
Causal e§ects in controlled experiments
There are many advantages to controlled (laboratory) experiments. Chief

among them are knowledge/control of salient conditions and randomization
eases the challenge of identifying causal e§ects. Of course, important elements
remain outside the purview of the analyst leading to stochastic data and statis-
tical inference for interpreting the results.
Controlled experimental design often draws on analysis of variance (ANOVA)

(or analysis of covariance, ANCOVA) to interpret the results. In this note, we
explore experiments with one or two randomly-assigned treatments (factors) as
well as exogenous or endogenous covariates. Potential endogeneity arises when
one group of subjects’ choices create conditions (covariates) that possibly impact
other subjects’ choices (outcomes). If outcome depends on the covariate and
the unobservable components of the subjects’ utilities (underlying their choices)
are correlated then the data su§er an omitted, correlated variable bias. This
bias arises from (nonrandom) selective sampling.
We discuss two strategies for addressing selective sampling bias. First, we

consider exhaustive covariate sampling. Then, we visit instrumental variables
employing only data from strategies played by the subjects.

1 Exhaustive covariate sampling

A strategy involving elicitation of responses from the subject at all levels of
the covariate mitigates selective sampling. We refer to this as an exhaustive
covariate strategy. Nothing comes for free and this strategy is no exception.
The strategy may alter the behavior of the subjects introducing unintended
e§ects. For example, suppose we intend to explore a sequential game. This
strategy e§ectively transforms the game to one of simultaneous play.
Next, we report examples illustrating these issues and the exhaustive co-

variate strategy. The examples consider an experiment in which one subject
(say, employer) o§ers payment (extrinsic reward) to another subject and the
second subject (employee) makes a choice that a§ects the extrinsic reward for
each subject. Employer’s choice can be the covariate and employee’s choice the
outcome or vice versa. The covariate involves three discrete levels encoded as
indicator variables Xj , j = 1, 2, 3.
The experimental design is ANOVA. For the single treatment setting, the

ANOVA is
Y = 1X1 + 2X2 + 3X3 + "1

where j = E [Y | Xj ]. For the two treatment setting, the ANOVA is

Y = 1X1T1 + 2X2T1 + 3X3T1 + 1X1T2 + 2X2T2 + 3X3T2 + "2

where j = E [Y | XjT1], j = E [Y | XjT2] , and Tk refers to treatment k =
1, 2.
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Example 1 (One treatment, exogenous covariate) Suppose the data gen-
erating process (DGP) has the following joint distribution with outcome Y and
discrete covariate levels X1, X2, X3.

Y X1 X2 X3 Pr(Y = j)
1 5

12
2
9

1
12

13
18

2 1
12

1
9

1
18

1
4

3 0 0 1
36

1
36

E [Y | Xj ] 7
6

4
3

5
3 E [Y ] = 47

36

DGP

Further, suppose 36 trials produce the following outcomes played by the two
subjects.

Y X1 X2 X3 Pr(Y = j)
1 15 8 3 13

18

2 3 4 2 1
4

3 0 0 1 1
36

E [Y | Xj ] 7
6

4
3

5
3 E [Y ] = 47

36

D = 1, strategies played

If the exhaustive covariate strategy is employed we also have the following
(counterfactual) data.

Y X1 X2 X3 Pr(Y = j)
1 30 16 6 13

18

2 6 8 4 1
4

3 0 0 2 1
36

E [Y | Xj ] 7
6

4
3

5
3 E [Y ] = 47

36

D = 0, counterfactual strategies

There is no sample selection bias as the strategies played mirror the population
at large and standard ANOVA designs identify the reported conditional means,
E [Y | Xj ].1

X1 X2 X3
j = E [Y | Xj ] 7

6
4
3

5
3

1 In standard mean di§erence form the ANOVA is

E [Y | X] =
7

6
+
1

6
X2 +

1

2
X3
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The simplest sampling failure is incomplete common support. This is illus-
trated in the next example.

Example 2 (One treatment, full support lacking) Suppose the DGP is the
same as example 1 with conditional population means

X1 X2 X3
E [Y | Xj ] 7

6
4
3

5
3

and 30 trials produce the following outcomes played by the two subjects.

Y X1 X2 X3 Pr(Y = j)
1 15 8 0 23

30

2 3 4 0 7
30

3 0 0 0 0
30

E [Y | Xj ] 7
6

4
3 NA E [Y ] = 217

180

D = 1, strategies played

If the exhaustive covariate strategy is employed we also have the following
(counterfactual) data.

Y X1 X2 X3 Pr(Y = j)
1 30 16 9 55

78

2 6 8 6 20
78

3 0 0 3 3
78

E [Y | Xj ] 7
6

4
3

5
3 E [Y ] = 575

468

D = 0, counterfactual strategies

There is sample selection bias as the strategies played don’t involve support
at all levels of the covariate and accordingly no longer mirror the population
at large. ANOVA designs based on strategies played properly reflect population
means at factor levels X1 and X2 but o§er no evidence on X3.

X1 X2 X3
j = E [Y | Xj ] 7

6
4
3 NA

Hence, data garnered from strategies played are not misleading but rather in-
complete.

While lack of complete common support can limit inference, endogeneity
poses a di§erent, unobservable challenge. The next example describes a simple,
single treatment version of this challenge.
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Example 3 (One treatment, endogenous covariate) Suppose the DGP is
the same as example 1 with conditional population means

X1 X2 X3
E [Y | Xj ] 7

6
4
3

5
3

But, 36 trials produce the following outcomes played by the two subjects.

Y X1 X2 X3 Pr(Y = j)
1 16 9 4 29

36

2 2 3 1 1
6

3 0 0 1 1
36

E [Y | Xj ] 10
9

5
4

3
2

D = 1, strategies played

If the exhaustive covariate strategy is employed we also have the following
(counterfactual) data.

Y X1 X2 X3 Pr(Y = j)
1 14 15 14 43

72

2 4 9 11 1
3

3 0 0 5 5
72

E [Y | Xj ] 11
9

11
8

17
10

D = 0, counterfactual strategies

There is sample selection bias as the strategies played no longer mirror the
population at large. However, a standard ANOVA design that ignores the dis-
tinction between strategies played and counterfactual strategies identifies the con-
ditional population means via the reported conditional means

X1 X2 X3
j = E [Y | Xj ] 7

6
4
3

5
3

while ANOVA for the strategies played yields

X1 X2 X3
bj 10

9
5
4

3
2

The latter is contaminated by sample selection bias.

Example 4 (one treatment, more extreme selection bias) Suppose the DGP
is the same as example 1 with conditional population means

X1 X2 X3
E [Y | Xj ] 7

6
4
3

5
3
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But, 36 trials produce the following outcomes played by the two subjects.

Y X1 X2 X3 Pr(Y = j)
1 1 5 0 1

6

2 0 12 12 2
3

3 0 0 6 1
6

E [Y | Xj ] 1 29
17

7
3

D = 1, strategies played

If the exhaustive covariate strategy is employed we also have the following
(counterfactual) data.

Y X1 X2 X3 Pr(Y = j)
1 29 19 18 11

12

2 6 0 0 1
12

3 0 0 0 0

E [Y | Xj ] 41
35 1 1

D = 0, counterfactual strategies

The sample selection bias is mitigated if a standard ANOVA design that
ignores the distinction between strategies played and counterfactual strategies
is employed to report the conditional means

X1 X2 X3
j = E [Y | Xj ] 7

6
4
3

5
3

while ANOVA for the strategies played yields

X1 X2 X3
bj 1 29

17
7
3

The latter is contaminated by more extreme sample selection bias than in the
previous example.

Next, we discuss cases with two treatments.

Example 5 (two treatments, exogenous covariate) Suppose the DGP for
treatment one is the same as example 1 with conditional population means

X1, T1 X2, T1 X3, T1
E [Y | Xj , T1] 7

6
4
3

5
3
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and the DGP for treatment two is

Y | T2 X1, T2 X2, T2 X3, T2 Pr(Y = j | T2)
1 1

3
1
9

1
36

17
36

2 1
12

1
9

1
18

1
4

3 1
12

1
9

1
12

5
18

E [Y | Xj , T2] 3
2 2 7

3 E [Y | T2] = 65
36

DGP for T2

Further, suppose 72 trials played by the two subjects produce the following
outcomes.

Y X1, T1 X2, T1 X3, T1 X1, T2 X2, T2 X3, T2
1 15 8 3 12 4 1

2 3 4 2 3 4 2

3 0 0 1 3 4 3

E [Y | Xj , Tk] 7
6

4
3

5
3

3
2 2 7

3

D = 1, strategies played

If the exhaustive covariate strategy is employed we also have the following
(counterfactual) data.

Y X1, T1 X2, T1 X3, T1 X1, T2 X2, T2 X3, T2
1 30 16 6 12 8 5

2 6 8 4 3 8 10

3 0 0 2 3 8 15

E [Y | Xj , Tk] 7
6

4
3

5
3

3
2 2 7

3

D = 0, counterfactual strategies

There is no sample selection bias as the strategies played mirror the population
at large and standard ANOVA designs identify the reported conditional means,
E [Y | Xj , Tk].2

X1, Tk X2, Tk X3, Tk
j = E [Y | Xj , T1] 7

6
4
3

5
3

j = E [Y | Xj , T2]
3
2 2 7

3

2 In standard mean di§erence, interaction form the ANOVA is

E [Y | X,T ] =
7

6
+
1

6
X2 +

1

2
X3

+
1

3
T2 +

2

3
X2  T2 +

2

3
X3  T2
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Mean di§erences in treatment conditional on the level of the covariate are
straightforward.

j  j = X1 X2 X3

E [Y | Xj,T2] E [Y | Xj,T1] 3
2 

7
6 =

1
3 2 4

3 =
2
3

7
3 

5
3 =

2
3

Hence, the treatment e§ect depends on the level of the covariate in this setting,
for instance, E [Y | X1,T2]  E [Y | X1,T1] 6= E [Y | X2,T2]  E [Y | X2,T1] or
E [Y | X1,T2] E [Y | X1,T1] 6= E [Y | X3,T2] E [Y | X3,T1]

Example 6 (Two treatments, full support lacking) Suppose the DGP is
the same as example 5 with conditional population means

X1, T1 X2, T1 X3, T1
E [Y | Xj , T1] 7

6
4
3

5
3

and the DGP for treatment two is

Y | T2 X1, T2 X2, T2 X3, T2 Pr(Y = j | T2)
1 1

3
1
9

1
36

17
36

2 1
12

1
9

1
18

1
4

3 1
12

1
9

1
12

5
18

E [Y | Xj , T2] 3
2 2 7

3 E [Y | T2] = 65
36

DGP for T2

Further, suppose 66 trials played by the two subjects produce the following
outcomes.

Y X1, T1 X2, T1 X3, T1 X1, T2 X2, T2 X3, T2
1 15 8 0 12 4 1

2 3 4 0 3 4 2

3 0 0 0 3 4 3

E [Y | Xj , Tk] 7
6

4
3 NA 3

2 2 7
3

D = 1, strategies played

If the exhaustive covariate strategy is employed we also have the following
(counterfactual) data.

Y X1, T1 X2, T1 X3, T1 X1, T2 X2, T2 X3, T2
1 30 16 9 12 8 5

2 6 8 6 3 8 10

3 0 0 3 3 8 15

E [Y | Xj , Tk] 7
6

4
3

5
3

3
2 2 7

3

D = 0, counterfactual strategies
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There is sample selection bias as the strategies played fail to reflect full support
and accordingly don’t mirror the population at X3. Standard ANOVA designs
identify the reported conditional means, E [Y | Xj , Tk] for j = 1, 2 but not for
j = 3.3

X1, Tk X2, Tk X3, Tk
j = E [Y | Xj , T1] 7

6
4
3 NA

j = E [Y | Xj , T2]
3
2 2 7

3

Mean di§erences in treatment conditional on the level of the covariate are
straightforward.

j  j = X1 X2 X3

E [Y | Xj,T2] E [Y | Xj,T1] 3
2 

7
6 =

1
3 2 4

3 =
2
3

7
3 NA = NA

Again, the treatment e§ect depends on the level of the covariate in this setting,
E [Y | X1,T2] E [Y | X1,T1] 6= E [Y | X2,T2] E [Y | X2,T1].

Again, lack of complete common support limits inference, but the unobserv-
ability of endogeneity poses a di§erent challenge. The next example describes
a dual treatment version of this challenge.

Example 7 (Two treatments, endogenous covariate) Suppose the DGP
remains the same as in example 5.
Now, suppose 72 trials played by the two subjects produce the following out-

comes.

Y X1, T1 X2, T1 X3, T1 X1, T2 X2, T2 X3, T2
1 16 9 4 15 4 3

2 2 3 1 2 4 2

3 0 0 1 1 4 1

E [Y | Xj , Tk] 10
9

5
4

3
2

11
9 2 5

3

D = 1, strategies played

If the exhaustive covariate strategy is employed we also have the following

3 In standard mean di§erence, interaction form the ANOVA is

E [Y | X,T ] =
7

6
+
1

6
X2 +

7

6
X3

+
1

3
T2 +

2

3
X2  T2

where the treatment e§ect at X3 is unknown as the strategies played fail to supply evidence.
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(counterfactual) data.

Y X1, T1 X2, T1 X3, T1 X1, T2 X2, T2 X3, T2
1 14 15 14 9 8 3

2 4 9 11 4 8 10

3 0 0 5 5 8 17

E [Y | Xj , Tk] 11
9

11
8

17
10

16
9 2 37

15

D = 0, counterfactual strategies

A standard ANOVA design that ignores the distinction between strategies
played and counterfactual strategies identifies the conditional population means
via the reported conditional means

X1, Tk X2, Tk X3, Tk
j = E [Y | Xj , T1] 7

6
4
3

5
3

j = E [Y | Xj , T2]
3
2 2 7

3

while ANOVA for the strategies played yields

X1, Tk X2, Tk X3, Tk
bj | Xj , T1 10

9
5
4

3
2

bj | Xj , T2 11
9 2 5

3

Again, the latter is contaminated by sample selection bias.
The treatment e§ect conditional on the covariate levels are the same as in

example ??.

j  j = X1 X2 X3

E [Y | Xj,T2] E [Y | Xj,T1] 3
2 

7
6 =

1
3 2 4

3 =
2
3

7
3 

5
3 =

2
3

However, the estimated treatment e§ect conditional on the covariate levels based
on the strategies played are biased.

X1 X2 X3

bj  bj 11
9 

10
9 =

1
9 2 5

4 =
3
4

5
3 

3
2 =

1
6

2 Instrumental variables strategies

The foregoing exhaustive covariate sampling strategy su§ers the drawback that
eliciting responses at all levels of the other subject’s potential strategy may
change the game for the subject (e§ectively transforming sequential play into
simultaneous play). Next, we consider experimental strategies that only utilize
the strategies played by the subjects (in the above examples, the bottom third of
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the data). This eliminates the concern expressed immediately above regarding
the exhaustive covariate sampling strategy, however it raises serious challenges.
It is typically di¢cult to identify instrumental variables and this setting

presents similar challenges. The ANOVA design described above seeks to iden-
tify means and mean di§erences across factor levels. However, mean estimates
are potentially confounded by nonrandom sampling. E§ective instruments can
mitigate this problem. To illustrate, we return to example 3 and discuss appro-
priate instruments as well as implications of poor instruments. Poor instruments
can result in greater selection bias than exogenous treatment (ignoring the po-
tential covariate endogeneity).

2.1 ANOVA design with instruments

Example 8 (One treatment, IV strategy) Return to the DGP for treat-
ment two in example 5 except for clarity we write out the representative data
including the unobservable or error component, ", as well as the number of oc-
currences of each case, m, and appropriate instruments, z1 and z3 (in this case
z2 = X2).

Y X1 X2 X3 " m z1 z3

1 1 0 0  1
2 15 32

41  4
41

2 1 0 0 1
2 2 50

41
4
41

3 1 0 0 3
2 1 68

41
12
41

1 0 1 0 1 4 23
41  8

41

2 0 1 0 0 4 1 0

3 0 1 0 1 4 59
41

8
41

1 0 0 1  4
3 3 17

41
91
123

2 0 0 1  1
3 2 35

41
115
123

3 0 0 1 2
3 1 53

41
139
123

Selective sampling (some covariate levels are over-represented while others
are under-represented) produces an omitted,correlated variables bias (Xj is cor-
related with ", for j = 1, 3) in the mean or mean di§erences estimated by stan-
dard ANOVA procedures (say, OLS regression). Standard 2SLS-IV e§ectively
identifies the means or mean di§erences.

X1 X2 X3
j = E [Y | Xj ] 3

2 2 7
3

However, exogenous treatment yields biased estimates.

X1 X2 X3
bj 11

9 2 5
3

bj  j 11
9 

3
2 = 

5
18 2 2 = 0 5

3 
7
3 = 

2
3
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Not only is it challenging to identify as many instruments as covariate levels
(for instance, for two treatment with three levels each, this involves six potential
instruments) but also poor instruments can produce greater bias than ignoring
endogeneity. This fragility is illustrated next.

Example 9 (One treatment, poor instruments) Suppose everything is the
same as in example 8 except the instruments (w1, w2, and w3 in place of z1,
z2, and z3).

Y X1 X2 X3 " m w1 w2 w3

1 1 0 0  1
2 15 81

82  2
41

1
41

2 1 0 0 1
2 2 83

82
2
41  1

41

3 1 0 0 3
2 1 85

82
6
41  3

41

1 0 1 0 1 4 40
41

37
41

2
41

2 0 1 0 0 4 1 1 0

3 0 1 0 1 4 42
41

45
41  2

41

1 0 0 1  4
3 3 119

123  16
123

131
123

2 0 0 1  1
3 2 122

123  4
123

125
123

3 0 0 1 2
3 1 125

123
8
123

119
123

While the deviations in wj relative to zj may seem rather small, the impact
is disastrous. 2SLS-IV based on w yields

X1 X2 X3
ej 912

767
877
412

546
355

ej  j 912
767 

3
2 = 

38
127

877
412  2 =

53
412

546
355 

7
3 = 

610
767

which involves greater bias than exogenous treatment.

X1 X2 X3
bj 11

9 2 5
3

bj  j 11
9 

3
2 = 

5
18 2 2 = 0 5

3 
7
3 = 

2
3

|ej  j | |bj  j | 14
653

53
412

53
412

2.2 Strategic choice with instruments

An alternative instrumental variable strategy utilizes a strategic choice modeling
approach. That is, model the joint strategies of the players as a random utility
model. This implies nine outcomes for the setting in example 8 Yij where
i refers to one player’s choice (X) and j refers to the second player’s choice
(Y ). Conveniently, we don’t require a link function in this setting as a linear
probability model is not confounded by the usual problems as everything is
binary (bounded between zero and one) and without additional covariates we’re
simply exploring frequencies. While this addresses the idea that each player’s
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strategy depends on the other player’s strategy (endogenous play), by itself
it fails to address the selective sampling problem described in the foregoing
discussion. To address selective sampling we add an instrument. An example
helps clarify.

Example 10 (One treatment, strategic choice) Suppose the DGP is the
same as example 8 but the experimental design is one of strategic choice with
instruments. A representative 36 observation sample is below.

Yij m " z

Y11 = 1 15 1 1
3 =

2
3

48
79

Y12 = 1 2 1 1
12 =

11
12

157
135

Y13 = 1 1 1 1
12 =

11
12

1777
764

Y21 = 1 4 1 1
9 =

8
9

383
494

Y22 = 1 4 1 1
9 =

8
9

383
494

Y23 = 1 4 1 1
9 =

8
9

383
494

Y31 = 1 3 1 1
36 =

35
36

23
89

Y32 = 1 2 1 1
18 =

17
18

383
494

Y33 = 1 1 1 1
12 =

11
12

1777
764

Without the instrument the estimated joint probabilities are simply the sample
frequencies, f , while employment of the instrument recovers the joint distribu-
tion for the DGP, p.

Yij f p bias = f  p
Y11 = 1

15
36

1
3

15
36 

1
3 =

1
12

Y12 = 1
2
36

1
12

2
36 

1
12 = 

1
36

Y13 = 1
1
36

1
12

1
36 

1
12 = 

1
18

Y21 = 1
4
36

1
9

4
36 

1
9 = 0

Y22 = 1
4
36

1
9

4
36 

1
9 = 0

Y23 = 1
4
36

1
9

4
36 

1
9 = 0

Y31 = 1
3
36

1
36

3
36 

1
36 =

1
18

Y32 = 1
2
36

1
18

2
36 

1
18 = 0

Y33 = 1
1
36

1
12

1
36 

1
12 = 

1
18

This bias in probability, of course, readily translates into bias in mean esti-
mates as described above.

As with any instrumental variable strategy, poor instruments in the strategic
choice design can produce greater bias than exogenous treatment.
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3 Conclusions

We have discussed exogenous and endogenous treatment e§ects in controlled
experiments as well as common support challenges. Of course, both lack of
common support and endogeneity can coexist. Unobservability of the latter is
primary impetus for our proposed strategy to elicit responses at all levels of the
covariates.
Causal e§ects rarely (if ever) come for free which applies even in a controlled

experimental setting. If we ignore potential endogeneity, sample selection bias
may seriously undermine our e§orts to recover the DGP. If we employ exhaus-
tive covariate sampling we may change the way the game is played. If we employ
instruments and they prove to be poor instruments we may induce more selec-
tion bias than exogenous treatment. Every setting is unique and calls for the
analyst to balance these concerns in selecting an experimental design – a design
judgment that is properly settled at the outset of the experiment.
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