
     1Ironically, we teach accounting by stressing certainty:  here is a set of events and here are the proper procedures; now
practice until you can reproduce the correct answer.

             

     5
Modeling Information 

The information content perspective stresses the idea accounting is a
source of information, one we hasten to add that uses the language and
algebra of valuation to convey its information.  To this point we have dealt
with the initial portion of this recurring phrase, the language and algebra
of valuation and its centrality in the “accounting model.”  It is now time to
tackle the term information.  This turns out to take some care, as the term
information has taken on near colloquial status, yet being even moderately
serious about its nature requires considerable structure, structure that
describes what it is we are uncertain about and how the information speaks
to that uncertainty.

The information content perspective stresses accounting’s role as a source of information.
To provide information means it is possible to become better informed, to learn something we did
not yet know.  In turn, being able to become better informed means we were initially less
informed, that uncertainty was present.  The implication should be understood:  to treat
accounting as a source of information demands we become facile with the notions of uncertainty
and information.1 

We begin with the notion of uncertainty.  This entails how we represent resource allocation
exercises when uncertainty is present.  From here we move on to the question of how we represent
information, both its source and its arrival.  We conclude with the issues of comparing and
combining information sources.  In a subsequent chapter, once our skills are well-practiced, we
will extend the earlier treatment of accounting stock and flow measures to an uncertain world.
Then we will be in a position to study the information content perspective, and our claim
accounting uses the language and algebra of valuation to convey information.

A word of caution:  being serious about information is no easy task.  Developing the skill to
understand and be facile with information issues requires patience and effort.  The modeling
device we emphasize for this purpose, that of a partition, is likely to appear excessively formal,
if not needlessly awkward, at first blush, but it will pay considerable dividends in subsequent
chapters. 

Modeling Uncertainty
Uncertainty is all around us:  What will tomorrow’s weather be?  When will my hard disk
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     2In subsequent chapters we will employ a more mnemonic description of the acts.

     3For a state to “obtain” is a hopelessly formal description.  But it nicely connotes the idea of the realization of some
exogenous variable.

     4Were we insisting on purity, we would admit to a single specification of the set of states, and then any specific decision
problem would allow us to group states together, into events, whenever distinguishing among some finely detailed states was
immaterial.  For example, “rain a little” and “rain a lot” are grouped together in state s1 in Exhibit 1.

fail?  Will the driver in the other lane swerve as I attempt to pass?  Is there a material error in this
asset account?  Take your pick.  We are also familiar with the use of probability in describing the
uncertainty.  For example, the probability of precipitation tomorrow is 40%.  The probability of
heads on the toss of a fair coin is .5.  

state-act-outcome specification
It will, in fact, be useful to be formal, almost pedantic about modeling uncertainty.  We

follow Savage [1954] and model a resource allocation exercise or decision in terms of states, acts,
and outcomes.  An act is a specific choice, for example attend some specific movie, invest in a
specific combination of financial instruments, or launch a specific new product.  The act is
distinctly endogenous.  An outcome is whatever of consequence follows from the choice of act,
enjoyment of the movie, profit from the investment, success from the new product (including not
only profit but reputation and self-fulfillment).

Certainty, of course, is the case where an act completely determines the outcome.  Typically,
though, we do not know the precise outcome that will follow from all available acts.  This is
where states enter.  A state is a description of the world so comprehensive that if we know the
state, we then know the outcome that will follow from any act.

Let S denote the set of possible or conceivable states, and sMS a particular state.  Likewise,
let X denote the set of possible outcomes, and xMX one such outcome.  A, in turn, is the set of
possible acts and aMA is one such act.2  From here we describe the connection among states, acts
and outcomes with a function x = p(s,a).  The function p(s,a) catalogues the outcome that will
follow if act aMA is chosen and state sMS “obtains.”3

To illustrate, suppose an individual is planning a walk.  The remaining issue is whether to
carry an umbrella; so the choices are to carry one or not, so A = {no umbrella, umbrella}.  The
individual only cares about whether he gets wet during the walk.  This suggests the outcomes are
“wet” or “dry.”  So X = {get wet, stay dry}.  Notice there is no reason whatsoever to insist the
outcomes be monetary.  

Also, in this setting the set S would contain two events:  it rains, s1, or it does not rain, s2.  S
= {s1, s2}.  This leaves no important aspect of the decision problem out of the state description.
The outcome in this example might then be described by the matrix, or p(s,a) function, in Exhibit
1.  Of course if the decision maker is an airline pilot, this description of the state of the world in
terms of rain or no rain is far from sufficient to describe the outcome of following one flight plan
versus another.4
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s1 s2

a1 = no umbrella get wet stay dry
a2 = umbrella stay dry stay dry

                  Exhibit 1:  State, Act, Outcome Setup for Casual Stroll

For a second illustration, one closer to our explicit concerns, suppose a decision maker is
facing two alternatives.  Incremental cash flow is the important outcome.  One act will result in
a zero incremental cash flow.  The other will result in a negative incremental cash flow of 100 or
a positive incremental cash flow of 140.  Then the complete description of the problem is
contained in the matrix, or p(s,a) function, below.

s1 s2

a1 0 0
a2 -100 140

              Exhibit 2:  Setup for Risky Investment

For a third illustration, suppose a decision maker faces two investment alternatives, each
lasting two periods.  Incremental cash flow is again the important outcome,  but now this
incremental cash flow outcome is an issue in each of the periods.  One of the alternatives will
result in a zero outcome in both periods.  The other will provide incremental cash flows as given
below, where the first number in the ordered pair is the incremental cash flow in the first period,
and the second is its counterpart in the second period. 

s1 s2 s3 s4

a1 0 0 0 0
a2 (-100,100) (-100,120) (-140,130) (-140,160)

          Exhibit 3:  Setup for Two Period Risky Investment

As a final example, return to our model of the reporting entity where capital (K) and labor
(L) are combined to produce output (q) via the technology expression .  Further suppose
the firm must supply either q = 100 or q = 200 units of output.  The customer will announce the
required amount after capital, K, has been acquired, but before labor, L, has been acquired.  So
we basically have two states, high or low demand for output, and for some initial (and feasible)
capital choice of K, the necessary labor to produce q units is the solution to , or L = q2/K.
Also recall the price of capital is pK per unit and the price of labor is pL per unit.  With this in
mind, the total expenditures to meet the customer’s requirements, given initial choice of K, would
be as described in Exhibit 4.
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     5In a deeper sense, once again we are dealing with a single specification of the set of states, and then grouping irrelevant
distinctions together, into events or into what you will learn to call a partition of the set of states.  This grouping phenomenon
was coined the “payoff relevant description of events” by Marschak, an important contributor to the development of the theory
of information.

     6To add some perspective, we dig a bit further.  Any subset of S is called an event.  Thus, •S is an event, and this holds
for any subset of S.  Now let  be the set of all events, the set of all subsets of S.  For example, if S = {s1, s2}, the set of all
events is  = {Ø, {s1},{s2},{s1, s2}}.  Yes, the set of all events is a set; and S itself is an event, just as the null set, Ø, the null
event, is an event.  Now, a probability measure on S is a real-valued function _ defined on all subsets of S (i.e., defined on all
events) such that:

(1) _(�) � 0 for every �•S;
(2) _(S) = 1; and
(3) _(�1¿�2) = _(�1) + _(�2) when �1, �2•S and �1��2 = Ø.

So, at this level we speak of the probability of an event, the probability of a union of events, and so on.  The probability is
always non-negative and has a casual interpretation as the degree of likelihood.  _(�1) > _(�2) means event �1 is more likely

s1 (q = 100) s2 (q = 200)
K pKK + pL(100)2/K pKK + pL(200)2/K

                Exhibit 4:  Setup for Uncertain Customer Demand 

Some common features of these illustrations should be noted.  First, we will typically treat
the states as finite in number.  This means we can write the set of possible states as S = {s1, s2, ...,
sn} for some number n.  This simplifies what follows, and does not cause any significant drop in
insight.  Second, the relevant description of states depends on available acts and important
consequences.  Rain or not, for instance, was adequate for the umbrella description, but not for
the pilot.5  Third, each state represents one possible scenario that might occur.  All conceivable
scenarios are condensed in the state descriptions leaving out no aspects of importance.  The notion
of states is abstract and can be used in all circumstances where we do not know everything the
future might bring (or for that matter that is hidden in the past). 

probability
It is also natural to attach the term likelihood to the states.  Some states are more likely to

occur than other states, just as others may be equally likely.  For example, cold weather is more
likely than hot weather in the Northern hemisphere during the month of January.  The usual way
of encoding this into an abstract description of an uncertain world is to attach probabilities to each
of the states contained in S.  

Recall with a finite set of states we write S = {s1, s2, ..., sn}.  In simplest terms, we think of
probability in this context as the assignment of a number _j for each j = 1, ..., n such that: 

(1) _j A 0 for j = 1, ..., n; and 

(2)   

The number _j is the probability that state sj obtains, and will generally be written as prob(sj). The
probability assignments, the numbers, are non-negative, and sum to unity.6
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than event �2.  (Parenthetically, it is also important to note our reliance on a finite S here.  If S is a richer set, we must be careful
to specify the collection of subsets of S, their complements, and so on.  This leads us into things like a c-algebra, which is a
set and collection of subsets thereof where each subset’s complement is present, and where the union of a countable number
of subsets is also a subset.  With a finite S, though, we work with all subsets of S, without causing any ambiguities or
measurement difficulties.)

Now {sj}•S is the event “state sj” and {si, sj}•S is the event “state si or state sj.”  (Don’t miss the subtlety:  sj is an element of
set S, but an event is a subset of the set S.  Properly speaking, then, {sj}•S is the event “state sj” and when we write the
probability of state sj as prob(sj) we should be writing prob({sj}).)  And since the events “state si” and “state sj” are distinct
events, given i á j, the probability of any event in our setup is the sum of the “state probabilities” for each state contained in
the event:  _(�) = �s^  prob(s).  

     7Probability is a measure, a measure of likelihood.  Suppose we have a set of events, as in our finite state setup.  Further
suppose we are able to rank all of the events in terms of likelihood.  Let this ranking satisfy the following four properties:  (1)
it is complete and transitive; (2) any event is at least as likely as the null event; (3) S itself is strictly more likely than the null
event: and (4) if �1 and �3 are disjoint events and if �2 and �3 are disjoint events, then �1 is strictly more likely than �2 if and
only if �1¿�3 is strictly more likely than �2¿�3.  Our noted definition of a probability measure satisfies all of these conditions.
But is the opposite true?  This was an open question for a long time, but the answer is no.  (See Kraft, Pratt, and Seidenberg
[1959].)  The point is that treating probability as a measure of likelihood is both natural and delicate.  It requires considerable
structure on what we mean by likelihood for this representation to be valid.  Accounting theory is likewise concerned with
measurement:  what, how and when should the accounting system measure?  The idea, you will come to appreciate, is to use
the measures to represent the underlying set of phenomena.

A remaining question before we proceed is the source of this probability measure.  We will
treat it as exogenous, it is just assumed to be present.  The very meaning one might attach to the
probability measure has been the subject of philosophical argument, for example is this a long run
frequency notion, a completely subjective notion, or perhaps somewhere in between?  Savage
[1954] pioneered a subjective interpretation, where a person whose behavior in decision making
is sufficiently consistent can be modeled as if subjective probability and subjective utility
assessments are made and decision theory calculus is invoked to identify the most preferred act.
We treat the probability as a measure of likelihood, where that likelihood might reflect “objective”
events such as gambling encounters with known odds or “subjective” events such as new product
introductions with anything but objective odds.7 

This construct of probabilities assigned to state descriptions, then, captures the notion of the
uncertainty.  If we know which state will occur, we assign a probability of one to that state and
a probability of zero to all other states.  If we find a state very likely to occur, we assign a
probability close to one to that state and reversely if a state is very unlikely, the probability
assigned to that state will be close to zero.

random variables
States and probabilities, then, are our foundation for modeling uncertainty.  In most cases,

though, the state description is of little or no practical use.  (No comment is necessary at this
point.)  We don’t speak of the state of the weather, but rather in terms of average temperatures,
temperature range, precipitation expected, and so on.  Similarly, we don’t speak of the state of the
enterprise, but instead in terms of its earnings, growth prospects, book to market ratio, and so on.

The connection between this foundation and the things we so casually speak of is the concept
of a random variable.  Given state description S = {s1, s2, ..., sn}, a random variable is a numerical
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     8You should have no difficulty moving from the given prob(s) specification to the probability of any event �•S = {s1, s2,
..., s5}.  For example, the probability of “s1 or s2,” i.e., the probability of the event {s1, s2} is simply _1 + _2 = .4.

valued function which assigns a real number f(s) to every state sMS.  Technically, a random
variable is a function which is defined on the state space and maps into the real line (perhaps an
n-dimensional space). 

Rainfall, temperature, accounting income, and your score on the final exam are all random
variables.  Likewise, in the state-act-outcome setup, if the outcome is a real number, such as cash
flow, it too is a random variable.

To illustrate, consider the setting described in Exhibit 5, where we have five possible states,
and two different random variables.  Z is a random variable, defined by the function f(s).  So is
G, as defined by the function d(s).

s1 s2 s3 s4 s5

____j = prob(sj) .2 .2 .3 .2 .1
Z = f(s) 1 2 2 4 -1
G = d(s) 5 5 6 5 6

 Exhibit 5:  Illustrative Random Variables

Notice the probability measure is also specified.8  This probability measure combined with
the function, f(s), allows us to identify a probability measure for the random variable (technically
for the events associated with the random variable).  Thus, prob(Z = 1) = .2, prob(Z = 2) = .2 +
.3 = .5, etc.  We summarize the details in the following matrix.

Z = -1 Z = 1 Z = 2 Z = 4
prob(z) .1 .2 .5 .2

          Exhibit 6:  prob(z) specification

Clearly this leads to a probability measure defined on all subsets or events of the set {-1, 1, 2, 4}!
From here it is a short step to start talking about summary measures, such as the mean or

expected value and variance of a random variable.  For our random variable Z we readily calculate
the mean, E[Z], and variance, VAR(Z):

   E[Z] = Pzz]prob(z) = -1(.1) + 1(.2) + 2(.5) + 4(.2) = 1.9; and 

   VAR(Z) = Pz(z - E[Z])2]prob(z) = (-1-1.9)2(.1) + (1-1.9)2(.2) + (2-1.9)2(.5) + (4-1.9)2(.2)
         = 1.89.

The calculations, you will appreciate, rely on the fact Z is numerical.
A more familiar specification is when we directly assess the random variable’s probability

measure.  For example, the income of a firm for the forthcoming year is a random variable.  It
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     9The Normal density is completely described by the two parameters of mean and variance.  In this example, now, income
Î can take on any value, so we are clearly outside our usual setup of a finite set of states.  Our earlier warning about technical
issues now resurfaces.  We know the mean and variance of a Normally distributed random variable exist.  In general, though,
the event algebra has to be carefully specified to ensure, say, the mean as a mathematical construction exists.  This is far beyond
any technical measurability issue we will encounter; but you should be aware we are not presenting a comprehensive treatment
of the subject.

might be any conceivable real number.  It might also be well described by a random variable, Î,
which is normally distributed with mean E[Î] = W and variance VAR(Î) = c 2 (which, for the
notation connoisseur, is usually written as Î J N(W,c 2)). The two parameters, mean W and variance
c 2, are sufficient to describe the entire distribution.9

The final step is to introduce the notion of joint probabilities of the random variables Z and
G.  This is the probability that the pair Z, G takes on a specific value.  For example prob((Z,G) =
(1,5)) = .2.  The notion of joint probability conveys the dependency among the random variables.
This becomes important once we skip the state space specification, because the states that carry
all uncertainty also keep track of the interrelationship among all random variables.  In the random
variable formulation this is replaced by a joint probability measure.  Covariance is a well known
summary measure of this dependency. 

Information
Given the state description contains every conceivable relevant aspect of the world it is

especially simple to define the notion of information.  At one extreme perfect information is
equivalent to learning exactly which state will occur.  At the other extreme is null information,
where we learn nothing about which state will occur.  The intermediate case is where we learn
something, but less than all there is to know.

To model this, recall the state description in the state-act-outcome setup carries, so to speak,
the uncertainty in the resource allocation exercise.  Intuitively, then, information should “refine
our knowledge” of the states.  

For example, suppose we have four states, S = {s1, s2, s3, s4}.  Further suppose an information
source will reveal something about these states.  In particular, it will report one of two possible
reports:  the state that will obtain, the true state, is either a member of {s1, s2} = G1 or the state that
will obtain is a member of {s3, s4} = G2.  So the report will be either G1 or G2.  Details are given
below, including prob(s).

s1 s2 s3 s4

____j = prob(sj) .1 .2 .3 .4
prob(s | GGGG1) 1/3 2/3 0 0
prob(s | GGGG2) 0 0 3/7 4/7

       Exhibit 7:  Probability Details for Information Example

Now, what do we learn if this source reports G1?  We learn the true state is either s1 or s2 or
formally that the state is a member of G1 = {s1, s2}, and therefore not a member of {s3, s4} = G2.
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     10A more familiar expression for Bayes’ Rule relies on random variables.  Suppose Z and W are random variables, with joint
probability prob(Z,W).  Having observed W = w, the probability that Z = z is given by 

prob(Z = z | W = w) = prob(Z = z, W = w)/prob(W = w), 
or in our shorthand notation, prob(z | w) = prob(z, w)/prob(w).  In our case, though, the probabilities are defined on subsets of
S, and G itself is a subset of S; so the joint occurrence of s and G is the intersection:  {s}� G.  Likewise, prob(G) is simply the
sum of the underlying state probabilities for each state contained in G.  In particular, {s}�G1 = {s} for the first two states, and
is null for the last two.  So, prob({s1}�G1) = prob(s1) = .1, along with prob({s2}�G1) = prob(s2) = .2; prob({s3}�G1) = prob(Ø)
= 0; and prob({s4}�G1) = prob(Ø) = 0.  In addition, with G1 = {s1, s2}, prob(G1) = prob(s1) + prob(s2) = .1 + .2 = .3.  This
provides prob(s1 | G1) = .1/.3 = 1/3, and so on.  

Surely, then, the probability of either of the latter two states, given we have observed G1 is zero.
We write this in conditional probability format as prob(s3 | G1) = prob(s4 | G1) = 0.  What about the
other two states?  Here we calculate

prob(s1 | G1) = _1/(_1 + _2) = .1/(.1 + .2) = 1/3; and
prob(s2 | G1) = _2/(_1 + _2) = .2/(.1 + .2) = 2/3. 

Note well.  Observing report G1, or report G2 tells us something about the states.  This, in turn,
leads to systematic revision of the probabilities.  Begin with the noted probability assessment,
prob(s).  If we subsequently learn the source reports G1 = {s1, s2} (or G2 = {s3, s4}), we use Bayes’
Rule to revise prob(s) to the associated conditional probability, conditional on having observed
report G:10 

                                      prob({s}NG)
prob(s | G) =  )))))))))) ]

                                        prob(G)
You should verify the calculations for prob(s | G1) and prob(s | G2). 

partitions
An additional feature of the above example to notice is that each possible report is actually

a subset of the set of states, S.  Moreover, the two possible subsets, G1 and G2, share nothing in
common, i.e., G1NG2 = Ø, and collectively define S, i.e., G1�G2 = S.  In formal terms, G1 and G2 form
a partition of the set S.  This is a consequence of the comprehensiveness of the state description.
It includes all conceivable uncertainty, and that of course includes any information we might
receive.

To illustrate, suppose the weather might be “wet” or “dry,” and a weather forecast will
predict “wet” or “dry.”  Naturally, this forecast might turn out to be correct, or erroneous.  We
codes this as four states:  S = {wet and forecast wet, wet and forecast dry, dry and forecast wet,
dry and forecast dry}.  So a forecast of wet is a claim the first or the third state is true, etc.  In this
fashion the state specification tautologically reflects all uncertainties, including those associated
with the implications of what some information source reports.  As a consequence, whatever that
information source is, it defines a partition on the state space. 

To go a bit further, let F = {G1, G2, ..., Gm} be a collection of sets.  This collection of sets, F,
forms a partition of S = {s1, s2, ..., sn} if:
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     11The Greek letter M (“eta”) is the traditional symbol for an information structure defined in this manner, just as I is the
traditional symbol for the error term in a regression equation, W is the traditional symbol for the mean of a normal population,
etc.  Now, recall, a function is a mapping from one set to another with two properties:  no element of the first set is left
“unmapped” and no element of the first set is mapped into more than one element of the second set.  Thus, if M(s) is a function
from S, it defines a partition of S.  Suppose we observe m = M(s).  Then the inverse, M-1(m), identifies all elements of S that lead
to m.

Treating information as a partition of S, then, is equivalent to treating the information source as providing a signal defined by
the function m = M(s).  Subsequently, we will worry about information that is useful in monitoring an agent, an agent who
selects the act a on behalf of someone else.  We will then treat the monitor as reporting a signal defined by M(s,a); that is, we
will allow the agent’s behavior to specify which partition of S we are observing.  Stated differently, the information source will
partition S×A in that setting.  In similar fashion, an accounting procedure will take various activities of the entity (viewed as
entity acts) and compile an accounting rendering, based on other available information.

(1) Gi„S, for every GiMF;
(2) G1�G2�]]]�Gm-1�Gm = S; and
(3) GiNGj = Ø for every Gi, GjMF and i £ j.

Think of F as defining a set of “holders.”  First, each “holder,” each G, must be a subset of S.
Holder G is not allowed to have any elements outside of S.  Second, collectively, the “holders”
must equal S.  Every element of S must be placed in one of the holders.  Finally, no ambiguity is
allowed; the “holders” are mutually exclusive.  The idea is classification:  every element of S
belongs to exactly one element of F.

This is how we model information.  It is a partition of the state space S.  Suppose F contains
a single set.  This single set must be S itself, i.e., F = {S}.  Otherwise we have not satisfied the
definition of a partition.  This is null information, it tells us nothing.  After all, we already know
sMS!  At the other extreme, suppose F = {{s1},{s2},...,{sn}}.  This is perfect information. 

Two additional features of this modeling apparatus are important.  First, as we observed
earlier, revision of the state probabilities is particularly straightforward when information is
modeled as a partition of the state space.  If we know GMF is true, we then know the true state is
one of the elements of G, and by implication any state not in G has now been ruled out.  So, our
earlier, surely awkward, statement of Bayes’ Rule simplifies to

            prob(s)/prob(G) if sMG; and 

 prob(s | G) = V   
            0 if s G. 

Second, an equivalent way to think about this construction of information as a partition of
the state space is that the information source reports according to some function M that maps S into
some set of possible signals, denoted .  We formally state this as M:  S W , meaning “M maps
S into .”  Alternatively, we write this as m = M(s).11  In this construction we identify the
information source, M, and the signal or message, mM  it provides.  Formal equivalence between
the function and partition ideas should be evident by glancing back at our earlier example.  

Indeed, we could go further here and think of this in terms of a random variable.  Instead of
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     12Again notice that because D can only be 0 or 1 its expected value is numerically equal to the probability that D = 1.

reporting an element of the partition F, i.e., instead of reporting GjMF, why not simply report the
number “j.”  Go back to our example.  M(s1) = M(s2) = 1 and M(s3) = M(s4) = 2 defines a random
variable and this random variable conveys the same information, the same underlying partition,
as was used in the illustration.  The substance of the information, though, is not whether the
random variable’s realization was 1 or 2, it is the underlying state partition, the underlying
information content.  For example, the substance of a firm reporting income of so many dollars
is not that this amount of income was earned, or recognized.  It is what you learn about the firm,
given its accounting system has reported this income number.

alternative representations
Our partition (or function) formulation, though awkward at first encounter, is the simplest

device on which to base our forthcoming study of accounting as a source of information.  Its (full)
generality can be appreciated by briefly considering two alternative ways of representing the
arrival of information.  For this purpose, suppose we are interested in a random variable DM{0,
1}.  We also have access to an information source that will report “good” (g) or “bad” (b) news.
The joint probability is specified as follows.

D = 0 D = 1
signal g .15 .40 
signal b .35 .10

         Exhibit 8:  Binary Random Variable

Notice prob(D = 0) = prob(D =1) = .5, and E[D] = 0(.5) + 1(.5) = .5 = prob(D =1).  In addition,
prob(signal g) = .55 and prob(signal b) = .45.  Observing the noted signal is informative, it alters
our opinion about the variable D.  This becomes more apparent when we calculate the expected
value12 of D, conditional on either of the signals:

E[D | signal g] = 0(15/55) + 1(40/55) = 40/55;
E[D | signal b] = 0(35/45) + 1(10/45) = 10/45.  

Can you represent this story in terms of a state space and the information itself as a partition F of
this state space?  See Exhibit 9, where we merely enrich the state description so it captures all the
noise in the information source as well.

Notice G1 = {s1, s3} corresponds to signal g; and we readily have prob(s1 | G1) = .15/(.15 + .40)
= 15/55 and prob(s3 | G1) = 40/55.  Clearly, E[D | G1] = 40/55.  The remaining details should be
transparent.  We are telling the identical story.

Intuitively, this should be the case.  After all, the state is specified so it carries all the
uncertainty.  If there is uncertainty between the variable D and the signal, as in Exhibit 5, we
merely “load” all of that uncertainty into an equivalent state specification.
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s1:  D = 0 and
signal = g

s2:  D = 0 and
signal = b

s3:  D = 1 and
signal = g

s4:  D = 1 and
signal = b

prob(s) .15 .35 .40 .10
MMMM(s) G1 G2 G1 G2

prob(s | GGGG1) 15/55 0 40/55 0
prob(s | GGGG2) 0 35/45 0 10/45

      Exhibit 9:  Partition Version of Exhibit 8 Setting

Yet another way to model this story is to focus directly on the random variable D.  Suppose
all we care about is the expected value of D.  Well, absent any information, this is simply .50.
But, if signal g (or partition element G1) is observed, we know the expected value increases to
40/55; and if signal b (or partition element G2) is observed, we know the expected value decreases
to 10/45.  So, let’s represent the expected value as the random variable :

 = .5 + I.

I, now, is a zero mean shock or disturbance term.  Try the following:  I = 125/550 (which is
40/55 - .50) with probability .55 and I = -125/450 (which is 10/45 - .50) with probability .45.  So

E[ ] = .5 + E[I] = .5 + .55(125/550) + .45(-125/450) = .5.

That is, the revised expected value of D can be modeled as equal to its mean plus a random
“innovation.”  In information terms, then, we observe the innovation or revision in the mean.
Stated differently, information alters the expectation in this case.

Thus, we generally have alternative ways of modeling or representing information.  The joint
probability representation has the advantage of familiarity, but it becomes awkward when we
compare information sources (as you will see).  The innovation representation is intuitive, but it
becomes awkward if not dysfunctional when we have multiple sources of information.  The
partition approach has the advantage of readily accommodating multiple sources of information
and being particularly transparent on the subject of comparing information sources.  

At times we will switch among these representations for expositional ease.  But the more
subtle issues will always lead us back to the partition formulation.

Comparison Of Information Sources 
Next is the question of whether there is some way to order or compare information sources

in terms of their “usefulness” or “value.”  For example, is it possible to say one newspaper is
better than another, or to say one accounting procedure is better than another?  To explore this,
let S have three elements  S = {s1, s2, s3}.  Below we list all possible partitions of S.

label partition interpretation
FFFF0 {{s1, s2, s3}} tells us nothing
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FFFF1 {{s1},{s2, s3}} highlights s1

FFFF2 {{s2},{s1, s3}} highlights s2

FFFF3 {{s3},{s1, s2}} highlights s3

FFFF4 {{s1},{s2},{s3}} tells us everything
      Exhibit 10:  Partitions of a Three Element S

Partition F0 is of course null, it tells us nothing; and partition F4 is perfect, it tells us exactly
which state will obtain.  The other three are in between, each distinguishes one of the three states,
and groups the other two.

Now suppose we are given, say, partition F1.  Could we convert this into partitions F4 by
“splitting apart” or “subdividing” one or more of its elements?  The answer is yes; simply take the
second element of F1, {s2, s3}, and split it into {s2} and {s3}.  This procedure goes by the name
subpartition.  We take a given partition and “subdivide” it.  Disaggregation is an apt metaphor.

Here is the formal idea.  Suppose F = {G1, ..., Gm} and F = {G1, ..., Gmk
} both partition state

space S.  Partition F is a subpartition of partition F if for every GMF there exists a GMF such that
G„G.  In words, if we can take any element of partition F and find a corresponding element in
partition F that contains that element, then F is a subpartition of F.

Try this on our three state example.

label partition subpartition of
FFFF0 {{s1, s2, s3}} nothing but F0

FFFF1 {{s1},{s2, s3}} F0, F1

FFFF2 {{s2},{s1, s3}} F0, F2

FFFF3 {{s3},{s1, s2}} F0, F3

FFFF4 {{s1},{s2},{s3}} F0, F1, F2, F3, F4

      Exhibit 11:  Subpartition Relationships

Partition F0 can be subpartitioned to create any of the other partitions.  F4, being perfect
information, is a subpartition of every other partition but cannot itself be subpartitioned.  F1 is not
a subpartition of F2 and vice versa.  And, naturally, any partition is a subpartition of itself.

Think of a subpartition as providing more detail.  If F is a subpartition of F, then anything
F might tell you will also be revealed by partition F, along with possibly additional details.  For
example, consider F1 and F4 in Exhibit 11.  The latter is simply the former, but with subset {s2,
s3} subdivided into subsets {s1} and {s2}.  That is, F4 is a subpartition of F1.  Another way to see
this is to begin with F4.  Now notice we can now construct partition F1 by combining subsets {s2}
and {s3} into subset {s2, s3}.

 A synonym for subpartition is “as fine as” (or, more emphatically, at least as fine as).  Try
it out.  F1 is as fine as F0.  F4 is as fine as F1 but not vice versa.  F1 is not as fine as F2 and F2 is
not as fine as F1.  F4 is the finest partition of S.  F0 is the least fine, or coarsest.  

Two features of this odyssey should be noted.  First, suppose we tell you partition F is a
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     13In the random variables setup the notion of better information transforms to the condition that one random variable W is
more informative than another random variable Z with respect to some random variable B if there exists a random variable I
which is independent of B and has E[I] = 0 such that

Z = W + I.
The interpretation is that random variable Z is equal to the random variable W plus a noise term which is totally unrelated to
the variable of interest, B.

subpartition of partition F, or equivalently partition F is as fine as partition F.  Then everything
you might learn from partition F you can learn from partition F, and possibly more.  Thus,
partition F provides as much information as does partition F.  In this limited sense we can rank
the information sources.  If one is a subpartition of the other, we know it provides at least as much
information as the second.

Second, this subpartition or fineness device provides a partial but not a complete ranking of
partitions, or information sources.  Compare partitions F4 and F3 in our three state example.
Partition F4 is a subpartition of partition F3.  F4 is as fine as F3, but not vice versa.  Now try to
compare partitions F2 and F3.  Neither is a subpartition of the other.  They cannot be compared
via the subpartition or fineness device.  The implication should not be missed:  it is simply not
always possible to compare two partitions or information sources and claim that one information
system is superior to another, in terms of providing more information.13

This fact turns out to be important in a variety ways, so we amplify a bit.  Consider an
ordering of a set of objects by some criterion, e.g., individuals by height or partitions of some state
set using the subpartition idea.  Now, this ordering is complete if for any two objects in the set,
one is ordered above the other or vice versa.  Completeness means we can always compare the
two objects using the noted criterion.  Similarly, the ordering is transitive if when one object is
ordered above a second and the second is ordered above a third, then the first is ordered above
the third.  We will only call this ordering a ranking if it is both complete and transitive.  Formally
these are the characteristics we combine with ranking.  The first makes sure that all objects are
ranked and the second rules out circularity.  Only then can we talk about the highest and the
lowest ranked object.  

The punch line is the subpartition criterion provides a ranking that is transitive, but not
complete.  Consequently we only find a partial ranking of information sources using the
subpartition or fineness criterion.

equivalent information sources
Closely related to the notion of subpartition is the notion of equivalent information sources.

Partitions F and F are equivalent if they are identical, if F = F.  Equivalent information sources
tell us the same thing.  This amounts to (1) F is a subpartition of F and (2) F is a subpartition of
F. 

As obvious as this is, we should remember information typically does not arrive in the form
of an explicit state partition element.  It is generally coded.  Think of an important strategic report,
written in both German and English.  If nothing was missed in translation, this is the same
information but in a different code, scale, or language.

Earlier we noted another way to represent the partition idea is to think in terms of a function
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     14Let S have four elements S = {s1, s2, s3, s4}. Let M1(s1 ) = M1(s3) = m1 and M1(s2) = M1(s4) = m2.  Let M2(s1 ) = M2(s3) = m3 and
M2(s2) = M2(s4) = m4.  Then the two information structures are equivalent, as they both induce partition {{s1, s3}, {s2, s4}}.  In
turn, using F(m3) = m1 and F(m4) = m2 converts the second system into the first, and so on.

     15Why, then, can we not have a situation where the second source “destroys” the first?

that maps states into some set of admissible signals.  For example, the function M(s) might report
a real number for each of the states.  Let’s concentrate on systems that do use real numbers to
reveal what they know about S.  So M(s) is a real valued function.  (Yes, it defines a random
variable.)  Now suppose we have two such functions, M1(s) and M2(s).  Further suppose for at least
one state si their reports differ:  M1(si) £ M2(si).  Are these different information systems?  They
surely are in the sense their reports will not always agree, literally.  

But this is naive.  Celsius and Fahrenheit scales tell us the same thing, but always with a
different temperature reading except at negative 40 degrees.  To deal with this we must identify
the partitions induced by the information systems in general. 

The important aspect of an information system is what it tells about the underlying state
space, i.e. what partition of the state space it induces.  Thus if the two information structures
induce the same partition, the two information structures are equivalent.  In that case the two
information systems carry the same information about the underlying state space.  That will be
the case whenever M2 can be constructed from M1 and vice versa.14 In that case there exists
functions F and G such that for all states we have M1(s) = F(M2(s)) and M2(s) = G(M1(s)).  Stated
differently, in that case the partitions of the state space induced by each of the systems are
identical.  The two systems have precisely the same information content, but deliver it with a
different code, measurement scale, or simply scale.

This equivalence of information structures leads to the observation there might be many
equivalent representations of an information source.  The only difference among them is the
labeling of the partition elements.  The face value of an information system is not the source of
its substance.  It is the induced partition of the state space that matters.

combining information sources
In many cases more than one information structure is available.  The mechanics are

straightforward.  Consider the case where two information systems are jointly available, defined
by partitions F and F alone.  Taken together, the two partitions provide a partition of the state
space that is as fine as either F or F.  The second source, so to speak, can only improve upon the
first source.15  To illustrate, let S = {s1, s2, s3, s4}.  Also assume F = {{s1, s2},{s3, s4}} and F =
{{s1, s3},{s2, s4}}.  Combining the two partitions provides us the partition of {{s1},{s2},{s3},{s4}}.

As we said, the mechanics of combining information sources are straightforward.  What is
far from straightforward is understanding the importance of one of the information sources.  We
will learn that studying one source by itself, say F, as though it were the only source of
information, tells us in general almost nothing about how important F might be in the presence
of information source F.  Mixing or combining sources may make the source in question vastly
more or vastly less important.  As a hint of things to come, this is why accounting theory cannot
treat the accounting function in isolation.  We must carry along other sources of information.
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Summary
Surely accounting is a source of information.  But carefully examining this colloquialism

requires considerable setup.  A major piece of this setup is modeling uncertainty and information.
Our approach is to envision a state variable that tautologically carries all important uncertainty
in whatever setting we find ourselves.  We assign probabilities to the states to capture the notion
of likelihood, both when it is objective and when it is subjective.  Uncertainty is thus closely
related to the calculus of probability. 

Information is then modeled as a partition of this set of possible states.  Eventually we will
learn to view an accounting system as providing a partition of some set of states, and in this view
different “sets of books” are nothing other than different partitions.

The partition idea is at once conceptually useful and awkward.  So at times, where this
awkwardness becomes distracting, we will switch to equivalent, alternative specifications.
Fundamentally, though, uncertainty is encoded in the state specification and an information source
is a partition of the set of states.

The partition idea also provides a partial comparison or ranking of information sources.  This
is based on the idea that if one source reports at least all that a second source might report, then
that first source provides “more” information than the second.  In the state partition setup this
simply means the first partition is a subpartition of the second.  

Accounting, of course, is not any old source of information.  So we have yet to make clear
what it means to say accounting is a source of information, and to address its comparative
advantage as a source of some “type” of information (read that partition).

Selected References
Using the state idea to model uncertainty has its roots in Savage [1954], as mentioned.

Marschak [1963] provides an excellent treatment.  Information is treated in a variety of sources,
including Baye [1999], Beaver [1998], Scott [1996], Demski and Feltham [1976] and Demski
[1980].  Marschak and Miyasawa [1968] and Feltham [1972] provide excellent, more formal
treatments. 

Key Terms
Uncertainty is the opposite of certainty, a lack of complete foreknowledge, a setting in which

there is ambiguity as to what will transpire.  This requires a specification of the “ambiguity as to
what will transpire.”  For this we use the state-act-outcome device, where the outcome that will
transpire, x, depends on the act chosen, a, and the state, s:  x = p(s,a).  The state that “will obtain”
is unknown, and this ambiguity is described by a probability measure on the set of possible states.
Information, in turn, is something that provides insight into this ambiguity, something that revises
the probability measure on the set of possible states.  From a modeling perspective, we find it
convenient to describe the information source as simply “shrinking” the set of possible states, in
effect revealing something  about states that are certain to not occur.  This relies on an information
source being a partition of the set of possible states, a collection of mutually disjoint subsets of
the set of possible states whose union is the set of possible states.  The information  source then
reveals which partition element contains the true state.  In turn one partition is a subpartition of
a second partition if it “subdivides” the second, meaning each of its elements is a subset of an
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element of the second.  Subpartition or fineness provides a partial ranking of information sources.
Two information sources, two partitions, are equivalent if they reveal the same about the
underlying state, if they are identical partitions.

Problems and Exercises

1. Accessing information presupposes uncertainty.  Explain. 

2. Suppose you travel across time zones but do not reset your watch.  Does your watch provide
the same information in the new as opposed to the original time zone?  Explain.  Relate your
answer to the notion of equivalent information structures.

3. Ralph’s cash flow is uncertain; it will be either 100 or 400.  In addition, Ralph will access
an information source that will report signal “g” or signal “b.”  The joint probability of cash
flow and signal are specified in the following table.

CF = 100 CF = 400

signal g       .10       .50

signal b       .30       .10

Does the information source inform about Ralph’s cash flow prospects?  Carefully explain
your answer.  Next, calculate the mean and variance of Ralph’s cash flow, conditional on
each signal.  Finally, provide an equivalent state-based description of this story.  Be certain
to identify the probabilities as well as the partition provided by the information source.

4. Consider the following setting where D might be 10 or 20, and some information source
might report “g” or “b:” 

signal g signal b

D = 10           .10           .40

D = 20           .40           .10

Determine the expected value of D, the expected value of D given signal g, and the expected
value of D given signal b.  What is the expected value of the conditional expected value of
D?  Now, instead of revising the expected value of D in this fashion, suppose you think of
the revised expected value of D as

 = 15 + I.
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Specify the random variable I:  what values can it take on, and the probability of each?
What is the expected value of I?

Finally, provide an equivalent state-based description of this story, including the information
partition.

5. Suppose there are 10 possible, equally likely states: S = {s1, ..., s10}.  Information source one
will report signal “1” if the true state is one of the first five and “2” if it is one of the last five.
Source two will report “odd” if the state index of the true state is an odd number (i.e., if the
true state is one of s1, s3, etc.) and “even” if the state index of the true state is an even
number.  Specify the partitions of S that are provided by each source.  Then specify the
partition provided by having access to both information sources.  Finally, in the latter case
suppose we have a single information source that maps S into the Greek letters {?, A, E, G}.
Provide two such mappings that are informationally equivalent to observing the original
sources one and two.

6. Let S = {s1, s2, s3, s4, s5}.  Provide three partitions, one that is a subpartition of the second
which, in turn, is a subpartition of the third.  Is the first a subpartition of the third?  Finally,
provide two partitions, neither of which is a subpartition of the other.

7. Repeat Exercise 4 above, using the following probability specification: 

signal g signal b

D = 10           .10           .40

D = 20           .35           .15

8. We now find Ralph thinking about multiple sources of information.  Consider the following
matrix, concerning the cash flow random variable of CF = 100 or CF = 200, along with two
information sources.  One will report “g” or “b” while the other will report “g” or “b.”
Probabilities are given in the following table.

CF = 100 CF = 200

g b g b

gggg      .02      .16      .08      .04

bbbb      .40      .02      .20      .08

Now suppose we can observe both information sources.  Determine the expected value of CF
conditional on no information, on g only, on b only, on g only, on b only, and on g and g, g and
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b, b and g, and b and b.  Also, can you express the above changes in the expectation of CF as 140
+ I1 + I2, where the first “shock” term refers to that from the g/b observation and the second from
the g/b observation?  Explain.

Now suppose CF might be 300, 500 or 700.  The only events with positive probability are the
following four, and each has probability .25:

g, g and CF = 700;
g, b and CF = 500;
b, g and CF = 500; and
b, b and CF = 300.

Again, we will track the expected value of CF as the g/b event is observed and then the g/b event
is observed.  Try to express this story as an expected value (of 500) that changes under additive
innovations from the g/b event and from the g/b event.  Explain.

July 9, 2001, Joel


