, a group measure is
more efficient. This result holds even though there is only one signal or measure available
when the group measure is used, as opposed to multiple individual signals under individual
measurement. With maximum synergy the coordination effect is stronger than the effect
associated with increasing the number of signals.4

The underlying structure allows confronting other questions as well. Of particular in-
terest is the behavior of control costs when synergy is neither at its maximum level nor
absent.5 In a setting with partial synergy, the inherent tension between assessing individual
accomplishment and promoting synergistic behavior surfaces. In the fourth section, we
exhibit regions where group measurement is more or less efficient than individual mea-
surement. More broadly, any such control problem may become more severe due to changes
in the information environment, technology, or preferences. As the severity of the control
problem increases, the region of group measurement superiority also increases. Group mea-
surement actually becomes relatively more efficient (relative to individual measures) as the
agency problem worsens. In other words, more measures actually decrease efficiency. In-
deed, as the analysis shows, when the inclination to acquire more measures is greatest, the
effect of many individual measures is most corrosive.

PRODUCTIVITY AND MEASUREMENT
In most analyses, productivity is a black box. Our paper differs only in that we employ

a state of superposition to convey a setting with no underlying truth. Productivity is rep-
resented by transformation of an initial state of the system. The initial state indicates
whether the agents are independent, entangled, or partially entangled. How the agents in-
teract is modeled as an inherent feature of the system. Measurement of the transformed

3 These points raise questions, for example, about the prudence of adopting fair value accounting wherever
remotely feasible (level three evidence as defined by the FASB comes to mind). Accounting policy makers and
others seem to presume the existence of ‘‘true’’ value and the task is simply to figure out how to measure it.
However, it is well known that existence of value is delicate (see, for example, Debreu 1959) even if one ignores
inherent uncertainty. Also, the act of attempting to measure changes the productivity landscape. Enron Corp. is
a ready example (see Haldeman 2006), as is the contentious debate in the U.S. Congress surrounding the Patriot
Act.

4 The Rolling Stones is always recognized for the collective performance of its members. Each member’s contri-
bution is hardly available.

5 It also turns out Blackwell type comparisons between individual and aggregate measurement are possible at
times, but impossible at other times.
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system produces information about the agents’ productivity. The same productive transfor-
mation applies to all states. The agents’ inputs are binary for simplicity and conveyed via
an angular representation well suited to the transformation process.6 Agent input is endog-
enous. Measurement is the experimental manipulation and is either individual or group.

Measurements are binary and indicate whether the agents’ inputs have a favorable
impact on productivity; we denote these signals as ‘‘success’’ or ‘‘failure.’’ The angular
representation of agents’ inputs leads to a natural monotone increasing mapping between
the angle (agent’s input) and success probability (favorable productivity).7 With this setup
we next outline our focal agency problem.

We begin with a simple agency problem constructed around the following information
structure:

Success (s) Failure (ƒ)

Work (h) p 1 � p (1)

Shirk (l) 0 1

Many of the comparisons in what follows can be made directly from the information
structure. When additional context is necessary, a standard control problem will be used.
The principal is risk-neutral and the risk-averse agent exhibits multiplicative separable
CARA expected utility representation:

�r(I�c)U(I � c) � �e ,

where I is the dollar payment, c the personal cost of the unobservable act, and r the Arrow-
Pratt risk aversion parameter. Assuming the principal always wishes to induce the high act
(work or h), the design program takes on a familiar appearance:

Minimize E(pmt) � pI � (1 � p)Is ƒ

Subject to pU(I � c ) � (1 � p)U(I � c ) � U(RW)s h ƒ h

pU(I � c ) � (1 � p)U(I � c ) � U(I � c )s h ƒ h ƒ l

RW is the reservation wage, and the payments and personal costs are appropriately sub-
scripted. Since with multiplicative CARA the structure of the solution is invariant with
respect to reservation wage and the minimum personal cost, we set RW � cl � 0. The
solution is thus parameterized by p, r, and ch. Exploiting the multiplicative CARA prefer-
ence representation and the fact both constraints are binding, the problem can be written
in matrix form, where the information structure is highlighted:

p 1 � p U(I ) U(c )s h� .� �� � � �0 1 U(I ) U(0)ƒ

6 Our black box transformation is represented by an interferometer, an instrument employed in physics to explore
quantum processes.

7 Details are provided in the appendices.
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To illustrate, set p � r � .01, and ch � 10. We then have:1–,4

I � 0,ƒ

I � 47.91,s

E(pmt) � 11.98.

In order to bring synergy into view, the model must contain another agent, who, to
keep things simple, is identical to the first agent. The intriguing aspect of this model is it
projects to the noted benchmark in (1), but also allows, when synergy is present, for too
much information to be corrosive. This occurs not because the agents collude or even
engage in sabotage. Rather, it occurs under the radar so to speak, just as we suspect is the
case in a real organization.

The notion of synergy or interaction is, of course, an important part of the story. With
no synergy the agents’ acts are independent and with synergy the agents’ acts are entangled.
As noted, the agents’ productivity is described as ‘‘success’’ or ‘‘failure.’’ Measurement can
be individual or group. Individual measurement provides a ‘‘success’’ or ‘‘failure’’ signal
for each agent. Group measurement provides a single ‘‘success’’ or ‘‘failure’’ signal. There
are four cases: individual measurement with no synergy (IN), individual measurement with
synergy (IS), group measurement with no synergy (GN), and group measurement
with synergy (GS).

We first characterize the success probabilities for each case. To better describe how
Nature exploits interaction, it is convenient to represent the agent’s act in polar form. So
we use angle �j to represent agent j’s act. Recall the agents are identical, have but two
possible acts from which to choose, and will be motivated to supply the ‘‘high’’ act. We
then have �j � {�l,�h} for each agent. This angular representation device for capturing the
agents’ productivity leads to the success probabilities reported in the following Lemma. All
proofs are contained in Appendix B.

Lemma 1: The success probabilities for the four cases are as follows:

�j2prob(success�IN, � , � ) � sin , j � 1 or 2, (2)1 2 2

1
prob(success�IS, � , � ) � , (3)1 2 2

� � � �1 2 1 22 2 2 2prob(success�GN, � , � ) � sin cos � cos sin , (4)1 2 2 2 2 2

� � �1 22prob(success�GS, � , � ) � sin . (5)1 2 2

Lemma 1 implies that individual versus group measurement is, as usual, not a benign
choice and also that the mere act of measurement affects productivity. Moreover, in the
benchmark single-agent story in (1), the success probability given high act (working) turns

out to be p � sin2 implying �h � 0; and the success probability given low act (shirking)
�h,
2
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is 0 � sin2 implying �l � 0.8 It will also turn out that we require �h � 90�. We stress
�l,
2

this specific characterization follows from the assumed axiomatic structure.
We next analyze the extreme cases of no synergy and pure synergy. These play the

role of benchmarks in documenting how the model behaves when confronted with familiar
territory.

BENCHMARK CASES
No Synergy Case

For the case of individual measurement with no synergy, the probabilities are straight-
forward, as the probability of success for one agent is independent of the effort level of
the other agent. For example, for the first agent we have:

prob(success�work , work ) � prob(success�work , shirk ) � p. (6)1 2 1 2

On the other hand, group measurement produces one, and only one, signal for the joint
output: whether the output of their joint efforts was measured as a success or a failure. The
success probabilities in the group measurement case are reported in Proposition 1.

Proposition 1: Consider the case of group measurement with no synergy (GN). The
success probabilities are summarized as follows:

prob(success�work , work ) � 2p(1 � p),1 2

prob(success�work , shirk ) � prob(success�shirk , work ) � p,1 2 1 2

prob(success�shirk , shirk ) � 0.1 2

In the no synergy setting, the probability of success given both agents work is smaller
for a group measure than for individual measures (2p(1 � p) � 2p). If but one or neither
agent works hard, then the success probability collapses to the single agent case. We reit-
erate this specific characterization follows from the assumed axiomatic structure.

From here we write the group measurement control problem in best response form.
That is, we assume the other agent will work hard. Collusion, the shirk/shirk strategy, is
not a pressing concern as will be discussed shortly. The control problem based on group
measurement is as follows:

Minimize E(pmt) � 2p(1 � p)I � [1 � 2p(1 � p)]Is ƒ

Subject to 2p(1 � p)U(I � c ) � [1 � 2p(1 � p)]U(I � c ) � U(RW)s h ƒ h

2p(1 � p)U(I � c ) � [1 � 2p(1 � p)]U(I � c )s h ƒ h

� pU(I � c ) � (1 � p)U(I � c ).s l ƒ l

The two constraints, as readily verified, are binding. This implies the program can also
be written as a matrix equation highlighting the group information structure:

8 In polar coordinates the projection of an angle, �, onto the vertical (horizontal) axis is sin� (cos�). To change
into probabilities, the projection is squared; since by Pythagoras sin2 � � cos2 � � 1, a probability measure is

thereby created. Notice that if � is viewed as effort level, it is sensible to think of sin2 as the probability of
�h

2
success—increasing in effort � as long as � does not exceed �. When Nature deals with multiple angles, the
same ‘‘probability as squared projection’’ idea is maintained.
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2p(1 � p) 1 � 2p(1 � p) U(I ) U(c )s h�� �� � � �p 1 � p U(I ) U(0)ƒ

The information structure representation allows the comparison in Corollary 1.

Corollary 1: Assume no synergy. Group measurement matrix:

2p(1 � p) 1 � 2p(1 � p)� �p 1 � p

is a garbling of the individual measurement matrix with
p 1 � p

,� �0 1

garbling matrix given by
1 � p p

.� �p 1 � p

Since group measurement is a garbling of individual measurement,9 and since we are
dealing with an agency problem, we know from Grossman and Hart (1983) that individual
measurement is superior for all parametric versions of our setting with no synergy. (Again,
the shirk/shirk combination is not of concern here.)

To illustrate this for the earlier introduced numerical example parameters, we have a
group solution of:

I � �17.42,ƒ

I � 84.62,s

E(pmt) � 20.84

The control cost, the expected payment, increases from 11.98 to 20.84 for each agent when
group measurement is used.

Further observe that shirk/shirk is not an equilibrium. Since the probability of success
if both agents shirk is zero, the certainty equivalent is negative for both agents, not even
achieving the reservation wage.

There are, of course, no interactions among agents in the no synergy case. Not sur-
prisingly, individual measures are more informative than group measures. In fact, group
measures are a garbling of individual measures. Next we explore a pure synergy setting
where measurement is potentially quite corrosive.

Pure Synergy Case
Synergy arises from the productive interaction among agents. It is defined here in terms

of the probabilities.

Definition 1: Synergy is present when the success probability for the group is greater
than the sum of the success probabilities when measured individually.

9 All that is claimed here is the algebraic fact that:

2p(1 � p) 1 � 2p(1 � p) p 1 � p 1 � p p
� .� � � �� �p 1 � p 0 1 p 1 � p

See Marschak and Miyasawa (1968), Blackwell (1953), or Blackwell and Girschick (1954).



176 Demski, Fellingham, Lin, and Schroeder

Journal of Management Accounting Research, 2008

Definition 2: Pure synergy is present when synergy is maximally present, where the suc-

cess probability for the group is given by sin2 (5) in Lemma 1.
� � �1 2,

2

In order for synergy to be defined in this manner, the individual success probability
must be less than Otherwise we face the possibility the group success probability might1–.2

exceed unity. p � will be imposed throughout the rest of the analysis.101–2
An important benefit of synergy, of course, is the benefit associated with added pro-

ductivity. The focus in this paper, however, is solely on the cost of control. Basically the
question is whether fewer measurements increase the control costs. The previous section
verified that, not surprisingly, in a setting without synergy group measurement results in
higher control costs than individual measurements.

The benchmark synergy setting is presented in Proposition 2, for the case of group
measurement.

Proposition 2: Consider the case of group measurement with pure synergy (GS). The
success probabilities are summarized as follows:

prob(success�work , work ) � 4p(1 � p),1 2

prob(success�work , shirk ) � prob(success�shirk , work ) � p,1 2 1 2

prob(success�shirk , shirk ) � 0.1 2

The alternative measurement regime is an individual measurement for each agent. When
Nature attempts an individual measurement in a pure synergy context, no information is
forthcoming. It is as if the attempt to measure individual contribution in a synergistic setting
leads to pure noise.11 One interpretation is it is impossible to identify individual contribu-
tion; another interpretation is the attempt to highlight individual contribution invites a con-
cern for that measure which in and of itself destroys the synergy. Course evaluations ar-
guably have this effect when we focus on the larger curriculum. Regardless, the presumed
productivity function and axioms lead to the conclusion that measuring one individual’s
contribution without considering joint effects is worthless. The act of measurement is in-
troducing a corrosive ‘‘extra-information’’ effect.

Proposition 3: Consider the case of individual measurement with pure synergy (IS).
The success probabilities are summarized as follows:

1
prob(success�work , work ) � ,1 2 2

1
prob(success�work , shirk ) � prob(success�shirk , work ) � ,1 2 1 2 2

1
prob(success�shirk , shirk ) � .1 2 2

Obviously, it is not possible to induce a high effort level in a pure synergy environment
using individual measurement.

10 This is the earlier noted restriction that �h � 90�.
11 Consider Abbott and Costello’s ‘‘Who’s on First’’ routine. If you read but one actor’s half of the skit, it is utterly

meaningless. Together, however, it is indescribably amusing.
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Corollary 2: Assume pure synergy. The individual measurement matrix is a garbling
of the group measurement matrix, with garbling matrix given by:

1 1
2 2 .1 1� �
2 2

Turning to group measurement, reconsider the numerical example. The best response
program is:

Minimize E(pmt) � 4p(1 � p)I � [1 � 4p(1 � p)]Is ƒ

Subject to 4p(1 � p)U(I � c ) � [1 � 4p(1 � p)]U(I � c ) � U(RW)s h ƒ h

4p(1 � p)U(I � c ) � [1 � 4p(1 � p)]U(I � c )s h ƒ h

� pU(I � c ) � (1 � p)U(I � c )s l ƒ l

For p � (as �h � 60�), the solution is:1–4

I � � 4.65,ƒ

I � 15.40,s

E(pmt) � 10.39.

Here, as well, collusion is not a problem, as the certainty equivalent for shirk/shirk is less
than the reservation wage.

It is suggestive in the example that the group measurement with pure synergy case has
a lower control cost than individual measurement with no synergy. But as stated in the
following corollary, the comparison is context specific.

Corollary 3: The group measurement with pure synergy and individual measurement
with no synergy cases are not Blackwell comparable, as in general neither
one is a garbling of the other.

Even though they are not Blackwell comparable, they are comparable when embedded
in the CARA multiplicative agency problem.12 For this particular setting the cost of control
for individual/no synergy always exceeds the cost of control for group/synergy as illus-
trated in the numerical example (see Fellingham and Schroeder 2007).

The results of this section are that when synergy is at its maximum (pure synergy),
group measurement is better than individual measurement in the sense that control costs
are less. Because individual measures fail to capture the effects of interactions, they destroy
incentives to interact. In this way the extreme cases give comfort to the exercise, as the
model is behaving in fairly intuitive fashion.

12 This is suggestive of Kim’s (1995) linkage between reduced agency cost and a mean preserving spread of the
likelihood ratio, a broader condition than that of the Blackwell Theorem. Keep in mind, however, that Kim
(1995) deals with a single agent setting and a local expression for incentive compatibility.
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The previous two sections analyze no synergy and pure synergy cases. Presumably,
there are cases in which there is some, but not pure, synergy. Partial synergy is the subject
of the next section.

PARTIAL SYNERGY
It turns out that Nature is also quite clever at processing information when there is

some, but not pure, synergy. This leads to our definition of partial synergy.

Definition 3: Partial synergy is present when pure synergy is present with probability
� and no synergy is present with probability 1 � �, 0 � � � 1.

Under partial synergy, now, the conditional success probabilities are those derived in
the preceding section. By the laws of probability, the unconditional probabilities are linear
combinations of the benchmark cases.13 This leads to the success probabilities reported in
Proposition 4, for individual and group measurement systems, given a best-response con-
tracting problem with the other agent choosing to work.

Proposition 4: The success probabilities in the partial synergy case are summarized as
follows:

Individual Measurement
Success Failure

No Synergy Work p 1 � p
Shirk 0 1

Pure Synergy Work 1/2 1/2
Shirk 1/2 1/2

Partial Synergy Work (1 � �)p � �1–2 1 � (1 � �)p � �1–2
Shirk �1–2 1 � �1–2

and

Group Measurement
Success Failure

No Synergy Work, work 2p(1 � p) 1 � 2p(1 � p)
Shirk, work p 1 � p

Pure Synergy Work, work 4p(1 � p) 1 � 4p(1 � p)
Shirk, work p 1 � p

Partial Synergy Work, work 2p(1 � p)(1 � �) 1 � 2p(1 � p)(1 � �)
Shirk, work p 1 � p

Not surprisingly, for extreme values of � we return to a garbling characterization. For
example, for ‘‘little’’ synergy (� close to zero), group measurement is a garbling of indi-
vidual measurement. On the other hand, for large values of �, just the opposite holds. The
bounds defining the regions of garbling dominance are provided in Corollary 4.

13 Quantum information theory represents this in density operator form (see the discussion of the quantum axioms
for density operators in Appendix A). Application of density operators confirms these claims on success prob-
abilities in the partial synergy setting.
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Corollary 4: Group measurement is a garbling of individual measurement when 2p
� �(5 � 4p) � 2�2(1 � p) � 0. Individual measurement is a garbling

of group measurement when �2(1 � p) � p � � 0.
�

2

Return to the numerical example with p � Group measurement is a garbling of1–.4

individual measurement when � 4� � �2 � 0, which is satisfied for 0 � �1 3– –2 2

� � .1315, that is, for ‘‘small’’ values of �. At the other end of the � continuum,
4 � �13

3
individual measurement is a garbling of group measurement when �2 � � � � 0, that3 1– –2 2

is for � � � 1. It is also interesting to note that, regardless of the value of p, individual1–3

measurement is a garbling of group measurement whenever � � where � is the ‘‘golden
1
�

ratio,’’ an important number in the history of mathematics. This follows from the fact that
the greatest lower bound on � occurs for the upper bound on p: p � substitute into the1–;2

condition in the Corollary. is approximately 0.61803.
1
�

Continuing with p � for values of the synergy parameter, �, between and
4 � �13

1–,4 3
the measurement systems are not Blackwell comparable. In order to establish a ranking,1–,3

it is necessary to embed the problem in more structure. As before, let RW � cl � 0, ch

� 10, and r � 0.01. We find the control costs are equal for � � 0.2064. That is, for �
levels above the cut-off, group measurement results in a lower cost of control for the specific
control problem. At the cut-off the expected payment is 13.5868 for both measurement
systems. The signal-act probabilities at the cutoff are displayed as follows:

Individual Measurement Group Measurement
Success Failure Success Failure

Work 0.3016 0.6984 Work, Work 0.4524 0.5476

Shirk 0.1032 0.8968 Shirk, Work 0.25 0.75

RW � cl � 0;
ch � 10;
r � 0.01;
p � 0.25; and
� � 0.2064.

This suggests comparative statics. Denote �* as the cut-off synergy level where the
control costs are equal for the two different measurement systems. Intuitively, it follows
from the garbling relations that for synergy values exceeding �*, group measurement has
lower control cost than individual measurement. In other words, �* bounds the region of
group measurement superiority.

The example below suggests when the control problem becomes more pressing, group
measurement becomes relatively more efficient. To illustrate, let the private cost ch vary
and track �*.
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FIGURE 1
Group Measurement More Efficient as Private Cost Increases

FIGURE 2
Group Measurement More Efficient as Private Risk Aversion Increases

ch E[pmt] �*

5 5.7848 0.2164
10 13.5868 0.2064
15 24.6725 0.1943

RW � cl � 0;
r � 0.01; and
p � 0.25.
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FIGURE 3
Group Measurement More Efficient as Success Probability Declines

As the private cost, ch, increases so does the severity of the control problem—more
risk premium is burned. The change in �* indicates the greater the severity of the control
problem, the larger the region over which group measurement is superior. Likewise, con-
trol problem severity increases with the risk parameter, r, and severity decreases as success
probability, p, increases. The figures illustrate when control severity increases, group mea-
sures become relatively more efficient.

CONCLUDING REMARKS
The point to our odyssey is to raise the issue of potentially corrosive effects of infor-

mation. Familiar anecdotes are the manager who manages to the numbers, the baseball
player who plays for his individual measures, the industry that lives with citation counts,
and the college managed by course evaluations. These all have not only an admittedly
apocryphal side, but they are also suggestive of a hole in our understanding.

Turning to the physical sciences, it has long been understood that the mere act of
measurement can impact the physical system. Is the same true of human systems? We
suspect so, but are perplexed by how this might transpire and survive.

Borrowing from the physical sciences, we construct a structural model in which the
act of measurement mimics its counterpart at the subatomic level. The resulting model
exhibits the usual presumption that independent activities are best monitored with indepen-
dent measures and group activities with a group measure. Mismatching, so to speak, is
corrosive; and also has ties to garbling.

Moving away from the extreme cases to what we term partial synergy, we naturally
encounter a more mixed message. Surprisingly, however, increasing the strength of the
underlying control problem does not move us in the direction of more measures.

As a control problem increases in severity, the natural inclination is to collect more
measures of behavior. For example, an increase in lucrative outside opportunities is often
met with tighter monitors inside the organization, supposedly inducing the agent to be
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conscientious in his organizational duties.14 The example illustrates that, in the presence of
nontrivial synergies, the inclination to increase monitoring may be misguided. The control
cost actually decreases with a group measure. The reason is that the salient behavior char-
acteristic is coordination, which becomes more important when the control problem is
aggravated. A group information structure more effectively illuminates agent coordination,
and does not invite sabotaging that coordination by keeping an eye, so to speak, on one’s
individual performance measure.

We stress, however, that the exercise is aimed at the corrosive side of information.
Precisely how this comes about is an open question. But our anecdotes resonate in a
productivity-measurement function borrowed from the physical sciences.

So, can accounting be corrosive?

APPENDIX A
There are four quantum axioms governing the behavior of quantum probabilities (see

Nielsen and Chuang 2002). We first outline the axioms in standard (qubit) form. Then we
express each in terms of von Neumann’s density operator representation as it is more
amenable to mixed states encountered with our partial synergy setting.

1. The superposition axiom:

A quantum unit (qubit) is specified by a two-element vector, say with ���2�
,� �	

� �	�2 � 1.

Let �
� � � ��0� � 	�1�,15 	
� � where † is the adjoint (conjugate
†

� �� � � �	 	
transpose) operation.

A density operator is the sum of the probabability-weighted, pj, mixture of
states expressed in outer product form:

n

� � p �
 �	
 �	 j j j
j�1

as the outer product is a unitary matrix and pj � 1, Tr[�] � 1 where Tr[�] isn
j�1

the trace operator.

2. The transformation axiom:

A transformation of a quantum unit is accomplished by matrix multiplication.

Useful single qubit transformations are H � and
1 1 1� �1 �1�2

� � Examples of the transformations in Dirac notation:
i�e 0

.� �0 1

14 The latest round of so-called congressional reforms aimed at documenting and controlling interactions with
lobbyists is a case in point.

15 Dirac notation is a useful descriptor, as �0� � and �1� �
1 0

.� � � �0 1
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�0� � �1� �0� � �1�
H�0� � ; H�1� �

�2 �2
i���0� � e �0�; ��1� � �0�

Transformation of a density operator is also a unitary operation.

n
† †U�U � p U�
 �	
 �U	 j j j

j�1

3. The measurement axiom:

Measurement of a quantum state is accomplished by a linear projection from a set
of projection matrices that add to the identity matrix.16 The probability of a partic-
ular measurement occurring is the squared absolute value of the projection. (A part
of the axiom not explicitly used in the paper is that the post-measurement state
is the projection appropriately normalized; this effectively rules out multiple
measurement.)

For example, let the projection matrices be M0 � �0�	0� � and M1
1 0� �0 0

� �1�	1� � Note that M0 projects onto the �0� vector and M1 projects onto
0 0

.� �0 1
the �1� vector. Also note that M0 � M1 � M0 � M1 � I. For �
� � ��0� � 	�1�,† †M M0 1

the projection of �
� onto �0� is M0�
�. The probability of �0� being the result of the
measurement is 	
�M0�
� � ���2.

The probability of �0� being the result of the measurement in density operator
representation is Tr[ M0�]. Notice Tr[ M0�] � pjTr[M0�j] where �j

† † nM M 
0 0 j�1

� �
j�	
j�. We exploit this property in the analysis of partial synergy.

4. The combination axiom:

Qubits are combined by tensor multiplication. For example, two �0� qubits are

combined as �0� � �0� � denoted �00�. It is often useful to transform one

1
0
0� �
0

qubit in a combination and leave another unchanged; this can also be accomplished
by tensor multiplication. Let H1 denote a Hadamard transformation on the first

qubit. Then applied to a two qubit system, H1 � H � I �
1

�2

and H1�00� �

1 0 1 0
�00� � �10�0 1 0 1

.
1 0 �1 0 �2� �
0 1 0 �1

Another important two qubit transformation is the controlled not:

16 More precisely, the projection matrices satisfy the completeness condition, 
m Mm � I, where is the† †M Mm m

adjoint (conjugate transpose) of projection matrix Mm.
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1 0 0 0
0 1 0 0

Cnot �
0 0 0 1� �
0 0 1 0

Entangled two qubit states or Bell states are defined as follows:

�00� � �11�
�	 � � Cnot H �00� �00 1 �2

and more generally:

�	 � � Cnot H �ij� for i, j � 0,1.ij 1

The four two qubit Bell states form an orthonormal basis.
Combinations of density operators are analogous tensor operations.

� � � � (�
 � � �
 �)(	
 � � 	
 �) � �
 �	
 �1 2 1 2 1 2 12 12

APPENDIX B
Proof of Lemma 1

We prove the lemma in the following three steps.

Step 1: Productivity.

Productivity is represented by a two qubit interferometer (transformation function) and its
application to a two qubit state (synergy or no synergy). The transformation function is F
� H2�2H2 � H1�1H1. Given the no synergy �00� setting, productivity is:

i�1�00� � �10� e �00� � �10�
F �00� � H � H � H � � H � H � H2 2 2 1 1 2 2 2 1�2 �2

i� i�1 1e �00� � e �10� � �00� � �10�
� H � H �2 2 2 2

i� i�1 1[e � 1][�00� � �01�] � [e � 1][�10� � �11�]
� H �2 2 2�2

i� i� i� i�1 2 1 2[e � 1][e �00� � �01�] � [e � 1][e �10� � �11�]
� H2 2�2

i� i�1 2[e � 1][e (�00� � �01�) � (�00� � �01�)]
�

4
i� i�1 2[e � 1][e (�10� � �11�) � (�10� � �11�)]

�
4

i� i� i�1 2 2[e � 1][(e � 1)�00� � (e � 1)�01�]
�

4
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i� i� i�1 2 2[e � 1][(e � 1)�10� � (e � 1)�11�]
� . (A1)

4

Similarly, given the pure synergy �	00� setting, productivity is:

�00� � �10� � �01� � �11�
F �	 � � H � H � H �00 2 2 2 1 1 2

i� i�1 1e �00� � �10� � e �01� � �11�
� H � H � H2 2 2 1 2

i� i�1 1[e � 1][�00� � �11�] � [e � 1][�10� � �01�]
� H � H �2 2 2 2�2

i�1e [�00� � �10�] � �01� � �11�
� H �2 2 2

i� i�1 2e e [�00� � �10�] � �01� � �11�
� H2 2

i� i� i� i�1 2 1 2[e e � 1]�	 � � [e e � 1]�	 �00 01� . (A2)
2

Step 2: Define projection matrices.

The projection matrices are defined as the sum of the outer product of success vectors.
Individual measurement reports a ‘‘success’’ or ‘‘failure’’ signal for each agent. For agent
one, the success vectors are �10� and �11�; and the failure vectors are �00� and �01�. The
projection matrices for agent one are:

0 0 0 0
0 0 0 0

M � �10�	10� � �11�	11� � , and (A3)S1 0 0 1 0� �
0 0 0 1

1 0 0 0
0 1 0 0

M � �00�	00� � �01�	01� � . (A4)F1 0 0 0 0� �
0 0 0 0

Similarly, for agent two, the success vectors are �01� and �11�; and the failure vectors are
�00� and �10�. The projection matrices for agent two are:

0 0 0 0
0 1 0 0

M � �01�	01� � �11�	11� � , and (A5)S2 0 0 0 0� �
0 0 0 1

1 0 0 0
0 0 0 0

M � �00�	00� � �10�	10� � . (A6)F2 0 0 1 0� �
0 0 0 0

To check, � � I, and � � I.† † † †M M M M M M M MS1 S1 F1 F1 S2 S2 F2 F2
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Group measurement reports a ‘‘success’’ or ‘‘failure’’ signal for both agents. The suc-
cess vectors are �	01� and �	11�; and the failure vectors are �	00� and �	10�. The projection
matrices are:

0 0 0 0
0 1 0 0

M � �	 �		 � � �	 �		 � � , and (A7)S 01 01 11 11 0 0 1 0� �
0 0 0 0

1 0 0 0
0 0 0 0

M � �	 �		 � � �	 �		 � � . (A8)F 00 00 10 10 0 0 0 0� �
0 0 0 1

To check, MS � MF � I.† †M MS F

Step 3: Measure success probabilities.

Project F �00� or F �	00� onto success matrices (MS1 or MS). The probability of success is the
square length of the projection vectors. Under individual measurement with no synergy:

† 2prob(success�IN, � , � ) � 	00�F M F �00� � �M F �00��1 2 S1 S1

20
1 0

� i� i�1 2(e � 1)(e � 1)4� � ��i� i�1 2(e � 1)(e � 1)

1 � cos� �1 12� � sin . (A9)
2 2

Similarly, under individual measurement with synergy:

† 2prob(success�IS, � , � ) � 		 �F M F �	 � � �M F �	 ��1 2 00 S1 00 S1 00

20
1 10

� � . (A10)i� i�1 2e e � 1 22�2� � ��i� i�1 2e e � 1

Under group measurement with no synergy:

† 2prob(success�GN, � , � ) � 	00�F M F �00� � �M F �00��1 2 S S

20
i� i�1 21 (e � 1)(e � 1)

� i� i�1 2(e � 1)(e � 1)4� � ��
0

� � � �1 2 1 22 2 2 2� sin cos � cos sin . (A11)
2 2 2 2
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Under group measurement with synergy:

† 2prob(success�GS, � , � ) � 		 �F M F �	 � � �M F �	 ��1 2 00 S 00 S 00

20
i� i�1 21 e e � 1

� i� i�1 2e e � 12�2� � ��
0

� � �1 22� sin , (A12)
2

where �i � {�l, �h}. �

Proof of Proposition 1
By Lemma 1:

prob(success�GN, � , � ) � prob(success�GN, work , work )h h 1 2

� �h h2 2� 2sin cos
2 2

� �h h2 2� 2sin 1 � sin� �2 2

� 2p(1 � p). (A13)

The last equality is given by p � sin2 Also:
�h.
2

prob(success�GN, � , 0) � prob(success�GN, work , shirk )h 1 2

� prob(success�GN, shirk , work )1 2

�h2� sin � p. (A14)
2

And:

prob(success�GN, 0,0) � prob(success�GN, shirk , shirk ) � 0. (A15) �1 2

Proof of Corollary 1
We have:

2p(1 � p) 1 � 2p(1 � p) p 1 � p 1 � p p
� . �� � � �� �p 1 � p 0 1 p 1 � p
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Proof of Proposition 2
By Lemma 1:

prob(success�GS, � , � ) � prob(success�GS, work , work )h h 1 2

2
� �h h2� sin � � 2sin cos� �2 2

� �h h2 2� 4sin 1 � sin� �2 2

� 4p(1 � p). (A16)

And:

prob(success�GS, � , 0) � prob(success�GS, 0, �)h

� prob(success�GS, work , shirk )1 2

� prob(success�GS, shirk , work )1 2

�h2� sin � p, (A17)
2

prob(success�GS, 0, 0) � prob(success�GS, shirk , shirk ) � 0. (A18) �1 2

Proof of Proposition 3
It is directly implied by Lemma 1. �

Proof of Corollary 2

The garbling matrix is . �

1 1
2 2
1 1� �
2 2

Proof of Corollary 3

The garbling matrix, were it to exist, would be or its in-
3(1 � p) 1 � 3(1 � p)� �p 1 � p

verse, as � or the
4p(1 � p) 1 � 4p(1 � p) p 1 � p 3(1 � p) 1 � 3(1 � p)� � � �� �p 1 � p 0 1 p 1 � p

reverse. Since 0 � p � yields negative entries, neither the above nor its inverse is a1–2
garbling matrix. �

Proof of Proposition 4
prob(success�partial synergy, �) is defined to be:

(1 � �)prob(success�no synergy, �) � �prob(success�pure synergy, �), (A19)

This follows directly from representing ensembles of states via density operators (see
Nielsen and Chuang 2002, 98–102). �
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Proof of Corollary 4
Group measurement with partial synergy is a garbling of individual measurement with

partial synergy if there exists a garbling matrix G such that:

� �
(1 � �)p � 1 � (1 � �)p �

2 2 G
� �� �1 �
2 2

2p(1 � �)(1 � p) 1 � 2p(1 � �)(1 � p)
� . (A20)� �p 1 � p

Solving for G:

1 12 2[1 � 2� � � ](1 � p) � � (� � 2�)(1 � p) � p � �1 2 2G � .1 11 � � 2 2� �� � � p � � (1 � p) (1 � p)(1 � � ) � �
2 2

(A21)

� � 1 implies:

1 12 2[1 � 2� � � ](1 � p) � � � (1 � p)(1 � � ) � �, and (A22)
2 2

1 12 2� � � p � � (1 � p) � (� � 2�)(1 � p) � p � �. (A23)
2 2

� � 0 implies:

1 12 2(1 � p)(1 � � ) � � � (� � 2�)(1 � p) � p � �, (A24)
2 2

therefore, G is a garbling matrix if (�2 � 2�)(1 � p) � p � � � 0.1–2
Individual measurement with partial synergy is a garbling of group measurement with

partial synergy if there exists a garbling matrix G such that:

2p(1 � �)(1 � p) 1 � 2p(1 � �)(1 � p)
G� �p 1 � p

� �
� (1 � �)p � (1 � �)(1 � p)

2 2� . (A25)
� �� �1 �
2 2
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Solving,

1
G �

1 � 2p � 2�(1 � p)

� �2 2(1 � p)(1 � � ) � [1 � 2� � � ](1 � p) � 1 �
2 2
 . (A26)

� �2 2� �(1 � p)� � p � [1 � 2� � � ](1 � p) �
2 2

Since � � 1 and G is a garbling matrix if (1 � p)�2 � p � � 0. �
�

2
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