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A.6 Computing eigenvalues

As discussed above, eigenvalues are the characteristic values that ensure
(A" #I) has a nullspace for square matrix A. That is, (A" #I)x = 0
where x is an eigenvector. If an eigenvector can be identified such that
Ax = #x then the constant, #, is an associated eigenvalue. For instance,
if the rows of A have the same sum then x = $ (a vector of ones) and #
equals the sum of any row of A.
Further, since the sum of the eigenvalues equals the trace of the matrix

and the product of the eigenvalues equals the determinant of the matrix,
finding the eigenvalues for small matrices is relatively simple. For instance,
eigenvalues of a 2! 2 matrix can be found by solving

#1 + #2 = tr (A)

#1#2 = det (A)

Alternatively, we can solve the roots or zeroes of the characteristic polyno-
mial. That is, det (A" #I) = 0.

Example 1 Suppose A =

)
2 2
1 3

*
then tr (A) = 5 and det (A) = 4.

Therefore,

#1 + #2 = 5

#1#2 = 4

which leads to #1 = 4 and #2 = 1. Likewise, the characteristic polynomial
is det (A" #I) = (2" #) (3" #) " 2 = 0 leading to the same solution for
#.

However, for larger matrices this approach proves impractical. Hence,
we’ll explore some alternatives.

A.6.1 Schur’s lemma

Schur’s lemma says that while every square matrix may not be diagonaliz-
able, it can be triangularized by some unitary operator U .

T = U!1AU

= U#AU

or
A = UTU#

where A is the matrix of interest, T is a triangular matrix, and U is unitary
so that U#U = UU# = I (U# denotes the complex conjugate transpose of
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U). Further, since T and A are similar matrices they have the same eigen-
values and the eigenvalues reside on the main diagonal of T . To see they are
similar matrices recognize they have the same characteristic polynomial.

det(A" #I) = det (T " #I)
= det (U#AU " #I)
= det (U#AU " #U#IU)
= det (U#(A" #I)U)
= det (U#) det (A" #I) det (U)
= 1 det (A" #I) 1
= det (A" #I)

Before discussing construction of T , we introduce some eigenvalue construc-
tion algorithms.

A.6.2 Power algorithm

The power algorithm is an iterative process for finding the largest absolute
value eigenvalue.
1. Let k1 be a vector of ones where the number of elements in the vector

equals the number of rows or columns in A.
2. Let kt+1 = Akt$

kTt A
TAkt

where
1
kTt A

TAkt = norm.

3. iterate until |kt+1 " kt| < %$ for desired precision %.
4. norm is the largest eigenvalue of A and kt = kt+1 is it’s associated

eigenvector.
Clearly, if kt = kt+1 this satisfies the property of eigenvalues and eigen-

vectors, Ax = #x or Akt =
1
kTt A

TAktkt.

Example 2 Continue with A =

)
2 2
1 3

*
. k2 = Ak1

norm1
= 1

4
"
2

)
4
4

*
=

+
1"
2
1"
2

,
k3 =

Ak2
norm2

= 1
4

+
4"
2
4"
2

,
=

+
1"
2
1"
2

,
Hence,

+
1"
2
1"
2

,
is an eigen-

vector and norm2 = 4 is the associated (largest) eigenvalue.

Example 3 (complex eigenvalues) Suppose A =
)
"4 2
"2 "4

*
. The eigen-

values are # = "4±2i with norm =
1
("4 + 2i) ("4" 2i) = 4.472136 (not

a complex number). The power algorithm settles on the norm but Akn (=

norm'kn. Try the algorithm again except begin with k1 =
)
1
i

*
. The algo-

rithm converges to the same norm but kn =
)
"0.4406927" 0.5529828i
0.5529828" 0.4406927i

*
.
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Now,

Akn = #kn)
"4 2
"2 "4

* )
"0.4406927" 0.5529828i
0.5529828" 0.4406927i

*

= #

)
"0.4406927" 0.5529828i
0.5529828" 0.4406927i

*

solving for # yields "4 + 2i. Since complex roots always come in conjugate
pairs we also know the other eigenvalue, "4" 2i.

A.6.3 QR algorithm

The QR algorithm parallels Schur’s lemma and supplies a method to com-
pute all eigenvalues.
1. Compute the factors Q, an orthogonal matrix QQT = QTQ = I, and

R, a right or upper triangular matrix, such that A = QR.
2. Reverse the factors and denote this A1, A1 = RQ.
3. Factor A1, A1 = Q1R1 then A2 = R1Q1.
4. Repeat until Ak is triangular.

Ak!1 = Qk!1Rk!1

Ak = Rk!1Qk!1

The main diagonal elements of Ak are the eigenvalues of A.
The connection to Schur’s lemma is RQ = QTQRQ = QTAQ = A1 so

that A, A1 and Ak are similar matrices (they have the same eigenvalues).

Example 4 Continue with A =
)
2 2
1 3

*
. A1 = RQ =

)
3.4 "1.8
"0.8 1.6

*

and A11 = R10Q10 =
)
4 "1
0 1

*
.17 Hence, the eigenvalues of A (and also

A10) are the main diagonal elements, 4 and 1.

Example 5 (complex eigenvalues) Suppose A =

!

"
5 0 0
0 2 3
0 "3 2

#

$. The

QR algorithm leaves A unchanged. However, we can work in blocks to solve
for the eigenvalues. The first block is simply bordered by zeroes or the first
row, first column element (B1 = 5) and 5 is an eigenvalue. The second

block is rows 2 and 3 and columns 2 and 3 or B2 =
)
2 3
"3 2

*
. Now solve

17 Shifting refinements are typically employed to speed convergence (see Strang).
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the characteristic polynomial for this 2! 2 matrix.

"#2 + 4#" 13 = 0

# = 2± 3i

We can check that each of these three eigenvalues creates a nullspace for
A" #I.

A" 5I =

!

"
0 0 0
0 "3 3
0 "3 "3

#

$

has rank 2 and nullspace or eigenvector

!

"
1
0
0

#

$.

A" (2 + 3i) I =

!

"
3" 3i 0 0
0 "3i 3
0 "3 "3i

#

$

The second row is a scalar multiple ("i) of the third (and vice versa) and

a nullspace or eigenvector is 1"
2

!

"
0
i
"1

#

$. Finally,18

A" (2" 3i) I =

!

"
3" 3i 0 0
0 3i 3
0 "3 3i

#

$

Again, the second row is a scalar multiple (i) of the third (and vice versa)

and a nullspace or eigenvector is 1"
2

!

"
0
i
1

#

$. Hence, the eigenvalues are

# = 5, 2± 3i.

A.6.4 Schur decomposition

Schur decomposition works similarly.
1. Use one of the above algorithms to find an eigenvalue of n! n matrix

A, #1.
2. From this eigenvalue, construct a unit length eigenvector, x1.

18Gauss’ fundamental theorem of algebra insures complex roots always come in con-
jugate pairs so this may be overly pedantic.
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3. Utilize Gram-Schmidt to construct a unitary matrix U1 from n " 1
columns of A where x1 is the first column of U . This creates

AU1 = U1

!

%%%"

#1 ' · · · '
0 ' · · · '
...

...
. . .

...
0 ' · · · '

#

&&&$

or

U#1AU1 =

!

%%%"

#1 ' · · · '
0 ' · · · '
...

...
. . .

...
0 ' · · · '

#

&&&$

4. The next step works the same way except with the lower right (n" 1)!
(n" 1) matrix. then, U2 is constructed from this lower, right block with a
one in the upper, left position with zeroes in its row and column.

U2 =

!

%%%"

1 0 · · · 0
0 x22 · · · '
...

...
. . .

...
0 x2n · · · '

#

&&&$

U#2U
#
1AU1U2 =

!

%%%"

#1 ' · · · '
0 #2 · · · '
...

...
. . .

...
0 0 · · · '

#

&&&$

5. Continue until T is constructed.

T = U#n!1 · · ·U
#
1AU1 · · ·Un!1

U#AU =

!

%%%"

#1 ' · · · '
0 #2 · · · '
...

...
. . .

...
0 · · · 0 #n

#

&&&$

where U = U1 · · ·Un!1.

Example 6 (not diagonalizable) Suppose A =

!

"
5 0 1
0 2 "3
0 "3 2

#

$. This

matrix has repeated eigenvalues (5, 5,"1) and lacks a full set of linearly in-
depedent eigenvectors therefore it cannot be expressed in diagonalizable form
A = S#S!1 (as the latter term doesn’t exist). Nonetheless, the Schur de-
composition can still be employed to triangularize the matrix. A unit length
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eigenvector associated with # = 5 is x1 =

!

"
1
0
0

#

$. Applying Gram-Schmidt

to columns two and three of A yields U1 =

!

"
1 0 1
0 0.55470 "0.83205
0 "0.83205 "0.55470

#

$.

This leads to

T1 = U#1AU1

=

!

"
5 "0.83205 "0.55470
0 4.76923 "1.15385
0 "1.15385 "0.76923

#

$

Working with the lower, right 2! 2 block gives

U2 =

!

"
1 0 1
0 "0.98058 "0.19612
0 0.19612 "0.98058

#

$

Then,

T = U#2U
#
1AU1U2

U#AU =

!

"
5 1"

2
1"
2

0 5 0
0 0 "1

#

$

where U = U1U2 =

!

"
1 0 1
0 " 1"

2
1"
2

0 1"
2

1"
2

#

$.

Example 7 (complex eigenvalues) Suppose A =

!

"
5 0 0
0 2 3
0 "3 2

#

$. We

know from example 5 A has complex eigenvalues. Let’s explore its Schur
decomposition. Again, # = 5 is an eigenvalue with corresponding eigenvec-

tor x1 =

!

"
1
0
0

#

$. Applying Gram-Schmidt to columns two and three of A

yields U1 =

!

"
1 0 1
0 0.55470 0.83205
0 "0.83205 0.55470

#

$. This leads to

T1 = U#1AU1

=

!

"
5 0 0
0 2 3
0 "3 2

#

$
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Working with the lower, right 2 ! 2 block, # = 2 + 3i, and associated

eigenvector x2 =

!

"
0
1"
2
i

" 1"
2

#

$ gives

U2 =

!

"
1 0 0
0 1"

2
i 1"

2

0 " 1"
2

" 1"
2
i

#

$

where x12 =

!

"
1 0
0 1"

2
i

0 " 1"
2

#

$ is applied via Gram-Schmidt to create the third

(column) vector of U2 from the third column of A, A·3.19

A·3 " x12x#12A·3

=

!

"
0
3
2

#

$"

!

"
1 0
0 1"

2
i

0 " 1"
2

#

$
)
1 0 0
0 " 1"

2
i " 1"

2

*!

"
0
3
2

#

$ =

!

"
0
3
"3i

#

$

before normalization and after we have

!

"
0
1"
2

" 1"
2
i

#

$. Then,

T = U#2U
#
1AU1U2

U#AU =

!

"
5 0 0
0 2 + 3i 0
0 0 2" 3i

#

$

where U = U1U2 =

!

"
1 0 1
0 "0.5883484 + 0.3922323i 0.3922323" 0.5883484i
0 "0.3922323" 0.5883484i "0.5883484" 0.3922323i

#

$.

The eigenvalues lie along the main diagonal of T .

19Notice, conjugate transpose is employed in the construction of the projection matrix
to accommodate complex elements.


