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Abstract

In this paper we show how it is possible to develop a Bayesian framework for analyzing structural

models for treatment response data without the joint distribution of the potential outcomes. That

this is possible has not been noticed in the literature. We also discuss the computation of the model

marginal likelihood and present recipes for finding relevant treatment effects, averaged over both

parameters and covariates. As compared to an approach in which the counterfactuals are part of the

prior-posterior analysis (as in the work to date), the approach we suggest is simpler in terms of the

required prior inputs, computational burden and extensibility to more complex settings.
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1. Introduction

The structural potential outcomes regression model is one of the most useful models for
the analysis of treatment–response data. The simplest model of this type, which was
introduced by Lee (1978) for the case of a continuous response and a binary treatment,
postulates a marginal model for the outcomes under each treatment state depending on
covariates and treatment specific parameters, a marginal model for the treatment, which
may or not depend on an additional set of covariates (namely instruments), and
unobserved confounders that affect both the response and the treatment. The basic model

ARTICLE IN PRESS

www.elsevier.com/locate/jeconom

0304-4076/$ - see front matter r 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.jeconom.2006.07.009

�Tel.: +1 314 935 6359.

E-mail address: chib@wustl.edu.



Author's personal copy

has been subjected to considerable scrutiny from both the frequentist and Bayesian
perspectives. Analysis of the model in the former context is generally based on the
likelihood function, and provided one takes the usual care in formulating the distributional
assumptions, the likelihood function is easily obtained, at least for the basic model (for
example, Amemiya, 1985, p. 400), and analysis is straightforward.
To understand the existing Bayesian approaches for the basic structural potential

outcomes model it is helpful to recall that in the context of treatment–response problems
with a binary treatment variable, say denoted by x 2 f0; 1g, there are two potential
outcomes, yx. For each observation i, only one of these potential outcomes is observed, the
other potential outcome is the counterfactual. This feature implies that the joint
distribution of the potential outcomes is not identified. Nonetheless, motivated by the
missingness of the counterfactual, Vijverberg (1993) and Poirier and Koop (1997)
formulated a Bayesian analysis for this model with the joint distribution of the potential
outcomes. Putting aside the details of the distributional assumptions, estimation under
their framework requires a prior on the non-identified covariance parameter of the joint
distribution. The model is then estimated by MCMC methods by simulating the posterior
distribution of the parameters and the counterfactuals. Subsequently, within the context of
the joint modeling of the potential outcomes, Chib and Hamilton (2000, 2002) provided a
Bayesian analysis of generalized versions of the basic model relevant for panel data, binary
outcomes and ordinal treatments, under weak distributional assumptions, while Poirier
and Tobias (2003) revisited the basic model with a prior on the non-identified covariance
parameter that was different than that in Chib and Hamilton (2000, 2002).
The goal of the current paper is to provide a Bayesian analysis of the basic structural

potential outcomes model without the involvement of a joint model of the potential
outcomes. That this is possible has not been noticed in the literature. Because direct use of
the likelihood function does not lead to a tractable posterior distribution, and because the
likelihood function is not easily available in generalized versions of the basic model, our
approach which we detail below, does not involve the likelihood function directly, or the
missing counterfactuals. Still, by taking advantage of the framework of Albert and Chib
(1993), we obtain a target posterior distribution that can be processed readily by MCMC
methods. Additionally, because the analysis is free of unnecessary counterfactuals and
unidentified parameters, the new approach is actually simpler in terms of the required prior
inputs, computational burden and extensibility to more complex settings. It may be
mentioned that the issues discussed in this paper are distinct from those in Dawid (2000,
2003), who has made a case against involving counterfactuals in causal problems but has
not discussed how his approach would be operationalized in the sort of model we consider
in this paper.
To complete our inferential approach, we also discuss the questions of model

comparisons across competing models and the computation of various treatment effects
from a predictive framework. One of the treatment effects we consider is the treatment
effect for compliers, similar to Imbens and Angrist (1994) in a different context. This
treatment effect depends on the notion of potential treatments (the treatment under each
level of the instrument). An interesting point is that this effect can be calculated from the
marginal distribution of the treatment without recourse to a joint distribution of the
potential treatments. Thus, in the framework we develop, estimation proceeds without the
joint distribution of the potential outcomes, and the computation of the treatment effect
without the joint distribution of potential treatments. It also worth pointing out that from
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our framework it is not possible to calculate the variability of the treatment effect
because this computation requires the joint distribution of the potential outcomes. This is
not a drawback, however, because one can reasonably argue that unidentified quantities
(such as the variability in the treatment effect) should not be objects of interest in the
first place.

The remainder of the paper is organized as follows. In Section 2 we present the model
and the prior distribution for the parameters. In Section 3 we describe the fitting of the
model by a tuned MCMC method and discuss the computation of the marginal likelihood
from the MCMC output. Section 4 deals with the computation of the treatment effect,
Section 5 has results from simulation studies and Section 6 concludes.

2. Model and prior distribution

For each subject i in the sample, let xi 2 f0; 1g denote the binary treatment indicator,
where xi is not randomly assigned, and let y0i and y1i denote the corresponding potential
outcomes. The observed response is

yi ¼ y0i þ ðy1i � y0iÞxi (2.1)

which is y0i if the treatment is not received or y1i, otherwise. Let wi 2 Rk denote a vector of
covariates and let ui denote an unobserved random variable. Assume that the effect of xi

on the response is confounded with that of ui, conditional on the covariates. Furthermore,
suppose that there is a covariate zi (an instrument) that is correlated with the treatment but
uncorrelated with ðy0i; y1i; uiÞ given the covariates.

To model the potential outcomes and the treatment assume that

yji ¼ w0ibj þ �ji; j ¼ 0; 1,

x�i ¼ w0icþ zidþ ui,

xi ¼ Ifx�i 40g, ð2:2Þ

where bj 2 Rk, c 2 Rk and d are unknown parameters, and Ið�Þ is the indicator function. In
this specification, the first equation (as j takes the values 0 and 1) generates the marginal
distribution of the potential outcomes and the second and third generate the marginal
distribution of the treatment.

The next vital step in the modeling is the specification of the needed joint distributions of
the outcomes and the intake. In formulating these distributions we have to contend with
the fact that the joint distribution of the potential outcomes is unidentified because the
outcomes y0;i and y1;i cannot be observed simultaneously. The practice to date has been to
assume some specific but unverifiable form for this joint distribution. This practice is
rather unsatisfactory since the analysis then involves the unidentified parameters of that
joint distribution and the missing counterfactuals (one for each subject). We resolve this
difficulty by noticing that because the responses for the ith subject are either ðy0i;xi ¼ 0Þ or
ðy1i;xi ¼ 1Þ, the modeling can be completed by simply specifying the bivariate joint
distributions ð�0i; uiÞ and ð�1i; uiÞ or, equivalently, the joint distributions p0ðy0i;xi ¼ 0jwi; ziÞ

and p1ðy1i;xi ¼ 1jwi; ziÞ, such that the marginal distribution of ui is the same in each case.
To illustrate the main themes, assume for specificity that ð�ji; uiÞ given li is

ð�ji; uiÞjli�N2ð0; l
�1
i XjÞ,
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where li is a positive random-variable that is iid gamma ðn=2; n=2Þ for some known value
n40, and

Xj ¼
Z2j oj

oj 1

 !
.

Thus, l�1i Xj is the conditional covariance matrix between the jth potential outcome and
the treatment (on the latent scale x�i ) and, marginally of li, the joint distribution of the
treatment and the outcome is student-t.
In anticipation of the estimation procedure we develop in the sequel, we note that the

parameterization of Xj by means of Zj and oj is not convenient because these parameters
must satisfy the positive-definiteness constraint. It is helpful instead to work with the
parameters s2j ¼ Z2j � o2

j , which is the determinant of Xj, and oj.
Let wj ¼ ðs

2
j ;ojÞ and b ¼ ðb0;b1; c; dÞ. Then the assumptions stated above imply that the

joint density of ðyji; x
�
i Þ conditioned on the parameters is

p�j ðyji;x
�
i jwi; zi; li;b;wjÞ ¼ N2ðyji; x

�
i jXjib; l

�1
i XjÞ, (2.3)

where

Xji ¼
w0i � ð1� jÞ w0i � j 00 0

00 00 w0i zi

 !
.

From here the contribution pjðyji;xi ¼ jjwi; zi;b;wjÞ of the ith observation to the likelihood
can be derived by integrating out x�i . Specifically, by utilizing the properties of the
multivariate-t distribution (see for example, Bilodeau and Brenner, 1999, p. 239) it follows
that

pjðyji; xi ¼ jjwi; zi;b;wjÞ ¼ pjðyjijwi;b;wjÞ

Z
Aj

p�j ðx
�
i jwi; zi; yji; b;wjÞdx�i

¼ tnðyjijw
0
ibj ; Z

2
j ÞT nþ1 ð2j � 1Þ

mji

hjifj

 !
, ð2:4Þ

where Aj is the set ð�1; 0Þ if j ¼ 0 or ð0;1Þ if j ¼ 1, tnð:jm; s2Þ is the density of the student-t
density with n degrees of freedom, location parameter m and dispersion parameter s2, Tnþ1

is the cdf of the tnð:j0; 1Þ density, mji ¼ w0icþ zidþ ojZ�2j ðyji � w0ibjÞ, h2
ji ¼ ½uðuþ 1Þ�½1þ

ðyji � w0ibjÞ
2Z�2j =n� and f2

j ¼ 1� o2
j =Z

2
j .

2.1. Prior distribution

Our approach to inference is Bayesian so we complete the model specification by
defining the prior distribution of the model parameters b and wj ðj ¼ 0; 1Þ. Following
conventional practice for dealing with regression parameters, we assume that b is a priori
Npðbjb0;B0Þ, where p is the dimension of b, and the quantities indexed by zero are known
hyperparameters. Next, we model wj jointly by assuming that s2j (which must be positive)
is inverse-gamma, and that oj conditioned on s2j is Gaussian:

pðwjÞ ¼ inverse gamma s2j
nj0

2
;
dj0

2

����
� �

Nðojjmj;0;s2j Mj;0Þ.
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With the further assumption that the different blocks of parameters are a priori
independent our prior density is of the form

pðb;w0;w1Þ ¼ Npðbjb0;B0Þ
Y1
j¼0

inverse gamma s2j
nj0

2

��� ;
dj0

2

� �
Nðojjmj;0; s2j Mj;0Þ. (2.5)

Finally, as stated above, the remaining unknowns in the model, the li’s, are modeled as
independent gamma ðn=2; n=2Þ.

3. Estimation and model comparison

3.1. Estimation

Suppose now that we have a random sample of responses ðy1;x1Þ; . . . ; ðyn;xnÞ on n

subjects. The goal is to learn about the parameters ðb;w0;w1Þ given the data, the model and
our prior inputs. Clearly, prior-posterior analysis with the likelihood function of the data is
not convenient. It is possible, however, to develop a tractable approach that does not involve
the likelihood function directly or the missing counterfactuals. To do this, we take advantage
of the approach of Albert and Chib (1993) and operate with the conditional densities

pðyi; x
�
i ;xi ¼ 0jwi; zi; li;b;w0Þ ¼ p�0ðyi;x

�
i jwi; zi; li;b;w0ÞIfx

�
i o0g,

pðyi; x
�
i ;xi ¼ 1jwi; zi; li;b;w1Þ ¼ p�1ðyi;x

�
i jwi; zi; li;b;w1ÞIfx

�
i 40g,

where p�j ðyi; x
�
i jwi; zi; li; b;wjÞ ¼ N2ðyi; x

�
i jXjib; l

�1
i XjÞ is the bivariate normal density from

(2.3). The posterior distribution of interest is then

pðb;w0;w1; k; x
�jy; x;W; zÞ / pðb;w0;w1ÞpðkÞ

Y
i2N0

N2ðyi;x
�
i jX0ib; l

�1
i X0ÞIfx

�
i o0g

�
Y
i2N1

N2ðyi;x
�
i jX1ib; l

�1
i X1ÞIfx

�
i 40g, ð3:1Þ

where k ¼ flig, x
� ¼ ðx�1; . . . ; x

�
nÞ, ðW; zÞ is the data on covariates and instruments, and

Nj ¼ fi: xi ¼ jg, j ¼ 0; 1. This joint distribution, which is free of the missing counterfactuals,
is of a type that can be sampled by MCMC methods (Tierney, 1994; Chib and Greenberg,
1995). In particular, we can design a 3-block sampling scheme that is both easy to implement
and simulated efficient.

In the first block of the scheme, wj ¼ ðs
2
j ;ojÞ are sampled jointly by the method of

composition. To see how, note that the distribution of yji conditional on xn
i and everything

else is

yjijx
n

i ; bj ; li;wj�Nðw
0
ibj þ ojui; l

�1
i s2j Þ,

where ui ¼ xn
i � w0ic� zid. Now let

yj ¼ fyjig; x
n

j ¼ fx
n

i g; uj ¼ fx
n

i � w0ic� zidg; i 2 Nj

denote vectors of dimension nj � 1 obtained by assembling observations that are in Nj .
From those same observations, let Wj ¼ fw

0
ig denote a stacked nj � k matrix, and Kj ¼

diagflig denote the matrix with li’s on the diagonal. We then have that

yjjx
n

j ;bj ;Kj ;wj�Nnj
ðWjbj þ ojuj ; s2j K

�1
j Þ.
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This distribution leads easily to the distribution of oj conditioned on s2j . Furthermore,
marginalized over oj under the prior oj�Nðmj;0;s2j Mj;0Þ we also get that

yjjx
n

j ;bj ;Kj ;s2j�Nnj
ðWjbj þmj;0uj ;s2j ðK

�1
j þ ujMj;0u

0
jÞÞ.

This can now be combined with the prior on s2j to produce the distribution of s2j
marginalized over oj. In the next step, b is sampled conditioned on everything else. Finally
in the third block, ðxn; kÞ are sampled jointly, again by the method of composition.
In detail, we have the following MCMC algorithm for sampling the posterior distribution
in (3.6):

1. Sample wj ¼ ðs
2
j ;ojÞ, j ¼ 0; 1 conditioned on ðy;xn;W; z; b;kÞ by

(a) drawing s2j marginalized over oj from

inverse gamma
nj;0 þ nj

2
;
dj;0 þ dj

2

� �
,

where dj ¼ ðej �mj;0ujÞ
0
ðK�1j þ ujMj;0u

0
jÞ
�1
ðej �mj;0ujÞ, and ej ¼ yj �Wjbj

(b) drawing oj conditioned on s2j from

Nðbj ;s2j BjÞ,

where bj ¼ BjðM
�1
j;0 mj;0 þ u0jKjejÞ and Bj ¼ ðM

�1
j;0 þ u0jKjujÞ

�1

2. Sample b conditioned on ðy;xn;w0;w1; kÞ from

Npðb̂;BÞ,

where b̂ ¼ B B�10 b0 þ A0 þ A1

� �
; Aj ¼

P
i2Nj

liX
0
jiX
�1
j yni ; y

n
i ¼ ðyi;x

n
i Þ
0 and

B ¼ B�10 þ
X
i2N0

liX
0
0iX
�1
0 y�i þ

X
i2N1

liX
0
1iX
�1
1 y�i

 !�1
.

3. Sample ðx�;kÞ conditioned on ðy;x;W; z;b;w0;w1Þ by
(a) drawing x�i from tnþ1ðm0i;f

2
0ÞI ð�1;0Þ if xi ¼ 0 and from tnþ1ðm1i;f

2
1ÞI ð0;1Þ if

xi ¼ 1 ðipnÞ;
(b) drawing li ðipnÞ conditioned on ðy�i ; xi;b;w0;w1Þ from

gamma
nþ 2

2
;
nþ ðy�i � XjibÞ

0X�1j ðy
�
i � XjibÞ

2

 !
.

(4) Go to 1.

It is easy to see from the description of the algorithm that the sampling steps are
straightforward. Thus, in contrast to what occurs in other problems, the non-inclusion of
the missing data (here the unobserved counterfactuals) has no bearing on the complexity of
the fitting procedure. Another point to note is that the approach above can be extended
relatively easily to more complicated situations, for example, time-varying treatments as in
a panel context. Such an extension would be less straightforward if the joint distribution of
the potential outcomes was part of the modeling and posterior sampling. To see this,

ARTICLE IN PRESS
S. Chib / Journal of Econometrics 140 (2007) 401–412406



Author's personal copy

consider the case of a model with J þ 1 ordinal treatments that is discussed in Chib and
Hamilton (2000). Then, there are J þ 1 potential outcomes and the counterfactuals
approach requires the joint distribution of ð�0i; . . . ; �Ji; uiÞ with dispersion matrix

X ¼

Z20 x01 � � � x0J o0

x01 Z21 � � � x1J o1

..

. ..
. . .

. ..
. ..

.

x0J x1J � � � Z2J oj

o0 o1 � � � oj 1

0
BBBBBBB@

1
CCCCCCCA
,

where all the ðJ þ 1ÞJ=2xjk’s in the upper ðJ þ 1Þ � ðJ þ 1Þ sub-block of this matrix are
unidentified. The analysis is now more complex because of the need to specify a prior on
these unidentified parameters, and the involvement of not only these unidentified
parameters in the sampling but also the J counterfactual variables for each subject.
In contrast, in the extension of the framework we have proposed, analysis would be
based on the J þ 1 joint distributions ð�ji; uiÞ, free of the xjk’s and the unobserved
counterfactuals.

3.2. Model comparison

In practice one would be interested in gauging the support for a given model of the type
we have just fit against one or more competing models (say defined through a different set
of covariates or without confounding on unobservables). In accordance with formal
Bayesian precepts the relative support for the contending models can be computed in terms
of the pairwise Bayes factors, obtained as ratios of marginal likelihoods. The marginal
likelihood of the model above is easily computed by the method of Chib (1995). The basic
idea is that on the log-scale the marginal likelihood mðy; xjW; zÞ can be written as

lnmðy;xjW; zÞ ¼ ln f ðy;xjW; z;b�;w�0;w
�
1Þ þ ln pðb�;w�0;w

�
1Þ

� ln pðb�;w�0;w
�
1jy;x;W; zÞ,

where ðb�;w�0;w
�
1Þ is (say) the posterior mean of the parameters from the MCMC run, the

first term is the log likelihood, the second is the prior, and the third is the posterior, each
evaluated at ðb�;w�0;w

�
1Þ. The first two terms are clearly available directly. For example, the

first term is given byX
i2N0

ln p0ðyji;xi ¼ 0jwi; zi;b
�;w�0Þ þ

X
i2N1

ln p1ðyji; xi ¼ 1jwi; zi; b
�;w�1Þ,

where pjðyji;xi ¼ jjwi; zi; b
�;w�j Þ appears in (2.4). The third can be estimated efficiently by

decomposing it as

pðb�;w�0;w
�
1jy;x;W; zÞ ¼ pðw�0;w

�
1jy; x;W; zÞpðb�jy;x;W; z;w�0;w

�
1Þ,

where pðw�0;w
�
1jy;x;W; zÞ is obtained by averaging the product of the inverse gamma and

normal densities in Step 1 of the MCMC algorithm over the MCMC draws; and
pðb�jy;x;W; z;w�0;w

�
1Þ is obtained by fixing ðw0;w1Þ at ðw�0;w

�
1Þ, running the MCMC

algorithm with the remaining unknowns and averaging the normal density in Step 2 of the
MCMC algorithm over the resulting draws.
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4. Inferring treatment effects

We now describe how the output of the MCMC fitting algorithm can be used to infer
two useful treatment effects of interest. A particular treatment effect parameter is the so-
called average treatment effect (ATE) which is defined as the difference in the marginal
means of the potential outcomes:

ATE ¼ Eðy1Þ � Eðy0Þ.

This parameter measures the effect of an intervention on x and involves consideration of
only the marginal distribution of the potential outcomes because an intervention severs
any link to the probability model that determines the treatment assignment (see for
example, Pearl, 2000).
In our set-up, instead of directly starting with the ATE, it is possible to consider an

alternative ATE type effect that is based on a predictive approach. Consider a new subject
nþ 1 drawn randomly from the population. Our aim is to calculate the marginal density of
each potential outcome yj;nþ1 ðj ¼ 0; 1Þ without reference to the treatment assignment
model. Each of these marginal densities is obtained as

pðyj;nþ1jy; x;W; zÞ ¼

Z
pðyj;nþ1jwnþ1; lnþ1; bj ; Z

2
j Þ

�pðwnþ1; lnþ1; k;bj ; Z
2
j jy;x;W; zÞdlnþ1 dkdbj dZ

2
j dwnþ1, ð4:1Þ

where pðyj;nþ1jwnþ1; lnþ1;bj ; Z
2
j Þ is Nðyj;nþ1jw

0
nþ1bj ; Z

2
j Þ, the marginal density of the potential

outcome of subject nþ 1 conditioned on the parameters; this density does not depend on
the sample y or x because subject nþ 1 is randomly drawn from the population. In this
calculation, by the usual rules of probability, the unknowns ðwnþ1; lnþ1;k;bj ; Z

2
j Þ are

marginalized with respect to the posterior distribution (the marginal posterior distribution
of wnþ1 may be approximated by the empirical distribution of the covariates given the
current sample W). Although the integration cannot be performed analytically it is a
simple matter to obtain a sample of draws from pðyj;nþ1jy;x;W; zÞ by the method of
composition. In particular, at the gth ðgpMÞ iteration of our MCMC algorithm, when the
current state of the chain is defined by the quantities ðkðgÞ; bðgÞj ; Z

2ðgÞ
j Þ, we get a draw y

ðgÞ
j;nþ1

from the predictive distribution by using the following steps:

� Sample w
ðgÞ
nþ1 by assigning probability 1=n to each row of W.

� Sample lðgÞnþ1 from gamma ðn=2; n=2Þ.

� Sample y
ðgÞ
j;nþ1 from Nðw

ðgÞ0

nþ1b
ðgÞ
j ; Z

2ðgÞ
j =lðgÞÞ.

This gives rise to the desired sample fy
ð1Þ
j;nþ1; . . . ; y

ðMÞ
j;nþ1g from the predictive distribution. In

the usual way, the expected value of yj;nþ1 under the distribution pðyj;nþ1jy;x;W; zÞ can be
calculated as

Eðyj;nþ1jy; x;W; zÞ ¼

Z
yj;nþ1pðyjjy;x;W; zÞdyj

’
1

M

XM
g¼1

y
ðgÞ
j;nþ1, ð4:2Þ
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with the difference Eðy1;nþ1jy; x;W; zÞ � Eðy0;nþ1jy; x;W; zÞ being (what we might call) the
predictive ATE. More interestingly, given the draws from each predictive distribution, we
can compare quantities other than the mean. For example, we can consider the difference
in the specified quantiles of each predictive distribution, estimated by the difference in the
corresponding sample quantiles of the sampled draws.

Another treatment effect is defined by thinking in terms of the marginal density of the
potential outcomes for the sub-group of subjects who are compliers. This question was
considered in a different set-up by Imbens and Angrist (1994). For simplicity, suppose that
the instrument is a binary f0; 1g variable, which is the typical case in practice. Now let x0

denote the treatment when z ¼ 0 and x1 denote the treatment when z ¼ 1; these are the
potential treatments, only one of which is observed depending on the value of z. When
d40 we say an individual is a complier if x0;nþ1 ¼ 0 and x1;nþ1 ¼ 1. Likewise if do0, a
complier is an individual for whom x0;nþ1 ¼ 1 and x1;nþ1 ¼ 0. An important point is that
one can make predictive inferences about compliance from the marginal distribution of the
treatment given in (2.2) without involvement of the unidentified joint distribution of the
potential treatments. The basic idea is to set znþ1 ¼ 0 and calculate x0;nþ1 ¼ Iðw0nþ1cþ

u0;nþ140Þ and then set znþ1 ¼ 1 and calculate x1;nþ1 ¼ Iðw0nþ1cþ u1;nþ140Þ, where
ul;nþ1�Nð0; 1=ll;nþ1Þ and ll;nþ1�gamma ðn=2; n=2Þ ðl ¼ 0; 1Þ refer to the errors given the
interventions z ¼ 0 and 1, respectively. As prudently noted by a referee, u0;nþ1 and u1;nþ1

cannot be identical because then the potential treatments would be perfectly correlated. It
should also be noted that u0;nþ1 and u1;nþ1 simply define the marginal distributions of the
potential treatments; since inference about the compliance status requires just the potential
treatments (not differences between the potential treatments) nothing more than these
marginal distributions are needed. Furthermore, in this computation we make no
assumption about the joint distribution of ðx0;nþ1 and x1;nþ1Þ and hence no specific
assumption about independence or dependence between the potential treatments.

The objective now is to calculate the distribution of yj;nþ1, truncated to the region of
compliance. We denote these predictive distributions as pjðyj;nþ1jy;x;W; z;ComplierÞ.
Variates from these predictive distributions can be obtained, given each MCMC draw, as
follows.

� Sample w
ðgÞ
nþ1 by assigning probability 1=n to each row of W.

� Sample lðgÞl;nþ1 from gamma ðn=2; n=2Þ, and sample u
ðgÞ
l;nþ1 from Nð0; 1=lðgÞl;nþ1Þ

ðl ¼ 0; 1Þ.

� Set znþ1 ¼ 0 and calculate x
ðgÞ
0;nþ1 ¼ Iðw

ðgÞ0

nþ1c
ðgÞ þ u

ðgÞ
0;nþ140Þ; set znþ1 ¼ 1 and

calculate x
ðgÞ
1;nþ1 ¼ Iðw

ðgÞ0

nþ1c
ðgÞ þ dðgÞ þ u

ðgÞ
1;nþ140Þ.

� Check compliance given x
ðgÞ
0;nþ1, x

ðgÞ
1;nþ1 and dðgÞ

	 if compliant, sample y
ðgÞ
1;nþ1 from Nðw

ðgÞ0

nþ1b
ðgÞ
1 ; s

ðgÞ2
1 =lðgÞnþ1Þ and y

ðgÞ
0;nþ1 from

Nðw
ðgÞ0

nþ1b
ðgÞ
0 ;s

ðgÞ2
0 =lðgÞnþ1Þ;

	 if not compliant skip and move to the next state of the chain.

On the completion of these steps we have fy
ð1Þ
j;nþ1; . . . ; y

ðKÞ
j;nþ1g from pjðyj;nþ1jy;

x;W; z;ComplierÞ. Note that generally K will be smaller than M because compliance is
likely to be less than perfect. We can use these generated samples to calculate the difference
in means and/or the difference in quantiles.
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5. Simulation study

5.1. Design

In this section we employ synthetic data to examine the properties of the fitting method
and to demonstrate its viability in a high-dimensional setting with significant confounding.
Realism is achieved in the simulation design by using the covariates from the work of Card
(1995). In that work, Card tackles the important question of finding the effect of an
additional year of schooling on a person’s wage, allowing for potential confounding caused
by an unobserved factor such as ability, which would likely have a positive effect on
educational attainment and wages. We turn the metric schooling variable into a binary
treatment variable by letting xi be an indicator of at least 12 years of schooling. The vector
wi is composed of the 15 covariates in that paper. The first covariate is the constant; the
second and the third are experience and the square of experience; the fourth is an indicator
of African-American; the fifth is an indicator of whether the subject resided in a standard
metropolitan statistical area (SMSA) in 1976; the sixth is an indicator of residence in the
south in 1976; the seventh is an indicator of residence in an SMSA in 1966, and the eighth
to fifteenth variables are indicators to code residence in 1966 for a region variable with nine
levels. The instrument is an indicator variable representing proximity to a 4-year college in
1966. The sample size n is 3010.
To generate our data sets we use these covariates and the following parameter values

which we round up to two decimal places:

b0 ¼ ð5:55; 0:09;�0:003;�0:26; 0:11;�0:26; 0:09; 0:07; 0:19; 0:11; 0:19; 0:21,

0:17;�0:05; 0:15Þ,

b1 ¼ ð5:83; 0:08;�0:003;�0:17; 0:15;�0:10; 0:004; 0:13; 0:10; 0:01; 0:09; 0:06,

0:09;�0:06; 0:10Þ,

ðc; dÞ ¼ ð2:42;�0:43; 0:01;�0:55; 0:33; 0:22;�0:05; 0:02; 0:13; 0:23;�0:02; 0:03,

� 0:08; 0:76; 0:46; 0:23Þ,

g2 ¼ ð2:00; 2:00Þ; x ¼ ð0:56; 0:56Þ

for a total of 50 parameters. We arrived at the values of b0, b1 and ðc; dÞ by fitting a Gaussian
model to the real data. We choose the specific values of g2 and x to generate a significant
amount of confounding (the correlation rj in each of the two treatment states is
approximately 0.40). Our ith simulated treatment and outcome data are generated as follows.

� Simulate li from gamma ðn=2; n=2Þ, where n ¼ 15, and simulate ui�Nð0; l
�1
i Þ.

� Form xi ¼ Iðw0icþ zidþ ui40Þ.
� If xi ¼ 1, simulate yi�Nðw

0
ib1 þ uio1; s21=liÞ, where s21 ¼ Z21 � o2

1; else simulate
yi�Nðw

0
ib0 þ uio0; s20=liÞ, where s20 ¼ Z20 � o2

0.

To get a feeling for the response variable, in our simulated data sets the average value of y

is between 6 and 6.5 and the proportion of treated observations is about 0.5. Finally, in our
fitting, the prior distribution in Section 2.2 is parameterized by the following
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hyperparameters: nj0 ¼ 4:22; dj0 ¼ 2:22, j ¼ 0; 1 (implying a prior mean and standard
deviation of 1 and 3, respectively); mj;0 ¼ 0; Mj;0 ¼ 10; j ¼ 0; 1; and b0 ¼ 0; B0 ¼ 20I46.

5.2. Results

Our results are averages of quantities calculated from five simulated data sets. A
summary of the results is presented in Fig. 1 which contains the posterior means of the
parameters and the corresponding true values. In the bottom panel of the figure we report
the inefficiency factors (also sometimes called the autocorrelation times) which are a
measure of the extent of mixing of the Markov chain output. They are obtained as one plus
two times the sum of the (tapered) autocorrelations of the simulated draws. Smaller values
of the inefficiency factor imply that the output is better mixing. It is clear from the figure
that the estimates are close to the true values and that except for a few parameters the
inefficiency factors are small.

For each of the simulated data sets we also calculate the ATE for compliers. The true
value of this effect is 1.09; the average of the effect over the five fitted data sets is 1.29. We
conducted additional experiments with different priors on the parameters and different
true values. The results are similar to those given above and are therefore not reported.

6. Concluding remarks

In this paper we have shown how it is possible to develop a Bayesian framework for
analyzing structural models without the joint distribution of the potential outcomes.
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Fig. 1. Posterior mean and true values of b0, b1, h, g and x from five simulated data sets under the student-t

model. MCMC sample size is 10,000, burn-in is 1000. The bottom panel gives the inefficiency factors.
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That this is possible has not been noticed in the literature. We present recipes for finding
relevant treatment effects, averaged over both parameters and covariates, and discuss the
performance of the method in simulation experiments.
Our development also makes clear that in comparison with methods that involve the

unobserved counterfactuals, the approach in this paper, which is free of unnecessary
counterfactuals and unidentified parameters, is easier to operationalize in more
complicated problems, for example, problems with time-varying treatments, as in a panel
context, and situations with an ordinal treatment. Applications of the framework discussed
in this paper to these problems are ongoing and will be reported elsewhere.
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