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ABSTRACT

We present Bayesian models for finding the longitudinal causal effects of
a randomized two-arm training program when compliance with the
randomized assignment is less than perfect in the training arm (but
perfect in the non-training arm) for reasons that are potentially
correlated with the outcomes. We deal with the latter confounding
problem under the principal stratification framework of Sommer and
Zeger (1991) and Frangakis and Rubin (1999), and others. Building on
the Bayesian contributions of Imbens and Rubin (1997), Hirano et al.
(2000), Yau and Little (2001) and in particular Chib (2007) and Chib
and Jacobi (2007, 2008), we construct rich models of the potential
outcome sequences (with and without random effects), show how
informative priors can be reasonably formulated, and present tuned
computational approaches for summarizing the posterior distribution. We
also discuss the computation of the marginal likelihood for comparing
various versions of our models. We find the causal effects of the observed
intake from the predictive distribution of each potential outcome for
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compliers. These are calculated from the output of our estimation
procedures. We illustrate the techniques and ideas with data from the
1994 JOBS II trial that was set up to test the efficacy of a job training
program on subsequent mental health outcomes.

1. INTRODUCTION

We present Bayesian models for finding the longitudinal causal effects of a
randomized two-arm training program when compliance with the rando-
mized assignment is less than perfect in the training arm (but perfect in the
non-training arm) for reasons that are potentially correlated with the
outcomes. We deal with the latter confounding problem under the principal
stratification framework of Sommer and Zeger (1991) and Frangakis and
Rubin (1999), further discussed and applied in Imbens and Rubin (1997),
Hirano, Imbens, Rubin, and Zhou (2000), Jo (2002), Yau and Little (2001),
Ten Have, Joffe, and Cary (2003), Frangakis et al. (2004), Levy, O’Malley,
and Normand (2004), and Mealli, Imbens, Ferro, and Biggeri (2004). In this
framework, as explained in detail in Chib and Jacobi (2008), the confounder
is assumed to be a (partially observable) latent variable that represents
subject type, where subject type can take one of the four values – complier,
never-taker, always-taker, and defier – defined in terms of the potential
intake for each level of the assignment. Under certain assumptions, most
importantly, the absence of always-takers (because these cannot be
identified in our partial compliance setup where subjects in the control arm
have no possibility of getting the training), the absence of defiers (the
monotonicity assumption), and the exclusion restriction (that the assign-
ment variable is a proper instrumental variable that has no direct affect on
the outcomes), it becomes possible to find the effect of the actual intake on
the outcome for the subclass (or strata) of compliers.

In this paper we discuss how this framework can be modified to the case
of panel outcomes. We take a Bayesian approach because there is much that
the Bayesian perspective can offer in this context, following the develop-
ments reported in Chib (2007) and Chib and Jacobi (2007, 2008). In
particular, the Bayesian perspective offers the means to develop rich
(parameter-heavy) models of the potential outcomes conditioned on subject
type. In this modeling it is also possible to include random effects that vary
by subject type. One reason that it is possible to specify rich models of the
potential outcomes is because one can include prior information about the
parameters in the analysis. For instance, we discuss how information from
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another sample of subjects can be used to formulate beliefs about the time-
varying (intake and subject-type specific) regression coefficients and intake
and subject-type specific covariance matrices. Another reason that the
Bayesian perspective is helpful is because it provides a well-established way
of dealing with the mixture model that emerges for subjects in the control
arm (mixed over the two possible types of subjects in that case, compliers
and never-takers). Mixture models are particularly well handled from the
Bayesian perspective by simply including the latent subject type of each
subject as an additional parameter in the prior-posterior analysis. The label-
switching problem that arises in mixture models does not occur in this
problem because subject type (under our assumptions) is observed for
subjects in the treatment arm who forgo the treatment (these being the
never-takers) and for those in the treatment arm who take the treatment
(these being the compliers). In contrast, frequentist fitting of the same model
is more difficult because mixture models (even with latent type partially
observed for some subjects) are not as easy to deal with, especially when
there are many parameters (as in our problem) and random effects. Yet
another appeal of the Bayesian approach is that it provides the means to
calculate the causal effect from a predictive perspective. This perspective is
particularly helpful because it leads to various summaries of the causal
effects, for instance quantile casual effects, that are not as easily obtained by
either a non-predictive formulation or non-Bayesian methods. Finally, the
Bayesian approach provides a coherent procedure for comparing various
versions of our models through the computation of marginal likelihoods
and Bayes factors. We use this method to compare two versions of our panel
data causal models, one with random effects and one without. Comparisons
of this type are more difficult from the frequentist tradition.

The only previous discussion of the principal stratification framework in
the panel context is by Yau and Little (2001). This paper is also from the
Bayesian perspective and is motivated by the same data that we analyze in
this paper. But apart from those connections, the treatment in this paper is
different on the following dimensions:

1. Modeling: Our modeling of the potential outcome allows for subject and
time specific shocks, whereas the modeling in Yau and Little does not. In
their case, therefore, there is no issue about modeling the joint
distribution of the potential outcomes since the potential outcomes are
generated from the same shocks. In our case, this issue is relevant.
However, the recent work of Chib (2007) has shown that the joint
distribution of the potential outcomes does not have to be modeled in
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causal models. This leads to a considerable simplification in the modeling
especially in the context of panel data and type specific distributions
where the joint distribution of the potential outcomes can be very high
dimensional. This complication can be bypassed as we show here and
simplifies both the modeling and the subsequent estimation of the model.
This same point of Chib (2007) is utilized to advantage in the panel data
model of Chib and Jacobi (2007).

2. Prior: Whereas Yau and Little (2001) use diffuse, improper priors, we
adopt informative priors that are constructed in a reasoned way from
another sample of subjects that were exposed to the same experiment.

3. Random effects: We propose and estimate models with random effects.
Such models were not analyzed by Yau and Little (2001) but are natural
in the context of panel data for dealing with individual specific influences.

4. Inference: Although we also proceed by Bayesian means, and summarize
the posterior distribution by MCMC methods, the actual fitting
approaches we develop are quite different from those used in Yau and
Little (2001).

5. Model comparisons: Unlike Yau and Little (2001), we go beyond the
problem of estimation and consider the question of model comparisons
by marginal likelihoods and Bayes factors that we estimate by the
method of Chib (1995).

6. Causal effects: Finally, our calculation of the causal effects is different
and is based on a predictive perspective that provides a more complete
summary of these effects than the complier-average causal effects that are
reported by Yau and Little (2001).

The rest of the paper is organized as follows. In Section 2 we briefly
discuss the data set that we analyze in this paper. This helps to fix the
context for the developments we then provide in the remainder of the paper.
In Section 3 we present the Bayesian formulation of the principal
stratification approach for the panel context and describe two models that
we think are useful. For each model, we also discuss our prior distribution.
In Section 4 we discuss how the posterior distribution from each of our
models can be summarized by MCMC methods, and how the marginal
likelihood of the models can be computed. We then present results for
various versions of our models that are defined by different assumptions
about the error distributions. Section 5 deals with our predictive approach
for calculating the causal effects, while Section 6 has our conclusions.
Details of the fitting methods are given in the appendix.
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2. DATA

As motivation for the model and problem we are going to consider, we
discuss a data set that we will analyze below. The data comes from the 1994
JOBS II trial that was set up to test the efficacy of a job training program (see
Vinokur, Price, & Schul, 1995 for a detailed description) on subsequent
mental health outcomes. In the experiment, recently unemployed subjects
were randomized to participate in a job training program with specific
components to promote self-esteem and sense of control, job search skills and
inoculation against setbacks. Those randomized into the control arm of the
experiment received a booklet on job search skills that was also distributed
among the treatment arm subjects after the training program. One question to
be addressed by the trial was whether a training program can alleviate the
negative mental health effects that are commonly associated with job loss
(Clark & Oswald, 1994). The mental health of all subjects was evaluated
through questionnaires at the start of the experiment and then again 2
months, 6 months, and 2 years after the start of the experiment. Subjects rated
various stress symptoms from an 18-item index, each on a scale from 1 to 5.
This information was used to construct a continuous outcome variable for the
change in the mental health over time, measured in terms of the change in the
depression score at each follow-up period compared to the baseline score.

Table 1 gives the sample means and standard deviations for the changes in
depressions scores for the three periods. The table also provides a sample
summary in terms of other health related variables and personal characteristics

Table 1. Sample Means and Standard Deviations of Our Study Data
from the JOBS II Intervention Project.

Variable Explanation Mean Standard Deviation

y1 Change in depression score (t ¼ 1) �0.36 0.71

y2 Change in depression score (t ¼ 2) �0.47 0.76

y3 Change in depression score (t ¼ 3) �0.49 0.78

Depress0 Baseline depression score 2.44 0.30

Risk0 Baseline risk score 1.67 0.21

Age Age in years 37.16 10.27

Motivate Motivation to attend 5.30 0.80

Edu School grade completed 13.43 2.05

Assert Assertiveness 2.98 0.91

Marr Marriage indicator 0.60

Econ Economic hardship 3.54 0.87

Nonw Indicator for non-white 0.17
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that are used in the modeling of the outcome data. The information in the
table refers to a sample of 387 subjects that were classified as being at high risk
of depression at the start of the experiment and were observed in all follow-up
periods. We have excluded subjects with a low risk of depression since no
training effects were found for this group in previous studies.

3. BAYESIAN MODELING

We need the following notation. For each subject i (irn) in the sample, let

� zi ¼ l (l ¼ 0, 1) denote the random assignment indicator, with l ¼ 0
indicating assignment into the no-training or control arm and l ¼ 1
assignment into the training or treatment arm.
� xli ¼ j ( j ¼ 0, 1) denote the potential intake when zi ¼ l, with j ¼ 0
indicating the no-training intake and j ¼ 1 indicating receipt of training.
� xi ¼ j ( j ¼ 0, 1) denote the actual intake given by

xi ¼ x0ið1� ziÞ þ x1izi

In the partial compliance setup we are dealing with, xi ¼ 0 if zi ¼ 0,
whereas xi can be 0 or 1 when zi ¼ 1.
� yji ¼ (yji1, yji2, yji3) denote the vector of potential outcomes when the
treatment intake at baseline is j.
� yi ¼ (yi1, yi2, yi3) denote the actual response given by

yi ¼ y0ið1� xiÞ þ y1ixi

Now let si be an unobserved binary confounder that takes the values
kA{0, 1}, where k ¼ 0 represents a never-taker and k ¼ 1 a complier.
Formally, a subject is a never-taker if x0i ¼ x1i ¼ 0, and a complier if x0i ¼ 0
and x1i ¼ 1. Under the assumption that no other subject types exist, a
person with (zi ¼ 0, xi ¼ 0) is either a never-taker or a complier, a person
with (zi ¼ 1, xi ¼ 0) is a never-taker, and a person with (zi ¼ 1, xi ¼ 1) is a
complier. Table 2 gives the distribution of these types in our sample by
assignment and intake. Only 159 of the 260 subjects randomized into the
treatment actually participated in the training program. These numbers
reflect the general compliance problem that is common in such trials.

Following Chib and Jacobi (2008), the modeling of this problem requires
a specification of the joint distribution

pðyi;xi ¼ jjWi; zi ¼ l; si ¼ kÞ � pðyji;xi ¼ jjWi; zi ¼ l; si ¼ kÞ (1)

¼ pjðyijWi; si ¼ kÞPrðxi ¼ jjyij ;Wi; zi ¼ l; si ¼ kÞ (2)
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where pj(yi|Wi, si ¼ k) is the density of yji conditional on the latent subject
type and the second term is the conditional mass function of xi ¼ j. The
former density does not involve zi ¼ l on account of the so-called exclusion
restriction. Notice, too, that the second term is either 0 or 1, for any value of
yi or Wi. For example, if zi ¼ 0 and si ¼ 1, then xi ¼ 0, so that Pr(xi ¼ 0|yi,
Wi, zi ¼ 0, si ¼ 1) ¼ 1. In addition, if zi ¼ 1 and si ¼ 0, then xi ¼ 0, implying
that Pr(xi ¼ 0|yi, Wi, zi ¼ 1, si ¼ 0) ¼ 1. Thus, given zi ¼ l and si ¼ k, the
intake is fully determined. It is important to keep in mind that there is no
need to model the joint density

pðy0i; y1i; xi ¼ jjWi; zi ¼ l; si ¼ kÞ

which is actually unidentified because the potential outcomes (y0i, y1i) are not
observed simultaneously. That the modeling and subsequent estimation of
the model can proceed without this joint distribution is due to Chib (2007).

To model the joint density of the outcome and the intake, let Ilj ¼
{i: zi ¼ l and xi ¼ j} denote the sample indices of the subjects in each of the
three non-empty cells of Table 2. Also, let Pr(si ¼ 1|vi) ¼ qci denote the
probability that a subject is of type c, which we assume is a function of the
q� 1 vector of pre-treatment variables vi that is a subset of Wi. This
probability is independent of zi because of the random assignment of
subjects to the treatment arms. However, since we do not observe the subject
type in the control arm, the joint density of yi and xi ¼ j conditional on
zi ¼ l is given by appropriately averaging over possible types:

pðyi; xi ¼ jjWi; zi ¼ lÞ ¼

ð1� qciÞp0ðyijWi; si ¼ 0Þ þ qcip0ðyijWi; si ¼ 1Þ if i 2 I00

ð1� qciÞp0ðyijWi; si ¼ 0Þ if i 2 I10

qcip1ðyijWi; si ¼ 1Þ if i 2 I11

8
><

>:

(3)

This expression does not involve the mass function of the intake due to the
discussion surrounding Eq. (1). Note also that zi neither appears in the
conditioning set of the exogenous type probability due the randomization

Table 2. Distribution of the Sample Subjects and their Types by
Treatment Assignment and Intake.

No Training x ¼ 0 Training x ¼ 1

Control arm z ¼ 0 n00 ¼ 127 (compliers and never-takers) –

Treatment arm z ¼ 1 n10 ¼ 101 (never-takers) n11 ¼ 159 (compliers)
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argument nor in that of the outcome distribution due to the exclusion
restriction.

From expression (3) we see that the modeling of (yi, xi ¼ j) requires three
type and treatment state specific multivariate distributions for the health
outcomes, p0(yi|Wi, si ¼ 0) and pj(yi|Wi, si ¼ 1), for j ¼ 0, 1, and a model for
the type probabilities qci. In the next section we introduce two model
specifications that are based on different formulations for the intake and
type specific distributions of the health outcomes. In each case we assume
that the probability of being a complier, qci, is generated by a probit model.
Previous papers such as Hirano et al. (2000), Jo (2002), Frangakis et al.
(2004), and Chib and Jacobi (2008) have found that it is important to model
the compliance probability in terms of baseline predictors. Here we follow
Yau and Little (2001) and let

qci ¼ Fðw0i0aÞ

where wi0 ¼ (1, Age, Edu, Marr, Nonw, Assert, Motivate, Econ).
Our modeling is completed with a prior distribution on the parameters of

the preceding distributions. We use standard distributional forms to
compose the prior distribution. For example, we choose the normal
distribution for the regression parameters and the Wishart distribution for
the covariance matrices. A challenging component of the prior specification
is the choice of hyperparameters. We deal with this problem by constructing
a prior distribution that is reasonable for the sample of low-risk subjects
that is excluded from our analysis. Our strategy is to set the hyperpara-
meters, sample the prior, and then simulate the outcome distributions. We
do this many times and see whether the simulated distribution of the
outcomes is similar to the empirical distribution of the outcomes in the low-
risk sample. If the two distributions are quite different, we revise our
hyperparameters somewhat and repeat the process.

3.1. Model 1

One choice (which we call Model 1) is to let

p0ðyijWi; si ¼ 0Þ ¼ tnðyijWib0n;X0nÞ

pjðyijWi; si ¼ 1Þ ¼ tnðyijWibjc;XjcÞ; j ¼ 0; 1 ð4Þ

where b0n and bjc are intake and type specific regression parameters, O0 and
Ojc are the corresponding full (3� 3) dispersion matrices and tn( � |m, O) is the
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multivariate Student’s t density function with n degrees of freedom, mean m,
and variance matrix nO/(n�2), nW2. Equivalently, under the common
representation of the Student’s t distribution as a scale mixture of normal
distributions, the latter model can be expressed as

p0ðyijWi; si ¼ 0; liÞ ¼ N ðyijWib0n; l
�1
i X0nÞ

pjðyijWi; si ¼ 1; liÞ ¼ N ðyijWibjc; l
�1
i XjcÞ; j ¼ 0; 1 ð5Þ

where li is distributed as gamma

li � G
n
2
;
n
2

� �

In our application, we parameterize the matrix Wi in a way to allow for
time-varying effects for each of the covariates:

Wi ¼

1 depressi0 riski0 0 0 0 0 0 0

0 0 0 1 depressi0 riski0 0 0 0

0 0 0 0 0 0 1 depressi0 riski0

0

B
@

1

C
A

and denote the covariate vector as bjk ¼ (bjk,1, bjk,2, bjk,3): 9� 1 so that bjk,1

is the effect of the three predictors in the first time period, bjk,2 in the second
time period, and bjk,3 in the third time period.

We specify the prior distribution for the vector of model parameters h as

pðhÞ ¼ N pðaja0;A0Þ
Y1

j¼0

Y

k2Kj

N 3kðbjkjbjk;0;Bjk;0ÞWðX�1jk jrjk;0;Rjk;0Þ (6)

and fix the prior means for bjk and a:

b0c;0 ¼ ð0:8;�1:1; 0:8; 1:5;�1:5; 1:0; 1:4;�1:2; 0:6Þ

b0n;0 ¼ ð0:7;�1:1; 0:8; 1:5;�1:5; 1:0; 1:2;�1:2; 0:6Þ

b1c;0 ¼ ð0:8;�1:1; 0:8; 0:6;�1:5; 1:0; 1:6;�1:2; 0:6Þ

a0 ¼ ð�5; :03; :5; :1; 0; 0; 0; 0Þ

As mentioned above we want a prior distribution that generates outcomes
that are reasonable in relation to those seen in the low-risk sample. For this,
we set Bjk,0 ¼ 9I and A0 ¼ 9I and set the hyperparameters of the Wishart
prior for X�1jk to imply a full covariance matrix with 0.5 on the diagonal and
0.25 for all off-diagonal elements. This seems a reasonable choice given our
outcome variable that is measured in terms of the change in depression
scores, each restricted to values between 0 and 5. To show what these
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assumptions imply for the outcomes, we provide in Table 3 the lower and
upper quantiles of the simulated outcome distributions under this prior. We
conclude that our prior assumptions are reasonably flexible.

3.2. Model 2

Another option, which we call Model 2, is to derive p0(yi|Wi, si ¼ 0) and
pj( yi|Wi, si ¼ 1) from a random effects formulation. Let Vi be a 3� k (ko3)
matrix of covariates whose effect on the outcome is individual specific. In
this particular application, where all the covariates in the outcome model
are measured at baseline, Vi is a vector of constants. To allow for flexibility
in the covariance structure, as in Model 1, we assume that the random
effects are intake and type specific. We denote these by bi0c, bilc, and bin, one
for compliers under no intake, another for compliers under treatment
intake, and finally one for never-takers. Conditioned on the random effects,
we now let

p0ðyijWi; si ¼ 0; binÞ ¼ tnðyijWib0n þ Vibin; diagðs0nÞÞ

pjðyijWi; si ¼ 1; bijcÞ ¼ tnðyijWibjc þ Vibijc; diagðsjcÞÞ; j ¼ 0; 1 ð7Þ

where the dispersion matrices are in diagonal form for identification reasons.
Once again with the introduction of positive latent scale variables
li � Gðn=2; n=2Þ, we can express this model as

p0ðyijWi; si ¼ 0; bin; liÞ ¼ N 3ðyijWib0n þ Vibin; l
�1
i diagðs0nÞÞ

pjðyijWi; si ¼ 1; bijc; liÞ ¼ N 3ðyijWibjc þ Vibijc; l
�1
i diagðsjcÞÞ; j ¼ 0; 1 ð8Þ

If we now assume that the random effects are distributed as

bijcjDc � N kð0;DjcÞ; j ¼ 0; 1

binjDn � N kð0;DnÞ

Table 3. Model 1 – Means and Quantiles of the Empirical Distribution
of the Change in Depression Score Implied by the Assumed Prior.

ys0:05 ys0:25 ys0:50 ys0:75 ys0:95

t ¼ 1 �6.74 �3.89 �0.59 2.73 5.48

t ¼ 2 �6.94 �4.05 �0.90 2.44 5.12

t ¼ 3 �6.63 �3.75 �0.47 2.77 5.47
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where the matrices Djc and Dn are unknown, it follows that marginalized
over the random effects (but conditioned on li) the distributions of the
outcome by intake and type are given by

pjðyijWi; si ¼ 1; liÞ ¼ N 3ðyijWibjc;
X

jc
¼ fl�1i diagðsjcÞ þ ViDjcV

0
ig

p0ðyijWi; si ¼ 0; liÞ ¼ N 3ðyijWib0n;
X

0n
¼ fl�1i diagðs0nÞ þ ViDnV

0
igÞ

whereas marginalized over li these are

pjðyijWi; si ¼ 1Þ ¼

Z 1

0

N 3 yijWibjc;Rjc

� �
G li

n
2
;
n
2

�
�
�

� �
dli

p0ðyijWi; si ¼ 0Þ ¼

Z 1

0

N 3 yijWib0n;R0n

� �
G li

n
2
;
n
2

�
�
�

� �
dli ð9Þ

which differ from the ones in Eq. (4).
As in Model 1 we specify the prior distribution of the model parameters

p(h) as

N pðaja0;A0Þ
Y1

j¼0

Y

k2Kj

N 3kðbjkjbjk;0;B0Þ
Y3

t¼1

IG sjk;t
njk;0
2
;
djk;0
2

�
�
�
�

� � !

WðD�1jk jrjk;0;Rjk;0Þ

where K0 ¼ {c, n} and K1 ¼ {c}. The prior means and variances of a and bjk

are fixed at the same values as in Model 1, so that

b0c;0 ¼ ð0:0;�1:0; 0:6; 1:0;�1:5; 1:0; 1:8;�1:2; 0:6Þ

b0n;0 ¼ ð0:0;�1:0; 0:6; 0:8;�1:5; 1:0; 0:5;�1:2; 0:6Þ

b1c;0 ¼ ð0:0;�1:0; 0:6; 0:7;�1:5; 1:0; 0:5;�1:2; 0:6Þ

a0 ¼ ð�5; :03; :5; :1; 0; 0; 0; 0Þ

and Bjk,0 ¼ 9I and A0 ¼ 9I. The parameters of the inverse gamma prior on
the scalar variances are set to imply means and standard errors of 0.5 and 3,
respectively (njk,0 ¼ 4.04, djk,0 ¼ 1.03). Finally, for the Wishart prior on the
inverse of the variances of the random effects we let rjk,0 ¼ 5 and
Rjk,0 ¼ 0.66I, which implies a prior mean of 0.5I for Djk. As we had done
in the case of Model 1, we simulate the outcomes under this prior. The
resulting lower and upper quantiles of these outcome distributions are given
in Table 4 and again appear to be reasonable and sufficiently flexible.
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4. PRIOR-POSTERIOR ANALYSIS

4.1. Model 1

We now turn to the prior-posterior analysis of the first model. Our modeling
assumptions imply that p(y,x|h,{li}), the joint density of the observed health
outcomes y ¼ {y1,y2, . . . ,yn} and training intake data x ¼ {x1,x2, . . . ,xn}
given the vector of model parameters and the scale parameters, is of the
form

YN

i¼1

G li
n
2
;
n
2

�
�
�

� � Y

i2I00

½ð1� Fðw0i0aÞÞN T ðyijWib0n;X0nÞ

þ Fðw0i0aÞN T ðyijWib0c;X0cÞ� �
Y

i2I10

ð1� Fðw0i0aÞÞN T ðyijWib0n;X0nÞ

�
Y

i2I11

Fðw0i0aÞN T ðyijWib1c;X1cÞ ð10Þ

This joint density has three distinct components that correspond to the three
non-empty cells in Table 2. The first term gives the likelihood contributions
for the 127 subjects in the control arm, while the second and the third
product terms provide the likelihood contributions for the 101 never-takers
and the 159 compliers in the treatment arm, respectively. As the type is not
observed for the first group, the likelihood contributions take the form of
mixture distributions over compliers and never-takers. It may be noted that
the mixture component is only present in the control arm since subject type
is otherwise observed.

We handle the mixture terms in the control arm by including the latent
subject type of each subject as an additional parameter in the prior-posterior
analysis. The label-switching problem that arises in mixture models does not
occur in this problem because subject type is observed for subjects in the

Table 4. Model 2 – Means and Quantiles of the Empirical Distribution
of the Change in Depression Score Implied by the Assumed Prior.

ys0:05 ys0:50 ys0:25 ys0:75 ys0:95

t ¼ 1 �7.49 �4.26 �0.81 2.62 5.68

t ¼ 2 �7.17 �3.90 �0.47 2.98 6.04

t ¼ 3 �7.50 �4.26 �0.81 2.60 5.64
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treatment arm who forgo the treatment and for those in the treatment arm
who take the treatment. Let s00 denote the type indicators for control arm
subjects. Then, our target posterior density of interest is p(h, s00, {li}|y, x,
W, z), which is proportional to the prior density specified in Eq. (6) times the
function

YN

i¼1

G li
n
2
;
n
2

�
�
�

� � Y

i2I00

fI ½si ¼ 0�ð1� Fðw0i0aÞÞN T ðyijWib0n; l
�1
i X0nÞ

þ I ½si ¼ 1�Fðw0i0aÞN T ðyijWib0c; l
�1
i X0cÞg

�
Y

i2I10

I ½si ¼ 0�ð1� Fðw0i0aÞÞN T ðyijWib0n; l
�1
i X0nÞ

�
Y

i2I11

I ½si ¼ 1�Fðw0i0aÞN T ðyijWib1c; l
�1
i X1cÞ

We summarize this density by tuned MCMC methods (see Chib &
Greenberg, 1995 for details on the Metropolis–Hastings algorithm and
Chib, 2001 for an extended summary of MCMC methods). The sampling
scheme involves three blocks and is summarized next. Full details are
supplied in the appendix.

1. Sample (s00, a, {li}|y, x, b, O) by sampling
(a) si for iAI00 with Pr(si ¼ 1|yi, xi, b0c, b0n, a, O0c, O0n)
(b) a|y, x, b, O, s00 with a Metropolis–Hastings step
(c) li|yi, xi, b, O, s00 for iAN from a gamma density

2. Sample {bjk} by drawing bjk|y, x, s00, k, O, a from a normal density
3. Sample fX�1jk g by drawing X�1jk jy, x, s00, k, b, a, D from a Wishart density

In the first block, to produce a well mixing chain, the type indicators
s00, a and the scale parameters li are sampled jointly by the method of
composition. It is also possible to proceed by sampling the si’s under the
framework of Albert and Chib (1993). In the second block we update the
coefficients b0c, b0n, and b0n. Under our model setup, the bjk’s depend on
distinct subsets of the population, (yjk: {xi ¼ j, si ¼ k}, xjk: {xi ¼ j, si ¼ k}).
We can therefore sample bjk|yjk, xjk, s00, a, Ojk separately from their
respective normal posterior distribution. We proceed in a similar fashion to
update Ojk in the last block of the chain and sample X�1jk jyjk, xjk, s00, a, bjk
from Wishart distributions.
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4.2. Model 2

For the posterior analysis of Model 2, we augment the parameter space with
the random effects {bi0c}, {bi1c}, and {bin}. To improve the tractability of the
posterior distribution further we follow the same strategy as in Model 1 and
include the type indicators s00 ¼ {si: iAI00}, and the latent scale parameters
k ¼ {li}. The posterior density of interest is then p(h, s00, {bijk}, {li}|y, x,W, z),
which is proportional to the prior density times

Y

i2I00

I ½si ¼ 0�ð1�Fðw0i0aÞÞN T ðyijWib0nþVibin;l
�1
i diagðs0nÞÞN kðbinj0;DnÞ

�

þI ½si ¼ 1�Fðw0i0aÞN T ðyijWib0cþVibic;l
�1
i diagðs0cÞÞN kðbi0cj0;D0cÞ

	

�
Y

i2I10

I ½si ¼ 0�ð1�Fðw0i0aÞÞN T ðyijWib0nþVibin;l
�1
i diagðs0nÞÞN kðbinj0;DnÞ

�
Y

i2I11

I ½si ¼ 1�Fðw0i0aÞN T ðyijWib1cþVibic;l
�1
i diagðs1cÞÞN kðbi1cj0;D1cÞ

�
YN

i¼1

G li
n
2
;
n
2

�
�
�

� �

In the appendix we provide a detailed description of the MCMC
algorithm we have developed to generate draws from the posterior
distribution. One important point is that in Step 1a we sample the
compliance indicators marginalized over the random effects, which avoids
having to sample the complier and never-taker random effects for each
subject in the control arm. This reduces the computational burden
considerably and improves the mixing of the MCMC chain. A short version
of the algorithm is given here:

1. Sample (s00, a, {bjk}, {bijk}|y, x, {sjk}, {li}, {Djk}) by sampling
(a) si for iAI00 with Pr(si ¼ 1|yi, xi, b0c, b0n, a, s0c, s0n, {li}, {Djk})
(b) a|yjk, xjk, s00 by a MH step
(c) bjk|y, x, s00, k, sjk, k, {Djk} from a normal density
(d) bjki|yi, xi, bjk, s00, li, sjk, sjk, Djk for iAIjk from a normal density

2. Sample li|y, x, {bjk), {sjk}, a, s00, {bjk} for iAN from a gamma density
3. Sample sjk|y, x, s00, k, bjk, a, {bijk}, {Djk} from an inverse gamma

density
4. Sample D�1jk jy, x, s00, k, bjk, a, {bijk}, sjk from a Wishart distribution
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4.3. Model Comparison

In practice one would be interested in comparing Models 1 and 2 and
variations of these models to see which model is best supported by the data.
We do this comparison from the marginal likelihood/Bayes factor
perspective. Following Chib (1995), the log marginal likelihood of a given
model can be expressed in terms of the logs of the likelihood and the prior
and posterior distribution evaluated at h� as

ln mðy;xÞ ¼ ln f ðy; xjz;W; hn
Þ þ ln pðhn

Þ � ln pðhn
jy;x;W;MÞ

where h� is a vector of the model parameters given by (say) the posterior
mean. The prior ordinate at h� for models 1 and 2 can, of course, be
computed directly from the respective prior densities. The likelihood
ordinate for Model 1 can also be computed directly from the expression
in Eq. (4). However, the likelihood of Model 2, marginalized over {bi} and
{li}, is not available in closed form. Since the likelihood contribution
conditional on {li} is in closed form, we employ an importance sampling
approach to get pj(yi|Wi, si ¼ k).

We now turn to the estimation of the posterior ordinates. For Model 1,
with the parameter vector h ¼ (b0c, b0n, b1c, O0c, O0n, O1c, a), we employ the
decomposition

pðhn
jy;x;WÞ ¼ pðX�1njy; x;WÞpðanjy; x;W;Xn

Þpðbnjy;x;W;Xn; anÞ

where the first expression can be obtained via Rao–Blackwell methods as

p̂ðX�1�jy; x;WÞ ¼M�1
XM

g¼1

Y

j¼0;1

Y

k2Kj

p X�1�jk jyjk; xjk; s
ðgÞ
jk ;Wjk; a

ðgÞ; bðgÞjk ; k
ðgÞ
jk

� �
0

@

1

A

For the second, ordinate we use the result from Chib and Jeliazkov (2001)
that

pðanjy;x;Xn
Þ ¼

E1½aða
njy;x; b;Xn; zÞqðanjy;x;Xn; bÞ�

E2½aðan; ajy; x;b;Xn; zÞ�
(11)

where the expectation E1 in the numerator is with respect to p(b, a|y, x, O�)
and the expectation E2 in the denominator is with respect to p(b|y, x, a�, O�)
q(a|y, x, b, O�). Each expectation can be estimated from the output of
suitable reduced runs (Chib, 1995). To estimate the numerator, we fix O at
O� and continue the MCMC iterations with the quantities h�O and z ¼

(k, s00), and then average a(a, a�|y, x, b, O�, z)q(a�|y, x, O�, b) over the
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resulting draws. To estimate the denominator, we fix (O, a) at (O�, a�) and
continue the MCMC iterations; in each cycle of this run, we also draw a

from q(a|y, x, O�, b). We then average a(a�, a|y, x, b, O�, z) over the draws
on (b, a) from this run. Simultaneously, from the output of the latter run we
estimate p(b�|y, x, O�, a�) as

p̂ðb�jy;x;WÞ ¼M�1
XM

g¼1

Y

j¼0;1

Y

k2Kj

p bn

jkjyjk;xjk; s
ðgÞ
jk ;Wjk; a

n;Xn

jk; k
ðgÞ
jk

� �
0

@

1

A

To estimate the posterior ordinate for Model 2, where h ¼ ({bjk}, {sjk},a,
{Djk}), we proceed in a similar way using the decomposition

pðh�jy;x;WÞ ¼ pðD�1n0c ;D�1n1c ;D�1nn jy; x;WÞpða
njy; x;W;Dn

0c;D
n

1c;D
n

nÞ

� pðbnjy;x;W;Dn

0c;D
n

1c;D
n

n ; a
nÞ

� pðrnjy;x;W;Dn

0c;D
n

1c;D
n

n ; a
n;bnÞ

where p̂ðD�1�0c ;D�1�1c ;D�1�n jy; x;WÞ is estimated via Rao–Blackwell methods
from

M�1
XM

g¼1

Y

i2N0c

p D�1�0c jyjk;xjk; s
ðgÞ
jk ;Wjk; a

ðgÞ;bðgÞjk ; k
ðgÞ
jk ; b

ðgÞ
jk

� �
 

Y

i2N1

p D�1�1c jyjk;xjk; s
ðgÞ
jk ;Wjk; a

ðgÞ;bðgÞjk ; k
ðgÞ
jk ; b

ðgÞ
jk

� �

Y

i2Nn

p D�1�n jyjk;xjk; s
ðgÞ
jk ;Wjk; a

ðgÞ; bðgÞjk ; k
ðgÞ
jk ; b

ðgÞ
jk

� �
!

The reduced ordinates for a and b are updated in the same manner as in
Model 1 in two reduced runs. Here the first reduced run is done conditional
on ðDn

0c;D
n

1c;D
n

nÞ and the second reduced run, which also yields the posterior
estimate of b�, is done conditional on ðDn

0c;D
n

1c;D
n

n ;b
nÞ. A final third

reduced run with ðD0c;D1c;Dn; a;bÞ fixed at ðDn

0c;D
n

1c;D
n

n ; a
n;bnÞ is required

to estimate the posterior ordinate p̂ðrnjy;x;W;Dn

0c;D
n

1c;D
n

n ; a
n; bnÞ from

M�1
XM

g¼1

Y

j¼0;1

Y

k2Kj

p r�jkjyjk;xjk; s
ðgÞ
jk ;Wjk; a

�; b�jk; k
ðgÞ
jk

� �
0

@

1

A
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4.4. Results

In this section we present the key results from fitting Models 1 and 2 to the
data on high-risk respondents. For each model we consider three different
values of the degrees of freedom parameter (n ¼ 5, 10, 20) and the model
with the highest marginal likelihood in each model class is then studied more
intensively. All our results are based on 20,000 MCMC iterations following
a burn-in of 1,000 iterations. Table 5 contains the estimated log marginal
likelihoods for our six contending models. As can be seen, the models with
n ¼ 5 provide the best fit to the data. We now discuss the fitting results in
more detail.

Table 6 summarizes the prior-posterior analysis for the covariance
matrices in Model 1. One point to note is that our MCMC algorithm is well
behaved as indicated by the low inefficiency factors that are reported for all
the parameters. The inefficiency factors are computed as 1þ 2

PL
l¼1rkðl Þ,

where rk(l ) is the autocorrelation of the kth parameter at lag l and L is
chosen as the value at which the autocorrelation function tapers off. The
inefficiency factors approximate the ratio of the numerical variance of the
posterior mean from the MCMC chain relative to that from hypothetical iid
draws. As is evident from Tables 6–9, the inefficiency factors for the
covariance and slope parameters of Model 1 (and 2) are small and in some
case quite close to the ideal value of 1.

An interesting point is that even though the prior on the covariances
matrices Ojk is the same, the posterior mean of these matrices is quite
different. In this connection it may be observed that the largest variances and
covariances occur for compliers in the no-training state. To illustrate
the differences we show image plots of the covariance matrices (see Fig. 1).
To plot the posterior means we have used a gray scale that is set at black for 0
and white for 0.55. The results suggest that our extension of Yau and Little’s

Table 5. Estimates of the Log Marginal Likelihoods for Models 1 and 2
for Different Degrees of Freedom.

Model Degrees of Freedom

n ¼ 5 n ¼ 10 n ¼ 20

Log marginal likelihoods

M1 �1339.07 �1345.11 �1362.13

M2 �1332.96 �1341.32 �1351.26
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basic model to allow for type and treatment specific random shocks in the
distributions of the health outcomes is useful in the context of these data.

Table 7 summarizes the prior-posterior analysis for the elements in the
diagonal covariance matrices sjk and the random effects variances Djk from
the fitting of Model 2. As in Model 1, we observe that the estimates vary by
intake and type. For a better comparison of the results with Model 1 we
consider the covariance matrix of the Student’s t outcome distri-
bution marginalized over the random effects (see Eq. (9)). We obtain
estimates of the posterior means (and standard deviations) by computingP

jk;i ¼ fl
�1
i diagðsjkÞ þ ViDjkV

0
ig at each iteration of the MCMC algorithm

for Model 2. The plots of the posterior means in Fig. 2 use a gray scale that
is set to black at 0 and white at 0.9. As in the case of Model 1, the largest
variances/covariances are observed for compliers under no training. In
general, the random effects specification yields higher variances thanModel 1.

We now turn to the inferences about the remaining parameters in Models
1 and 2. We focus on the coefficients a, b0c, and b1c, which play a key role in
the determination of the causal training effects on the mental health
outcomes discussed in Section 5. Table 8 summarizes the prior-posterior
analysis for a, b0c, and b1c from the fitting of Model 1. For each parameter
we report the prior and posterior means and standard deviations. We also
provide the inefficiency factors as a measure of the autocorrelation of the

Table 6. Model 1 – Prior-Posterior Analysis for the Covariance
Matrices: Prior Means, Posterior Means and Standard Deviations

(in Parentheses).

O0c O0n O1c

Prior Post. Ineff. Prior Post. Ineff. Prior Post. Ineff.

0.50 0.35 2.21 0.50 0.35 1.86 0.50 0.28 1.32

(0.08) (0.05) (0.04)

0.25 0.26 3.34 0.25 0.16 2.12 0.25 0.15 1.30

(0.08) (0.04) (0.03)

0.50 0.40 3.02 0.50 0.28 2.88 0.50 0.30 1.83

(0.10) (0.04) (0.04)

0.25 0.23 2.27 0.25 0.12 1.95 0.25 0.14 1.24

(0.08) (0.03) (0.03)

0.25 0.17 2.34 0.25 0.13 2.23 0.25 0.17 1.27

(0.08) (0.03) (0.03)

0.50 0.46 2.52 0.50 0.27 2.05 0.50 0.36 1.86

(0.11) (0.04) (0.05)

SIDDHARTHA CHIB AND LIANA JACOBI200



0.
35

(.
08

)

0.
26

(.
08

)
0.

41
(.

10
)

0.
23

(.
08

)
0.

17
(.

08
)

0.
47

(.
11

)

(a
) 

Ω
0c

(b
) 

Ω
0n

(c
) 

Ω
1c

0.
35

(.
05

)

0.
16

(.
04

)
0.

28
(.

04
)

0.
12

(.
03

)
0.

13
(.

03
)

0.
27

(.
04

)

0.
28

(.
04

)

0.
15

(.
03

)
0.

30
(.

04
)

0.
14

(.
03

)
0.

17
(.

03
)

0.
36

(.
05

)

F
ig
.
1
.

Im
a
g
e
P
lo
ts
o
f
th
e
P
o
st
er
io
r
M
ea
n
s
o
f
th
e
C
o
v
a
ri
a
n
ce

M
a
tr
ic
es

in
M
o
d
el
1
.
T
h
e
G
ra
y
S
ca
le
is
S
et

a
t
B
la
ck

fo
r
0
a
n
d

W
h
it
e
fo
r
0
.5
.
T
h
e
P
o
st
er
io
r
S
ta
n
d
a
rd

D
ev
ia
ti
o
n
s
a
re

G
iv
en

in
P
a
re
n
th
es
es
.

Causal Effects of Randomized Experiments with Partial Compliance 201



draws. The second column of the table gives the posterior inference on a.
The reported posterior means imply a higher compliance probability for
subjects that are older, more motivated to attend the program and better
educated. Subjects that have a higher level of assertiveness, are married, and
non-white and those who experience economic hardship are less likely to be
a complier. Column 3 shows that all coefficients are measured with low
inefficiency factors.

Columns 4 through 9 in the same table provide results for bjc. These
parameters capture the interaction of the training intake with the
coefficients on the constant and the baseline depression and risk scores on
the change in the depression scores in the subsequent three time periods. A
comparison of the posterior means between b0c and b1c in columns 5 and 8
reveals that the actual training intake affects the health outcomes after
controlling for unobserved confounders through subject type. The
differences between the posterior means of compliers in both training
intake states are especially pronounced in the last two time periods, shown
in the last six rows of the table. The higher posterior standard deviations
and inefficiency factors of b0c, as compared to b1c, reflect our earlier point
that the parameters for compliers under no treatment are the most difficult
to estimate as they are identified from a mixture distribution.

We report a similar set of results for Model 2 in Table 9. The posterior
means and standard deviations for a reported in column 2 are almost
identical with those reported for Model 1 in Table 8. One would expect this
result as both models use the same probit specification for the compliance
probability. This is not the case for the coefficients in the outcome

Table 7. Model 2 – Prior-Posterior Analysis for the Variance
Parameters: Prior Means, Posterior Means and Standard Deviations

(in Parentheses).

Prior j ¼ 0, k ¼ c j ¼ 0, k ¼ n j ¼ 1, k ¼ c

Post. Ineff. Post. Ineff. Post. Ineff.

sjk 0.50 0.12 4.14 0.20 2.39 0.14 2.59

(0.04) (0.03) (0.02)

0.50 0.22 2.95 0.12 4.04 0.15 2.54

(0.07) (0.02) (0.03)

0.50 0.32 2.52 0.15 2.81 0.21 2.44

(0.09) (0.03) (0.04)

Djk 0.50 0.38 2.07 0.17 4.18 0.22 2.52

(0.09) (0.03) (0.04)
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distributions. The posterior means of b0c and b1c reported in columns 4 and
6 in the table differ from those reported for Model 1 in Table 8.

As in the case of Model 1 we observe that the posterior means of the
elements in b0c and b1c differ in all time periods. For example, in all periods
the coefficient on the intercept is lower for compliers under training. The
posterior means of the coefficient on the baseline depression score is
negative for all compliers, but more negative for compliers in the no-training
state. On the other hand, the posterior means of the coefficients on the
baseline risk score are positive and smaller for compliers in the training
state. All estimates vary by time. Also note that the coefficients in Model 2
come with lower inefficiency factors than those from Model 1. While we can
conclude from these results that training intake affects the mental health
outcomes, it is less easy to calculate the size and direction of the training
effects from these estimates. In the next section we discuss a predictive
approach that allows us to calculate the training effects.

Table 8. Model 1 – Prior-Posterior Analysis for the Coefficient Vectors
from the Compliance Probability and Outcome Models for Compliers:
Prior Means, Posterior Means, Standard Deviations (in Parentheses) and

Inefficiency Factors.

a b0c b1c

Prior Post. Ineff. Prior Post. Ineff. Prior Post. Ineff.

�0.5 �3.39 2.13 0.8 0.91 3.51 0.8 0.77 1.00

(5.0) (0.87) (5.0) (0.91) (5.0) (0.38)

0.03 0.04 2.15 �1.1 �1.00 4.72 �1.1 �1.00 1.00

(5.0) (0.01) (5.0) (0.62) (5.0) (0.26)

0.5 0.42 2.05 0.8 0.71 5.18 0.8 0.66 1.00

(5.0) (0.10) (5.0) (0.96) (5.0) (0.38)

0.1 0.13 2.03 1.5 0.77 3.89 0.6 0.58 1.00

(5.0) (0.04) (5.0) (0.93) (5.0) (0.41)

0.0 �0.26 1.99 �1.5 �1.42 3.49 �1.5 �1.14 1.00

(5.0) (0.10) (5.0) (0.58) (5.0) (0.27)

0.0 �0.22 2.89 1.0 1.39 2.65 1.0 0.92 1.00

(5.0) (0.18) (5.0) (0.82) (5.0) (0.39)

0.0 �0.03 2.25 1.4 1.87 1.77 1.6 1.00 1.00

(5.0) (0.11) (5.0) (0.89) (5.0) (0.44)

0.0 �0.25 1.96 �1.2 �1.25 4.47 �1.2 �0.95 1.00

(5.0) (0.21) (5.0) (0.67) (5.0) (0.30)

0.6 0.52 3.42 0.6 0.31 1.00

(5.0) (0.93) (5.0) (0.43)
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5. ANALYSIS OF TREATMENT EFFECTS

The treatment effects analysis investigates whether the actual intake of the
training program has a positive causal effect on the vector of mental health
outcomes for compliers. A natural way to answer this question within our
Bayesian modeling framework is to take a predictive perspective. Chib
(2007) has shown that the Bayesian predictive approach is useful in drawing
inferences about causal treatment effects. In this section we extend the
methods discussed in Chib and Jacobi (2008) to the panel case. We also
show how these predictive distributions can be used to compute various
treatment effects, such as quantile treatment effects, and a predictive
version of the complier-average causal effect that was computed in Yau and
Little (2001).

We begin our predictive analysis by considering a subject that is
randomly drawn from the subpopulation of compliers. We let yjc,nþ1,

Table 9. Model 2 – Prior-Posterior Analysis for the Coefficient Vectors
from the Compliance Probability and Outcome Models for Compliers:
Prior Means, Posterior Means, Standard Deviations (in Parentheses) and

Inefficiency Factors.

a b0c b1c

Prior Post. Ineff. Prior Post. Ineff. Prior Post. Ineff.

�0.5 �3.41 2.07 0.0 1.10 1.56 0.0 0.83 1.00

(5.0) (0.86) (5.0) (0.88) (5.0) (0.42)

0.03 0.04 2.13 �1.0 �1.36 1.73 �1.0 �1.11 1.00

(5.0) (0.01) (5.0) (0.56) (5.0) (0.30)

0.5 0.43 1.40 0.6 1.20 1.85 0.6 0.84 1.00

(5.0) (0.10) (5.0) (0.88) (5.0) (0.41)

0.1 0.13 1.97 1.0 1.26 1.20 0.7 0.67 1.00

(5.0) (0.04) (5.0) (0.95) (5.0) (0.43)

0.0 �0.23 1.97 �1.5 �2.12 1.66 �1.5 �1.28 1.00

(5.0) (0.10) (5.0) (0.61) (5.0) (0.30)

0.0 �0.22 2.12 0.8 2.25 1.57 1.0 1.12 1.00

(5.0) (0.18) (5.0) (0.92) (5.0) (0.42)

0.0 �0.04 2.20 1.4 2.29 1.00 0.5 1.10 1.00

(5.0) (0.10) (5.0) (0.99) (5.0) (0.46)

0.0 �0.21 1.94 �1.2 �1.44 1.20 �1.2 �1.08 1.00

(5.0) (0.21) (5.0) (0.63) (5.0) (0.32)

0.6 0.62 1.17 0.6 0.56 1.00

(5.0) (0.94) (5.0) (0.45)
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j ¼ 0, 1, denote the subject’s potential vector of depression scores under no
training and under training, and p(yjc,nþ1|y, x, W, z) denote the correspond-
ing marginal predictive distribution of interest. These marginal distributions
are defined as
Z

pðyjc;nþ1jWnþ1; hÞIðsnþ1 ¼ 1Þpðsnþ1jwi0; aÞpðhjy; x;W; zÞpðWnþ1jy; x;W; zÞdsnþ1dhdWnþ1

where

pðsnþ1jvnþ1; aÞ ¼ Fðw0i0aÞ
snþ1f1� Fðw0i0aÞg

1�snþ1

but are not in closed form. In this expression we take p(Wnþ1|y, x, W, z) as
the empirical distribution of the covariates in our sample. From expressions
(4) and (9) we know that p(yjc,nþ1|Wnþ1,h) ¼ tn(yi|Wnþ1bjc,Ojc) in Model 1
and p(yjc,nþ1|Wnþ1,h) ¼ tn(yi|Wnþ1bjcþVibijc, diag(sjc)) in Model 2. The fact
that these conditional distributions are easily sampled means that the
predictive distributions can be calculated by the method of composition.
At each iteration g ¼ 1; 2; . . . ;M of the MCMC chain, we randomly sample
W
ðgÞ
nþ1 and w

ðgÞ
nþ1;0 from the full set of covariates. Next, we sample

s
ðgÞ
nþ1 ¼ I ½w

0ðgÞ
nþ1;0a

ðgÞ þ u
ðgÞ
nþ140�, where u

ðgÞ
nþ1 � N ð0; 1Þ. We then check com-

pliance. If s
ðgÞ
nþ1 ¼ 1, we draw the potential outcomes y

ðgÞ
jc;nþ1 under each intake

state from the Student’s t outcome density, conditional on the current
sampled draw of the parameters. Otherwise we skip and move to the next
step in the chain. The resulting draws ½y

ð1Þ
jc;nþ1; . . . ; y

ðgÞ
jc;nþ1; . . . ; y

ðJÞ
jc;nþ1�; J 	M

are from the marginal predictive distributions of the potential outcomes.
We summarize these generated draws in various ways. One is in terms of

(kernel smoothed) predictive density plots. Another is in terms of the
differences in means and quantiles of the sampled draws. For example, the
predictive average treatment is calculated as E(ylc,nþ1|y, x, W, z)� E(y0c,nþ1|y,
x,W,z), where the means are computed directly as sample averages

Eðyjc;nþ1jy;x;W; zÞ ¼
1

J

XJ

g¼1

y
ðgÞ
jc;nþ1

5.1. Results

Before providing the predictive treatment effects, we pause to examine
which subjects in the control arm are a-posteriori classified as compliers and
whether the subjects so classified are similar to the compliers in the
treatment arm with respect to their observable characteristics. In Fig. 3 we
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present the posterior mean of the compliance probability from each best-
fitting model for each of the 127 control arm subjects. Probabilities between
0 and 0.5 (which can be taken to indicate a never-taker) are plotted below
the horizontal axis and those above 0.5 (which indicate a complier) are
plotted above the horizontal axis. We see that when the compliance
probability is less than 0.5, it tends to be generally less than 0.4, suggesting
strongly that each of those subjects is a never-taker. Similarly, when the
compliance probability is greater than 0.5, it tends to be generally greater
than 0.6, suggesting again that for those subjects inference about the type is
more or less decisive. There are, however, some subjects whose compliance
probabilities are close to 0.5 and therefore for these subjects a precise
determination of type is not possible. An interesting point is that these
compliance probabilities are almost the same across the two models. That
the covariates are balanced for compliers can be seen from Table 10, which
reports the sample means of the covariates by intake and type. The first 7
rows refer to the covariates in the model for the compliance probability.
Comparing the sample means for compliers in the control arm with those
in the treatment arm (columns 2 and 6 for Model 1, columns 3 and 7 for

Table 10. Sample Means of the Baseline Covariates from the Probit
Model for the Compliance Probabilities by Type.

Variable Sample Means by Intake and Type

j ¼ 0 j ¼ 1

Compliers Never-Takers Compliers

M1 M2 M1 M2 M1 M2

Age (demeaned) 20.70 21.20 13.57 13.50 19.26 19.26

Motivate 5.62 5.61 5.01 5.02 5.46 5.46

Edu 13.69 13.85 13.03 12.98 13.72 13.72

Assert 2.87 2.91 3.13 3.11 2.87 2.87

Marr 0.47 0.48 0.39 0.39 0.37 0.37

Econ 3.41 3.39 3.62 3.62 3.53 3.53

Nonw 0.15 0.12 0.21 0.22 0.14 0.14

Depress 2.49 2.46 2.44 2.46 2.41 2.41

Risk 1.70 1.67 1.67 1.68 1.67 1.67

Note: Compliers and never-takers in the control arm are classified based on the estimated

posterior mean of compliance.
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Model 2) we see that the two groups look almost identical. The only
exception is the marriage indicator covariate which in any case was
estimated with a very low precision and mean of 0 (see Tables 8 and 9).
A look at columns 4 and 5 shows that never-takers seem different from
compliers. Never-takers are younger, less motivated, and less educated.
Finally, compliers and never-takers have almost identical sample means of
the covariates (baseline depression and risk scores) that are in the outcome
model (but not present in the model of compliance).

The three graphs in Fig. 4 show the kernel plots of the marginal predictive
densities for compliers, for each of the periods t ¼ 1,2,3. The solid lines refer
to the potential outcomes under no training and the dashed lines under
training participation (y1c,t). All plots show an improvement in mental
health from participation in the training participation compared to no
training. The marginal densities under training participation have more mass
for negative values. In comparison, the densities in the no-training case have
more mass over positive values. The greatest difference between the two
predictive densities occur in the second and third time periods.

To get a better view of the magnitude of the mental health improvements
caused by the participation in the training program, we compare the means
and quantiles of the predictive densities in each time period. In Table 11 we
report the average and quantile treatment effects for the 0.05, 0.25, 0.50,
0.75, and 0.95 quantiles for Models 1 and 2. The entries in the first row of
results show that on average the program leads to a decrease in the
depression scores. In the case of Model 1 the training program decreases
average depression scores between 0.20 points in the first period, 0.32 points
in the second period, and 0.36 points in the third period. The analysis
for Model 1 suggests higher average treatment effects that range between
0.28 in the first period to �0.41 in the second and third periods. As indicated
by the kernel plots in Fig. 4 all quantile treatment effects are negative. For
Model 1 the effects vary between �0.02 and �0.16 points at the 5%
quantiles and between �0.37 and �0.60 points at the 95% quantiles.
For Model 2 the estimated 5% quantile treatment effects lie between �0.04
and �0.07 points. The 95% quantiles range between �0.52 and �0.80
points. Our results for the average complier effect differ from those found
by Yau and Little (2001) in that we do not find a decrease in the
treatment effect after period 2. Our estimated average complier effect at t=2
under Model 1 is similar in magnitude to that found in the study by
Skrondahl and Rabe-Hesketh (2004) that focused on health outcomes in
period 2.
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Fig. 4. Predictive Marginal Distributions of the Potential Outcomes for Compliers

in Models 1 and 2.
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6. CONCLUSION

We have discussed Bayesian models for finding the longitudinal causal
effects of a randomized two-arm training program when compliance with
the randomized assignment is less than perfect in the training arm for
reasons that are potentially correlated with the outcomes. We show how the
type approach can be used to calculate interesting causal effects. An
important point is that the Bayesian approach is particularly useful in this
context because it provides an automatic way of dealing with the mixture
outcome distribution in the control arm. The possibility of incorporating
real prior information is also another advantage of the Bayesian approach.
We discuss how different versions of our models can be compared by
marginal likelihoods and Bayes factors and how useful summaries of the
causal effects can be determined from a predictive perspective. All of our
computations proceed without the joint distribution of the potential
outcomes. In addition, the fitting algorithms are efficient and provide
detailed information about the compliance status of subjects in the control
arm. Because of these strengths of the techniques discussed here, we believe
that the methods of this paper will prove useful in practical work.
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APPENDIX. MCMC ALGORITHMS IN DETAIL

Model 1

1. Sample (s00, a, {ki}|y, x, b, O) by sampling
(a) si ¼ 1|y, x, b, O for iAI00 with probability Pr(si ¼ 1|yi, xi, b0c, b0n, a,

O0c, O0n) given by

qcitT ;nðyijWib0c;X0cÞ

qcitT ;nðyijWib0c;X0cÞ þ ð1� qciÞtT ;nðyijWib0n;X0nÞ

(b) a|y, x, b, O, s00 for iAN by a MH step by proposing aw from t20
(a |m,V ) and accepting the proposal value aw with probability

min 1;

pðayÞ
Q

i2N0c[N1c

Fðsijw0i0a
yÞ
Q

i2N0n

f1� Fðsijw0i0aÞgt20ðajm;VÞ

pðaÞ
Q

i2N0c[N1c

Fðsijw0i0aÞ
Q

i2N0n

1� Fðsijw0i0aÞt20ða
yjm;VÞ

8
><

>:

9
>=

>;

where m is the approximate mode of

ln
Y

i2N0c[N1c

Fðsijw0i0aÞ
Y

i2N0n

f1� Fðsijw0i0aÞg

" #

and V is the inverse Hessian of the latter expression evaluated at m.

(c) ki|y, x, b, O, s00 for iAN from

G ki
nþ T

2

�
�
�
� ;

nþ ðyi �WibjkÞX
�1
jk ðyi �Wibjk

2

 !

2. Sample b|y, x, s00, k, O, a by sampling bjk|y, x, s00, k, Ojk, a from

N p bjkjBjk B�1jk;0bjk;0 þ
X

i2Njk

W0ikiX
�1
jk yi

8
<

:

9
=

;
;

0

@

Bjk ¼ B�1jk;0 þ
X

i2Njk

W0ikiX
�1
jk Wi

8
<

:

9
=

;

�1
1

C
A
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3. Sample O|y, x, s00, k, b, a, D by sampling Ojk|y, x, s00, bjk, k, a from

W3 X�1jk jrjk;0 þ njk; R�1jk;0 þ
X

i2Njk

kiðyi �WibjkÞðyi �WibjkÞ
0

2

4

3

5

�10

@

1

A

Model 2

1. Sample s00, a, b, bin, bic|y, x, k, s, D0c, Dlc, Dn by sampling
(a) si for iAI00 with probability Pr(si ¼ 1|yi, xi, b0c, b0n, a, k, s0c, s0n)

given by

qciN T ðyijWib0c;
P

0c;iÞ

qciN T ðyijWib0c;
P

0c;iÞ þ ð1� qciÞN T ðyijWib0n;
P

0n;iÞ

where
P

jci fk
�1
i diagðsjcÞ þ ViDjcV

0
ig:

(b) a|y, x, s00 by a MH step by proposing aw from t20(a|m,V) and accepting
the proposal value with probability of move given in the algorithm for
Model 1.

(c) bjk|y, x, s00, k, sjk, k, D0c, Dlc, Dn from

N p bjkjBjk B�1jk;0bjk;0 þ
X

i2Njk

W0iS
�1
jk yi

8
<

:

9
=

;
;Bjk ¼ B�1jk;0 þ

X

i2Njk

W0iS
�1
jk Wi

8
<

:

9
=

;

�1
0

B
@

1

C
A

(d) bjci|yi, xi, bjc, s00, ki, s0c, s1c, Djc for iAIjc, j ¼ 0, 1, from

N qðbjcijBjcifkiV
0
iX
�1
jc ðyi �WibjcÞg;Bjci ¼ fD

�1
jc þ kiV

0
iðdiagðrjcÞÞ

�1Vig
�1Þ

(e) bin|yi, xi, b0n, s00, ki, s0n, Dn for iAI0n from

N qðbnijBnifkiV
0
iX
�1
0n ðyi �Wib0nÞg;Bni ¼ fD

�1
n þ kiV

0
iðdiagðr0nÞÞ

�1Vig
�1Þ

2. ki|y, x, b, s0c, s0n, s1c, s0c, a, s00, bin, bic for iAN from

G ki
nþ T

2

�
�
�
� ;

nþ ðyi �Wibjk � VibikÞðdiagðrjkÞÞ
�1
ðyi �Wibjk � VibikÞ

2

 !
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3. Sample s|y, x, s00, k, b, a, {bin}, {bic}, D0c, Dlc, Dn by sampling sjk,t|yjk,t,
x, s00, bjk, k, a, {bin}, {bic}, D0c, Dlc, Dn from

IG rjk;t

Zjk;t0 þ njk

2

�
�
�
� ;

djk;0 þ
P

i2Njk

kiðyi;t � w0itbjk � vitbiÞ
2

2

0

B
@

1

C
A

4. Sample D0c, D1c, Dn|y, x, s00, k, b, a, {bi0c}, {bi1c}, {bin}, s from

Wk D�1jc jrjc;0 þ njc; R�1jc;0 þ
X

i2Njc

bjib
0
ji

2

4

3

5

�10

@

1

A; j ¼ 0; 1

Wk D�1n jrn;0 þ nn; R�1n;0 þ
X

i2N0n

bib
0
i

" #�1
0

@

1

A
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