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Bayesian Networks

1 Introduction to Bayesian networks

Identification of causality in Bayesian networks draws on Pearl’s do-calculus. do-
calculus stems from the idea that causality can be inferred by intervention (say,
to explore counterfactuals) combined with evidence rather than from evidence
alone. Principal ingredients include Bayes sum and product rules, causal graphs,
d-separation, back-door adjustment, and front-door adjustment. These ideas are
discussed and illustrated below.
One of the many challenges associated with causal inference involves fram-

ing the causal connections. Pearl [2010] argues this is a strength of Bayesian
networks. In his November 1996 public lecture for the UCLA faculty research
leadership program reproduced in his book [2010, p. 425] Pearl offers the follow-
ing encouragement, "There is no need to panic when someone tells us: ’you did
not take this or that factor into account.’On the contrary, the graph welcomes
such new ideas, because it is so easy to add factors and measurements into the
model. Simple tests are now available that permit an investigator to merely
glance at the graph and decide if one can compute the effect of one variable on
another."

1.1 Causal graphs

Causal graphs are graphical representations or encodings of causal relations (the
thought experiment in causal inference). A path X → Y implies X causes Y .
A directed acyclic graph (DAG) is the simplest variety as causality is defined
for each node and there are no cycles or feedback loops.1 More generally, undi-

1A simple, informal algorithm for distinguishing an acyclic graph from a cyclic graph
follows:
1. If the graph has no nodes, it is acyclic.
2. If the graph has no leafs, it is cyclic. A leaf is a node with no descendants (targets or

arcs going out).
3. Choose a leaf, delete it and all arcs coming into the leaf to form a new graph.
4. Return to 1 and repeat.
If we eliminate all nodes, the graph is acyclic. Alternatively, if we eliminate all leafs and

the graph is not empty, the graph is cyclic.

an acyclic graph a cyclic graph
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rected paths indicate the causal direction is unknown while dashed arcs or paths
(possibly, bidirected) indicate connections between observables and unobserved
variables.
Subgraphs are formed from DAGs when arcs are dropped, say by interven-

tions, as depicted in figure 1.1.

Figure 1.1: DAG G and its subgraphs

1.2 do-calculus and causal effects

Assignment X = x (not the same thing as conditioning on X = x)2 is denoted
do (x) and such interventions nonparametrically define the causal effect of X
on Y , Pr (Y | do (x)). Paths from an ancestor are effectively removed from the
graph when a descendant variable is assigned a value by do (·) (intervention)
because any effect of a parent on a child is negated.

1.3 d-separation

d-separation in a graph represents probabilistic independence or conditional
independence.

2do (x) is a thought experiment or action while conditioning on X = x is evidentiary or
observation.
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Formally, a path p is d-separated (blocked) by a set of nodes Z (including
the null set ∅) if and only if
1. p contains a chain i → m → j or fork i ← m → j such that the middle

node m is in Z, or
2. p contains an inverted fork (collider) i → m ← j such that the middle

node m is not in Z and no descendant of m is in Z.
A set Z d-separates X and Y if and only if Z blocks every path from X to

Y .

Theorem 1 (d-separation and conditional independence) If sets X and
Y are d-separated by Z in a DAG G, then X is independent of Y conditional
on Z in every distribution consistent with G. Conversely, if X and Y are not
d-separated by Z in a DAG G, then X and Y are dependent conditional on Z
in at least one distribution consistent with G.

The converse part is actually much stronger. IfX and Y are not blocked then
they are dependent in almost all distributions consistent with G. Independence
of unblocked paths requires precise parameter tuning that is unlikely. Hence,
if we condition on a collider node (resulting in d-connection) we likely create
dependence of unintended variety. The next section further explores this issue
under the guise of covariate selection and Simpson’s paradox.

2 Covariate selection

This section deals with semi-Markovian or DAGs (directed acyclic graph) mod-
els. Simpson’s paradox (results can dramatically change, including sign rever-
sal, when conditioning on additional covariates) indicates the importance and
subtlety of covariate selection. A simple algorithm applied to a causal graph in-
dicates when inclusion of covariates produces consistent estimates and otherwise
likely produces inconsistent estimates of quantities (causal effects) of interest.
Pearl [2010] refers to this as the adjustment problem and presents this via a
series of adjusted graphs.
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2.1 The adjustment problem
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While Z1 and Z2 are not parents of X,3 adjusting by the parents of X
(pa (x)) is always suffi cient for identifying the causal effect of X on Y . The

3Z1 and Z2 block all back-door paths into X connecting to Y (as do the parents of X).
This makes them a suffi cient set to eliminate confounding of the causal effect of X on Y .
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Figure 2.1: Adjustment Problem

adjustment formula is

Pr (Y = y | do (X = x)) =
∑
z

Pr (pa (x) = z) Pr (Y = y | X = x, pa (x) = z)

However, some parents of X may be latent or unobservable making the ad-
justment formula insuffi cient for identification. Fortunately, this can sometimes
be remedied with instrumental variables, back-door adjustment, and/or front-
door adjustment. These ideas are discussed next.

2.2 Instrumental variables

The following DAGs depict instrumental variables associated with causal effects
but confounded by (unobservable) omitted, correlated variables. Figure (a)
depicts a typical instrumental variables setting. The causal effect of X on Y is
confounded by correlated omitted variables (the hidden unobservables depicted
by the dashed arc connecting through the latent variable L). The instrument(s)
Z are related to the causal variable X but independent of outcome Y in the
modified graph deleting the X → Y path (X is a collider with respect to the
hidden unobservable and Z blocking the path between Z and Y ). Linear IV
first regresses both X and Y on Z producing rxz = a and ryz = ab. Then the
causal effect of X on Y is recovered from the ratio.

ryz
rxz

=
ab

a
= b
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Figure (b) depicts a conditional instrumental variable strategy. Instru-
ment(s) Z is related to the causal variable X but conditionally independent
(d-separated) of outcome Y (given covariate(s) W ) in the modified graph delet-
ing the X → Y path. Here, linear IV regresses both X and Y on Z and W
producing rxz·w = rxz = a (Z blocks the path between X and W where Y is
a collider rendering conditioning on W mute) and ryz·w = ab (conditioning on
W is essential to the IV strategy for ryz·w). Then the causal effect of X on Y
is recovered from the conditional ratio.

ryz·w
rxz·w

=
ab

a
= b

Figure (c) is identified analogously to figure (a) in spite of the Z → X effect
being confounded by L2. As above, the causal effect of X on Y is recovered
from the ratio where Uz is unobserved forces (implicit in the graph and other
than L2) causing Z.

ryz
rxz

=
brxz
rxz

= b

where

brxz =
ae2V ar [L2] + efV ar [L2] + aV ar [Uz]

e2V ar [L2] + V ar [Uz]

Instrumental variables

Next, we discuss the back-door adjustment.

2.3 Back-door

Formally, a set of variables Z is a back-door to the ordered pair (X,Y ) if
(i) no node in Z is a descendant of X, and
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(ii) Z blocks every path between X and Y that contains an arrow into X.
Consider the causal graph in figure 2.2.

Figure 2.2: DAG for Xi → Xj

The set Z = {X3, X4}, Z = {X4, X5}, or Z = {X3, X4, X5} is a back-door to
the ordered pair (Xi, Xj) while Z = {X4} or Z = {X6} is not a back-door to

(Xi, Xj). Since a back-door d-separates other nodes in the graph from
(Xi, Xj), other nodes can be ignored in identifying the causal effect of Xi on

Xj and the back-door adjustment for identifying the causal effect is

Pr (y | do (x)) =
∑
z

Pr (y | x, z) Pr (z) (back-door adj)

For figure 2.2 employing either Z = {X4} or Z = {X6} would bias the
estimate of the causal effect as the back-door is left unblocked (Xi andXj are not
disconnected when the adjustment problem algorithm is applied). On the other
hand, Z = {X3, X4}, Z = {X4, X5}, or Z = {X3, X4, X5} blocks everything
between (Xi, Xj) except the path Xi → X6 → Xj (Xi and Xj are disconnected
when the adjustment problem algorithm is applied) while Z = {X3, X4, X6} or
Z = {X4, X5, X6} d-separates Xi from Xj obliterating the very effect in which
we are interested (X6 is a descendant of Xi – a violation of the adjustment
problem algorithm). However, in the next section we find X6 can be utilized as
a front-door to Xi → Xj .
In this case, the back-door adjustment identifies the causal effect of Xi on

Xj as

Pr (xj | do (xi)) =
∑
x3

∑
x4

Pr (xj | xi, x3, x4) Pr (x3, x4)

or
Pr (xj | do (xi)) =

∑
x4

∑
x5

Pr (xj | xi, x4, x5) Pr (x4, x5)
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The back-door identification follows from Bayes chain rule for the joint dis-
tribution exploiting conditional independence in the graph (conditional on its
parents everything else is independent of a node)

Pr (xj , x1, x2, x3, x4, x5, x6, xi) = Pr (xj | x4, x5, x6) Pr (x6 | xi) Pr (xi | x3, x4)
Pr (x3, x4, x5 | x1, x2) Pr (x1) Pr (x2)

Utilize conditional independence in the graph to write the causal effect of Xi

on Xj for the back-door Z = {X3, X4}. The back-door blocks paths from Xi to
Xj involving X1, X2, X5 reducing the above joint distribution (in other words,
integrating out X1, X2, X5).

Pr (xj , x3, x4, x6, xi) = Pr (xj | x3, x4, x6, xi) Pr (x6 | xi) Pr (xi | x3, x4)
×Pr (x3, x4)

= Pr (xj , x6 | x3, x4, xi) Pr (xi | x3, x4) Pr (x3, x4)

do (xi) removes the path from X3, X4 to Xi and Pr (xi | x3, x4) from the joint
distribution (actually sets Pr (xi | x3, x4) = 1) leading to

Pr (xj , x6 | do (xi)) =
∑
x3

∑
x4

Pr (xj , x6 | x3, x4, xi) Pr (x3, x4)

Summing over X6 produces the causal effect for Xi on Xj .∑
x6

Pr (xj , x6 | do (xi)) =
∑
x6

∑
x3

∑
x4

Pr (xj , x6 | x3, x4, xi) Pr (x3, x4)

Pr (xj | do (xi)) =
∑
x3

∑
x4

Pr (xj | x3, x4, xi) Pr (x3, x4)

The derivation of the causal effect Xi on Xj for Z = {X4, X5} is analogous.

Pr (xj , x3, x4, x5, x6, xi) = Pr (xj | x3, x4, x5, x6, xi) Pr (x6 | xi) Pr (xi | x3, x4)
×Pr (x3, x4, x5)

= Pr (xj , x6 | x3, x4, x5, xi) Pr (xi | x3, x4) Pr (x3, x4, x5)

Pr (xj , x6 | do (xi)) =
∑
x4

∑
x5

Pr (xj , x6 | x3, x4, x5, xi) Pr (x3, x4, x5)

=
∑
x4

∑
x5

Pr (xj , x3, x6 | x4, x5, xi) Pr (x4, x5)

Summing over X3 and X6 produces the causal effect for Xi on Xj .∑
x3

∑
x6

Pr (xj , x3, x6 | do (xi)) =
∑
x3

∑
x6

∑
x4

∑
x5

Pr (xj , x3, x6 | x4, x5, xi)

×Pr (x4, x5)

Pr (xj | do (xi)) =
∑
x4

∑
x5

Pr (xj | x4, x5, xi) Pr (x4, x5)
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We return to this discussion following exposition of do-calculus rules.
Action, Pr (Y | do (x)), and observation, Pr (Y | X = x), are typically differ-

ent. Action and observation are only equivalent when X d-separates its parents
from Y . The example demonstrates the typical case where action and observa-
tion differ.

Example 1 (back-door adjustment – observation 6= action) Suppose Xi,
Xj , and X1 through X6 are binary with conditional distributions (consistent with
the back-door adjustment DAG in figure 2.2)

Pr (Xj = 1 | X4 = 0, X5 = 0, X6 = 0) 0.001

Pr (Xj = 1 | X4 = 0, X5 = 0, X6 = 1) 0.001

Pr (Xj = 1 | X4 = 0, X5 = 1, X6 = 0) 0.001

Pr (Xj = 1 | X4 = 0, X5 = 1, X6 = 1) 0.999

Pr (Xj = 1 | X4 = 1, X5 = 0, X6 = 0) 0.001

Pr (Xj = 1 | X4 = 1, X5 = 0, X6 = 1) 0.999

Pr (Xj = 1 | X4 = 1, X5 = 1, X6 = 0) 0.999

Pr (Xj = 1 | X4 = 1, X5 = 1, X6 = 1) 0.999

Pr (X6 = 1 | Xi = 0) 0.001

Pr (X6 = 1 | Xi = 1) 0.999

Pr (Xi = 1 | X3 = 0, X4 = 0) 0.001

Pr (Xi = 1 | X3 = 0, X4 = 1) 0.999

Pr (Xi = 1 | X3 = 1, X4 = 0) 0.999

Pr (Xi = 1 | X3 = 1, X4 = 1) 0.999

Pr (X3 = 1 | X1 = 0) 0.001

Pr (X3 = 1 | X1 = 1) 0.999

Pr (X4 = 1 | X1 = 0, X2 = 0) 0.001

Pr (X4 = 1 | X1 = 0, X2 = 1) 0.001

Pr (X4 = 1 | X1 = 1, X2 = 0) 0.999

Pr (X4 = 1 | X1 = 1, X2 = 1) 0.999

Pr (X5 = 1 | X2 = 0) 0.001

Pr (X5 = 1 | X2 = 1) 0.999

Pr (X1 = 1) 0.2
Pr (X2 = 1) 0.6
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E [Xj ] = 0.202590419

E [Xi] = 0.202195802

E [X1] = 0.2

E [X2] = 0.6

E [X3] = 0.2006

E [X4] = 0.2006

E [X5] = 0.5998

E [X6] = 0.20279141

Then, the back-door adjustment identifies the causal effect

Pr (Xj = 1 | do (Xi = 0))

=
∑
x3,x4

Pr (Xj = 1 | x3, x4, Xi = 0) Pr (x3, x4)

=
∑
x4,x5

Pr (Xj = 1 | x4, x5, Xi = 0) Pr (x4, x5)

=
∑

x3,x4,x5

Pr (Xj = 1 | x3, x4, x5, Xi = 0) Pr (x3, x4, x5)

= 0.121637881

6= Pr (Xj = 1 | Xi = 0) = 0.001749062

Pr (Xj = 1 | do (Xi = 1))

=
∑
x3,x4

Pr (Xj = 1 | x3, x4, Xi = 1) Pr (x3, x4)

=
∑
x4,x5

Pr (Xj = 1 | x4, x5, Xi = 1) Pr (x4, x5)

=
∑

x3,x4,x5

Pr (Xj = 1 | x3, x4, x5, Xi = 1) Pr (x3, x4, x5)

= 0.679161319

6= Pr (Xj = 1 | Xi = 1) = 0.995050378

E [Xj | do (X = 1)]− E [Xj | do (Xi = 0)]

= 0.557523438

As expected, action (Pr (Y = 1 | do (X = 0))) differs from observation (Pr (Y = 1 | X = x)).

To further explore the robustness of the back-door adjustment, next we
consider a more varied data generating process (DGP) but still consistent with
the DAG in figure 2.2.
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Example 2 (Back-door adjustment – more varied DGP) Suppose Xi,
Xj , and X1 through X6 are binary with more varied conditional distributions
(but consistent with the back-door adjustment DAG in figure 2.2)

Pr (Xj = 1 | X4 = 0, X5 = 0, X6 = 0) 0.2

Pr (Xj = 1 | X4 = 0, X5 = 0, X6 = 1) 0.3

Pr (Xj = 1 | X4 = 0, X5 = 1, X6 = 0) 0.3

Pr (Xj = 1 | X4 = 0, X5 = 1, X6 = 1) 0.2

Pr (Xj = 1 | X4 = 1, X5 = 0, X6 = 0) 0.6

Pr (Xj = 1 | X4 = 1, X5 = 0, X6 = 1) 0.5

Pr (Xj = 1 | X4 = 1, X5 = 1, X6 = 0) 0.5

Pr (Xj = 1 | X4 = 1, X5 = 1, X6 = 1) 0.6

Pr (X6 = 1 | Xi = 0) 0.02

Pr (X6 = 1 | Xi = 1) 0.99

Pr (Xi = 1 | X3 = 0, X4 = 0) 0.1

Pr (Xi = 1 | X3 = 0, X4 = 1) 0.2

Pr (Xi = 1 | X3 = 1, X4 = 0) 0.4

Pr (Xi = 1 | X3 = 1, X4 = 1) 0.5

Pr (X3 = 1 | X1 = 0) 0.1

Pr (X3 = 1 | X1 = 1) 0.8

Pr (X4 = 1 | X1 = 0, X2 = 0) 0.5

Pr (X4 = 1 | X1 = 0, X2 = 1) 0.4

Pr (X4 = 1 | X1 = 1, X2 = 0) 0.2

Pr (X4 = 1 | X1 = 1, X2 = 1) 0.1

Pr (X5 = 1 | X2 = 0) 0.03

Pr (X5 = 1 | X2 = 1) 0.98

Pr (X1 = 1) 0.2
Pr (X2 = 1) 0.6

E [Xj ] = 0.368262963

E [Xi] = 21

E [X1] = 0.2

E [X2] = 0.6

E [X3] = 0.24

E [X4] = 0.38

E [X5] = 0.6

E [X6] = 0.2237

14



Then, the back-door adjustment identifies the causal effect

Pr (Xj = 1 | do (Xi = 0))

=
∑
x3,x4

Pr (Xj = 1 | x3, x4, Xi = 0) Pr (x3, x4)

=
∑
x4,x5

Pr (Xj = 1 | x4, x5, Xi = 0) Pr (x4, x5)

=
∑

x3,x4,x5

Pr (Xj = 1 | x3, x4, x5, Xi = 0) Pr (x3, x4, x5)

= 0.3706816

6= Pr (Xj = 1 | Xi = 0) = 0.365823733

Pr (Xj = 1 | do (Xi = 1))

=
∑
x3,x4

Pr (Xj = 1 | x3, x4, Xi = 1) Pr (x3, x4)

=
∑
x4,x5

Pr (Xj = 1 | x4, x5, Xi = 1) Pr (x4, x5)

=
∑

x3,x4,x5

Pr (Xj = 1 | x3, x4, x5, Xi = 1) Pr (x3, x4, x5)

= 0.3571792

6= Pr (Xj = 1 | Xi = 1) = 0.377439116

E [Xj | do (Xi = 1)]− E [Xj | do (Xi = 0)]

= −0.0135024

6= E [Xj | Xi = 1]− E [Xj | Xi = 0]

= 0.01161538

Again, action (Pr (Y = 1 | do (X = x))) differs from observation (Pr (Y = 1 | X = x)).

2.4 Front-door

Consider the causal graph in figure 2.3.

The above back-door approach is not directly accessible as U is unobservable
(whereas Z = {X3, X4} or Z = {X3, X4, X5} is observable in the example 1),
so we employ a different (front-door) strategy. The joint distribution for this
graph is

Pr (u, x, y, z) = Pr (y | u, x, z) Pr (z | u, x) Pr (x | u) Pr (u)
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Figure 2.3: Front-Door DAG

However, the graph indicates Z only depends on U through X and Z me-
diates between X and Y . Hence, Pr (z | u, x) = Pr (z | x), Pr (y | u, x, z) =
Pr (y | u, z), and

Pr (u, x, y, z) = Pr (y | u, z) Pr (z | x) Pr (x | u) Pr (u)

do (x) removes the path U → X so Pr (x | u) drops out.4

Pr (u, y, z | do (x)) = Pr (y | u, z) Pr (z | x) Pr (u)

Summing over U and Z gives

Pr (y | do (x)) =
∑
z

Pr (z | x)
∑
u

Pr (y | u, z) Pr (u)

Now, we utilize the conditional independence encoded in the graph

Pr (u | x, z) = Pr (u | x)

Pr (y | u, x, z) = Pr (y | u, z)

by writing∑
u

Pr (y | u, z) Pr (u) =
∑
x

∑
u

Pr (y | u, z) Pr (u | x) Pr (x)

=
∑
x

∑
u

Pr (y | u, x, z) Pr (u | x, z) Pr (x)

=
∑
x

∑
u

Pr (y, u | x, z) Pr (x)

=
∑
x

Pr (y | x, z) Pr (x)

4Conditioning on Z does not d-separate X and Y as the path through U is unblocked (or
d-connected via its fork).
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Then, the causal effect of X on Y

Pr (y | do (x)) =
∑
z

Pr (z | x)
∑
u

Pr (y | u, z) Pr (u)

can be expressed, via substitution, purely in terms of observables.

Pr (y | do (x)) =
∑
z

Pr (z | x)
∑
x

Pr (y | x, z) Pr (x) (front-door adj)

This expression is the front-door adjustment. Whenever we have a mediating
variable Z that meets the conditions Pr (x, z) > 0, Pr (u | x, z) = Pr (u | x), and
Pr (y | u, x, z) = Pr (y | u, z) we have a ready nonparametric estimator for the
causal effect of X on Y from observable quantities.
Formally, a set of variables Z is defined a front-door for the ordered pair

(X,Y ) if
(i) Z intercepts all directed paths from X to Y ,
(ii) there is no unblocked back-door path from X to Z, and
(iii) all back-door paths from Z to Y are blocked by X.
The above front-door adjustment can be considered a two-step application

of the back-door adjustment.5 First, the causal effect of X on Z is

Pr (z | do (x)) = Pr (z | x)

since there exists no back-door path to Z. Next, we consider the causal effect
of Z on Y . The back-door path to Z is blocked (d-separated) by X. Hence, the
back-door adjustment is

Pr (y | do (z)) =
∑
x

Pr (y | x, z) Pr (x)

Combining the two yields the above front-door adjustment for the causal effect
of X on Y .

Pr (y | do (x)) =
∑
z

Pr (z | do (x)) Pr (y | do (z))

=
∑
z

Pr (z | x)
∑
x

Pr (y | x, z) Pr (x)

Example 3 (front-door adjustment) Suppose U,X, Y, and Z are binary with
conditional distributions (consistent with the above front-door adjustment DAG

5That the front-door adjustment can be described as a two-step application of the back-
door adjustment allows the front-door adjustment to require no exception to step one in the
adjustment problem described in figure 2.1 (Z should not be a descendant of X).
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2.3)
Pr (Y = 1 | Z = 0, U = 0) 0.45
Pr (Y = 1 | Z = 0, U = 1) 0.65
Pr (Y = 1 | Z = 1, U = 0) 0.4
Pr (Y = 1 | Z = 1, U = 1) 0.6

Pr (X = 1 | U = 0) 0.6
Pr (X = 1 | U = 1) 0.4
Pr (Z = 1 | X = 0) 0.2
Pr (Z = 1 | X = 1) 0.7

Pr (U = 1) 0.6

E [Y ] = 0.492

E [Z] = 0.44

E [X] = 0.48

Then, the front-door adjustment identifies the causal effect

Pr (Z = 1 | do (X = 0)) = Pr (Z = 1 | X = 0)

= 0.2

Pr (Z = 1 | do (X = 1)) = Pr (Z = 1 | X = 1)

= 0.7

Pr (Y = 1 | do (Z = 0)) =
∑
x

Pr (Y = 1 | x, Z = 0) Pr (x)

= 0.58

Pr (Y = 1 | do (Z = 1)) =
∑
x

Pr (Y = 1 | x, Z = 1) Pr (x)

= 0.38

Pr (Y = 1 | do (X = 0)) = E [Y | do (X = 0)]

= (0.8) (0.58) + (0.2) (0.38)

= 0.54

6= E [Y | X = 0]

= 0.544615385

Pr (Y = 1 | do (X = 1)) = E [Y | do (X = 1)]

= (0.3) (0.58) + (0.7) (0.38)

= 0.44

6= E [Y | X = 1]

= 0.435

E [Y | do (X = 1)]− E [Y | do (X = 0)] = −0.10
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If U is observable then U provides a back-door from which the same causal effects
of X on Y are determined.

Pr (Y = 1 | do (X = 0)) =
∑
u

Pr (Y = 1 | u,X = 0) Pr (u)

= 0.54

Pr (Y = 1 | do (X = 1)) =
∑
u

Pr (Y = 1 | u,X = 1) Pr (u)

= 0.44

Figure 2.3 is similar to figure 2.2 if the upper portion is considered unob-
servable (or ignored). This suggests utilizing X6 as a front-door also identifies
the causal effect of Xi on Xj . We demonstrate the result with an example.6

Example 4 (front-door adjustment for example 1) Return to example 1.
Utilize X6 as a front-door to the causal effect of Xi on Xj.∑

xi
Pr (Xj = 1 | X6 = 0, xi) Pr (xi)∑

xi
Pr (Xj = 1 | X6 = 1, xi) Pr (xi)

Pr (X6 = 1 | Xi = 0)
Pr (X6 = 1 | Xi = 1)

Then, the front-door adjustment identifies the causal effect

Pr (X6 = 1 | do (Xi = 0)) = Pr (X6 = 1 | Xi = 0)

= 0.001

Pr (X6 = 1 | do (Xi = 1)) = Pr (X6 = 1 | Xi = 1)

= 0.999

Pr (Xj = 1 | do (X6 = 0)) =
∑
xi

Pr (Xj = 1 | xi, X6 = 0) Pr (xi)

= 0.12107924

Pr (Xj = 1 | do (X6 = 1)) =
∑
xi

Pr (Xj = 1 | xi, X6 = 1) Pr (xi)

= 0.67971996

Pr (Xj = 1 | do (Xi = 0)) = E [Xj | do (Xi = 0)]

= (0.999) (0.12107924) + (0.001) (0.67971996)

= 0.121637881

6= Pr (Y = 1 | X = 0)

= 0.001749062

6Of course, this is true for every probability distriubution consistent with DAG 2.2 includ-
ing example 2.
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Pr (Xj = 1 | do (Xi = 1)) = E [Xj | do (Xi = 1)]

= (0.001) (0.12107924) + (0.999) (0.67971996)

= 0.679161319

6= Pr (Xj = 1 | Xi = 1)

= 0.995050378

E [Xj | do (Xi = 1)]− E [Xj | do (Xi = 0)] = 0.557523438

Of course, the causal effect identified utilizing Z = X6 as a front-door to Xi →
Xj is the same effect identified in example 1 by the back-door Z = {X3, X4} , Z =
{X4, X5} , or Z = {X3, X4, X5}.

2.5 do-calculus rules

The front-door criteria above are actually too stringent. Conditions (ii) and
(iii) can be violated provided there is a covariate to block back-door paths.
For example, in the graph in figure 2.4, Z2 serves as a front-door-like criterion
relative to (X,Z3) provided we condition on Z1. Z1 blocks (d-separates) any
back-door path from X to Z2 as well as from Z2 to Z3. To better accommodate
such variations, Pearl [1995] provides a theorem of do-calculus inference rules.

Figure 2.4: do-calculus DAG

Theorem 1 (do-calculus rules) Let G be the DAG associated with a causal
model and let Pr (·) be the probability distribution induced by the model. For any
disjoint set of variables X,Y, Z, and W the following rules apply.
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Rule 1 (insertion/deletion of observations):

Pr (y | do (x) , z, w) = Pr (y | do (x) , w) if (Y ⊥ Z | X,W )GX

where ⊥ refers to stochastic independence or d-separation in the graph.

Rule 2 (action/observation exchange):

Pr (y | do (x) , do (z) , w) = Pr (y | do (x) , z, w) if (Y ⊥ Z | X,W )GXZ

Rule 3 (insertion/deletion of actions):

Pr (y | do (x) , do (z) , w) = Pr (y | do (x) , w) if (Y ⊥ Z | X,W )G
X,Z(W )

where Z (W ) is the set of Z-nodes that are not ancestors of any W -nodes in
GX .

Rule 1 affi rms d-separation of Z and Y leaves Y conditionally independent of
Z following intervention X = x which corresponds to the subgraph GX . Figure
2.5 provides a simple illustration of do-calculus rule 1 where X d-separates its
parent(s) Z from Y .
The subgraph GXZ only differs from the subgraph GX by eliminating the

direct path Z → Y but leaves the same back-door paths from Z to Y . Rule 2
effectively says that intervention by Z = z has no different effect on Y than pas-
sive conditioning on the evidence Z = z when {X,W} blocks all back-door paths
from Z to Y (in the subgraph GX). Figure 2.6 provides a simple illustration of
do-calculus rule 2.
Consistency of rules 1 and 2 can be tested if we eliminate the bow in figure

2.6 so that X and Z are independent (due to collider Y ) but both are causal
to Y (see figure 2.7). Rule 1 affi rms the independence of X and Z while rule
2 indicates Pr (Y | do (X = x)) = Pr (Y | X = x). To demonstrate internal con-
sistency, suppose we apply the back-door adjustment (even though there is no
back-door into X) to identify action (the causal effect)

Pr (Y | do (X = x)) =
∑
z

Pr (z) Pr (Y | x, z)

while outcome conditional on observation x is

Pr (Y | X = x) =
∑
z

Pr (z | x) Pr (Y | x, z)

However, rule 1 indicates Pr (z | x) = Pr (z) which affi rms rule 2’s implication
in figure 2.7.

Pr (Y | do (X = x)) = Pr (Y | X = x)

The subgraph G
X,Z(W )

corresponds to deleting all equations relating to the
variables Z. Therefore, when this condition is satisfied intervention by Z = z
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Figure 2.5: Rule 1 DAGs

can be eliminated (inserted) without altering Y as stated in rule 3. Figure 2.8
provides a simple illustration of do-calculus rule 3.
Let’s review the relation between our simple DAGs and the do-calculus

rules.7 Since the DAG in figure 2.5 satisfies both rule 1 and rule 2, logically it
also satisfies rule 3 (as is the case). Hence, the probability of Y given {X,W}
is not affected by insertion/deletion of Z observation, exchange of Z observa-
tion/action, or insertion/deletion of Z action.
On the other hand, the DAG in figure 2.6 satisfies rule 2 but not rule 1

or rule 3. There is a direct path from Z to Y in both GX and GXZ . Con-
sequently, the probability of Y given {X,W} is not affected by exchange of Z
observation/action, but it is not necessarily immune to insertion/deletion of Z
observation or Z action.
Similarly, the simple DAG in figure 2.8 satisfies rule 3 but not rule 1 or

rule 2. There is an unblocked back-door path from Z to Y (Z ← U → Y )
in both GX and GXZ . This implies the probability of Y given {X,W} is not
affected by insertion/deletion of Z action, but it is not necessarily immune to

7For simplicity, W = ∅ in these DAGs.
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Figure 2.6: Rule 2 DAGs

insertion/deletion of Z observation or exchange of Z observation/action.8

2.6 Illustration of do-calculus rules

Causal effects are defined in terms of do-calculus but identified only if the in-
tervention probability can be mapped into probabilities over observables only.

2.6.1 do-calculus for figure 2.3

Now, we illustrate the do-calculus rules applied to the identification of various
causal effects in the above (U,X,Z, Y ) front-door adjustment DAG in figure 2.3.

Front-door adjustment Task one: Pr (z | do (x))
Rule 2 applies as X ⊥ Z in GX where the path X ←− U → Y ←− Z is

blocked at the collider Y . Hence, we can directly conclude

Pr (z | do (x)) = Pr (z | x)

8Further discussion of rules 2 and 3 by reference to augmented DAGs is reported in the
appendix.
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Figure 2.7: DAG illustrating rules 1 and 2

Task two: Pr (y | do (z))
We cannot exchange do (z) with z as rule 2 does not directly apply since

there is a back-door path from Z to Y in GZ : Z ←− X ←− U −→ Y . We can
block this path by conditioning and summing over all values of X.

Pr (y | do (z)) =
∑
x

Pr (y | x, do (z)) Pr (x | do (z))

For the latter term on the right-hand side, we employ rule 3 for action deletion

Pr (x | do (z)) = Pr (x)

since X and Z are d-separated in GZ where again the path X ←− U → Y ←− Z
is blocked at the collider Y . For the former term on the right-hand side, we
utilize rule 2

Pr (y | x, do (z)) = Pr (y | x, z)
since X d-separates Z from Y in GZ . Putting this together gives

Pr (y | do (z)) =
∑
x

Pr (y | x, z) Pr (x)

= EX [Pr (y | x, z)]

Task three: Pr (y | do (x))

Pr (y | do (x)) =
∑
z

Pr (y | z, do (x)) Pr (z | do (x))
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Figure 2.8: Rule 3 DAGs

Task one reduced the latter term on the right-hand side

Pr (z | do (x)) = Pr (z | x)

but we have no rule to eliminate do (x) in the former term.9 However, rule 2
allows us to add do (z) since the condition (Y ⊥ Z | X)GXZ is satisfied. Then,
we can delete the action do (x) using rule 3 since (Y ⊥ X | Z)GXZ applies. This
leads to

Pr (y | z, do (x)) = Pr (y | do (z) , do (x))

= Pr (y | do (z))

Task two indicates

Pr (y | do (z)) =
∑
x

Pr (y | x, z) Pr (x)

9Suppose rule 3 did not include the provision Z (W ) but rather was simply Z. Then,
Pr (y | z, do (x)) = Pr (y | z) and Pr (y | do (x)) would reduce to

∑
z Pr (z | x) Pr (y | z). An

inconsistency that fails to account for the unblockable back-door unless the bow is eliminated
from the DAG.
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Putting everything together we have the front-door adjustment

Pr (y | do (x)) =
∑
z

Pr (z | x)
∑
x′

Pr
(
y | x

′
, z
)

Pr
(
x
′
)

Task four: Pr (y, z | do (x))

Pr (y, z | do (x)) = Pr (y | z, do (x)) Pr (z | do (x))

Both right-hand side terms were utilized in task three from which we obtain

Pr (y, z | do (x)) = Pr (z | x)
∑
x′

Pr
(
y | x

′
, z
)

Pr
(
x
′
)

Task five: Pr (y, x | do (z))

Pr (y, x | do (z)) = Pr (y | x, do (z)) Pr (x | do (z))

= Pr (y | x, z) Pr (x | z)

The first term on the right-hand side derives from rule 2 in subgraph GZ and
the second term from rule 3 as applied in task two.

Back-door adjustment If U is observable then we can employ a back-door
adjustment where U supplies the back-door.10

Pr (y | do (x)) =
∑
u

Pr (y | u, do (x)) Pr (u | do (x))

Task one: Pr (u | do (x))
By rule 3 (U ⊥ X | ∅)GX as Y is a collider and d-separates U and X in GX

or X → Z → Y ← U . Hence, Pr (u | do (x)) = Pr (u).
Task two: Pr (y | u, do (x))
By rule 2 (Y ⊥ X | U)GX as conditioning on U d-separates Y and X in GX

or Z → Y ← U → X. Therefore, Pr (y | u, do (x)) = Pr (y | u, x)
Task three: Pr (y | do (x))
Putting tasks one and two together gives the back-door adjustment

Pr (y | do (x)) =
∑
u

Pr (y | u, do (x)) Pr (u | do (x))

=
∑
u

Pr (y | u, x) Pr (u)

10We only present this hypothetical case to illustrate consistency of the do-calculus rules.
U is unobservable ruling out this identification strategy in practice.
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2.6.2 do-calculus for figure 2.2

Back-door adjustment We present the do-calculus rules for the back-door
adjustment involving the two minimal sets Z = {X3, X4} and Z = {X4, X5} or
their union Z = {X3, X4, X5} for identifying the causal effect of Xi on Xj .

Pr (xj | do (xi)) =
∑
z

Pr (xj | z, do (xi)) Pr (z | do (xi))

Task one: Pr (z | do (xi))
By rule 3 (Z ⊥ X | ∅)GX as Y is a collider and d-separates Z = {X3, X4} , Z =

{X4, X5} , or Z = {X3, X4, X5} and X in GX (refer to the subgraphs in figure
1.1). Hence, Pr (x3, x4 | do (xi)) = Pr (x3, x4).
Task two: Pr (xj | z, do (xi))
By rule 2 (Xj ⊥ Xi | Z)GX as conditioning on Z = {X3, X4} , Z = {X4, X5} ,

or Z = {X3, X4, X5} d-separates Y andX inGX . Therefore, Pr (xj | z, do (xi)) =
Pr (xj | u, xi)
Task three: Pr (xj | do (xi))
Putting tasks one and two together gives the back-door adjustment

Pr (xj | do (xi)) =
∑
z

Pr (xj | z, do (xi)) Pr (z | do (xi))

=
∑
x3

∑
x4

Pr (xj | x3, x4, xi) Pr (x3, x4)

or

Pr (xj | do (xi)) =
∑
z

Pr (xj | z, do (xi)) Pr (z | do (xi))

=
∑
x4

∑
x5

Pr (xj | x4, x5, xi) Pr (x4, x5)

or

Pr (xj | do (xi)) =
∑
z

Pr (xj | z, do (xi)) Pr (z | do (xi))

=
∑
x3

∑
x4

∑
x5

Pr (xj | x3, x4, x5, xi) Pr (x3, x4, x5)

2.6.3 Front-door adjustment

The front-door do-calculus for figure 2.2 is the same as tasks one through three
for figure 2.3 where Xj replaces Y , Xi replaces X, X6 replaces Z, and X1

through X5 are ignored like U .

2.7 Identifiable and nonidentifiable

Identification of the causal effect of X on Y is essentially determined by back-
door and front-door adjustments. The graphs in figure 2.9 represent identifiable
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Figure 2.9: DAGs involving identifiable causal effects of X on Y

causal effects of X on Y . Dashed arcs (bows) represent confounding by unob-
served variables while Z and W represent observed covariates.

For the graphs in figure 2.10 with bows, the causal effect of X on Y is
nonidentifiable.

Note, the difference between the nonidentifiable DAG in figure 2.10 (a) and
the identifiable DAG in figure 2.9 (e) is the front-door adjustment (or two rounds
of back-door adjustments) utilizes covariate Z for identification whereas Z is
missing when the causal effect is nonidentifiable. This typifies the nonparametric
identification problem. Additional details follow.

2.7.1 Identifiable DAGs

The causal effect of X on Y in figure 2.9(a) is identified by do-calculus rule 2
where X is d-separated from Y in GX leading to

Pr (y | do (x)) = Pr (y | x)

Also, X d-separates its parents, pa (X) = ∅, from Y (an application of rule 2)
implying observation equals action.
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Figure 2.10: DAGs involving nonidentifiable causal effects of X on Y

The causal effect of X on Y in figure 2.9(b) is also identified by do-calculus
rule 2 where X is d-separated from Y in GX leading to

Pr (y | do (x)) = Pr (y | x)

Again, X is a root and d-separates its parents, pa (X) = ∅, from Y implying
observation equals action.
The causal effect of X on Y in figures 2.9(c) and (d) involve a classic back-

door adjustment utilizing Z.

Pr (y | do (x)) =
∑
z

Pr (y | do (x) , z) Pr (z | do (x))

=
∑
z

Pr (y | x, z) Pr (z)

where Pr (z | do (x)) = Pr (z) by rule 3 since Y is a collider making (Z⊥X | ∅)GX

and Pr (z | do (x)) = Pr (z). Also, by rule 2 (Y⊥X | Z)GX
as Z d-separates X

and Y . implying Pr (y | do (x) , z) = Pr (y | x, z). Substitution gives the back-
door adjustment.
The causal effect of X on Y in figure 2.9(e) is resolved, as discussed in detail

earlier, by front-door adjustment utilizing Z.

Pr (y | do (x)) =
∑
z

Pr (z | x)
∑
x′

Pr
(
y | x

′
, z
)

Pr
(
x
′
)
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The causal effect of X on Y in figure 2.9(f) involves a back-door adjustment
utilizing covariates {Z1, Z2}.

Pr (y | do (x)) =
∑
z1

∑
z2

Pr (y | do (x) , z1, z2) Pr (z2 | do (x) , z1)

×Pr (z1 | do (x))

Step 1: Use rule 2 to exchange do (X) with X where (Y⊥X | Z1, Z2)GX
as

Z1 and Z2 d-separate Y and X. This makes

Pr (y | do (x) , z1, z2) = Pr (y | x, z1, z2)

Step 2a: We can’t directly eliminate do (x) in Pr (z2 | do (x) , z1)
11 but we

can insert do (z1) by rule 2. (Z2⊥Z1 | X)GXZ1

where Y (a collider) d-separates

Z1 and Z2 in GXZ1 implies

Pr (z2 | do (x) , z1) = Pr (z2 | do (x) , do (z1))

Step 2b: Now, rule 3 allows elimination of do (x) as (Z2⊥X | Z1)GZ1X
where

again Y is a collider producing d-separation ofX and Z2 inGZ1X . This produces

Pr (z2 | do (x) , do (z1)) = Pr (z2 | do (z1))

Step 2c: We can’t directly replace action with observation as there is an
unblocked back-door path between Z1 and Z2 in GZ1 . However, we can block
this path by conditioning and summing over X.

Pr (z2 | do (z1)) =
∑
x

Pr (z2 | x, do (z1)) Pr (x | do (z1))

Rule 2 now applies as (Z1⊥Z2 | X)GZ1
so that the first term is

Pr (z2 | x, do (z1)) = Pr (z2 | x, z1)

The second term is resolved by rule 3 as (X⊥Z1)GZ1

. Thus,

Pr (x | do (z1)) = Pr (x)

and
Pr (z2 | do (z1)) =

∑
x

Pr (z2 | x, z1) Pr (x)

Step 3:Rule 2 replaces action with observation as (Z1⊥X)GX
where Z2 and

Y serve as colliders with respect to X and Z1. Hence,

Pr (z1 | do (x)) = Pr (z1 | x)

11Since X is an ancestor to Z1 and Z2 rule 3 involves GX(Z) equivalent to G.
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Step 4: Combining and summing produces the back-door adjustment

Pr (y | do (x)) =
∑
z1

∑
z2

Pr (y | do (x) , z1, z2) Pr (z1 | do (x))

×Pr (z2 | do (x) , z1)

=
∑
z1

∑
z2

Pr (y | x, z1, z2) Pr (z1 | x)
∑
x′

Pr
(
z2 | x

′
, z1

)
Pr
(
x
′
)

The causal effect of X on Y in figure 2.9(g) involves a front-door adjustment
utilizing Z = {Z1} and back-door blocking covariates W = {Z2, Z3}.
Step 1: Apply rule 2 to GX for the X → Z component. Since Y (a collider)

and W combine to d-separate X from Z, (Z⊥X |W )GX
, then

Pr (z | do (x) , w) = Pr (z | x,w)

Step 2: The Z → Y component is

Pr (y | do (z) , w) =
∑
x

Pr (y | x, do (z) , w) Pr (x | do (z) , w)

The second term is resolved by rule 3 where (Z⊥X |W )GZ
, thus

Pr (x | do (z) , w) = Pr (x | w)

The first term is
Pr (y | x, do (z) , w) = Pr (y | x, z, w)

by rule 2 where (Y⊥Z |W )GZ
as X and W block all back-door paths between

Z and Y . Hence,

Pr (y | do (z) , w) =
∑
x

Pr (y | x, z, w) Pr (x | w)

The causal effect of interest is

Pr (y | do (x)) =
∑
w

∑
z

Pr (y | do (x) , z, w) Pr (z | do (x) , w)

×Pr (w | do (x))

Step 3: The last term is

Pr (w | do (x)) = Pr (w)

by rule 3 where (W⊥X | ∅)GX
as Z1 is a collider with respect to X and Z2.

Step 4: The leading component summed over Z is

Pr (y | do (x) , w) =
∑
z

Pr (y | do (x) , z, w) Pr (z | do (x) , w)
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The latter term we earlier resolved by rule 2

Pr (z | do (x) , w) = Pr (z | x,w)

Rule 2 provides

Pr (y | do (x) , z, w) = Pr (y | do (x) , do (z) , w)

and rule 3 indicates X is d-separated from Y or (Y⊥X | Z,W )GZX
, thus

Pr (y | do (x) , do (z) , w) = Pr (y | do (z) , w)

Earlier we resolved

Pr (y | do (z) , w) =
∑
x

Pr (y | x, z, w) Pr (x | w)

Step 5: Putting everything together we have identication of the causal effect
of X on Y via the front-door adjustment.

Pr (y | do (x)) =
∑
w

∑
z

Pr (y | do (x) , z, w) Pr (z | do (x) , w) Pr (w | do (x))

=
∑
w

∑
z

Pr (z | x,w)
∑
x′

Pr (y | x′, z, w) Pr (x′ | w) Pr (w)

2.7.2 Nonidentifiable DAGs

The causal effect of X on Y in figure 2.10(a) is not identifiable as there is no
front-door and because U (the bidirectional bow) is an unobservable back-door
that confounds identifying the direct effect of X on Y . Further, there are no
other observables that might allow identification of conditional causal effects.
The causal effect of X on Y in figure 2.10(b) is not identifiable as the portion

of the front-door adjustment referring to Pr (Z | do (x)) is confounded by the
unobservable bow similar to figure 2.10(a). However, combined or conditional
action do (X = x) and do (Z = z) on Y is identified. By rule 2 (Y ⊥ X | Z)GZX

and (Y ⊥ Z | X)GZ
so that

Pr (y | do (x) , do (z)) = Pr (y | do (x) , z)

= Pr (y | x, do (z))

= Pr (y | x, z)

We refer to this as a conditional causal effect (X → Y | Z).
The causal effect of X on Y in figure 2.10(c) is not identifiable because

of the unblockable back-door bow into X. While similar to figure 2.9(b) the
difference in unobservables (or bows) confounds identification in figure 2.10(c).
It may appear that Z can be employed to block the back-door. However, action
Pr (z | do (x)) cannot be translated into observation (by either rule 2 or rule 3)
so point identification of Pr (y | do (x)) via the back-door adjustment fails.
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Nonetheless, similar to figure 2.10(b), conditional action do (X = x) and
do (Z = z) on Y , or conditional causal effect (X → Y | Z), is identified for figure
2.10(c). By rule 2 (Y ⊥ X | Z)GZX

and (Y ⊥ Z | X)GZ
so that

Pr (y | do (x) , do (z)) = Pr (y | do (x) , z)

= Pr (y | x, do (z))

= Pr (y | x, z)

The causal effect of X on Y in figure 2.10(d) is not identifiable since the
two bows combine to create a back-door into X that cannot be blocked by Z, a
collider with respect to the two bows. The confounding is completed by the bow
between X and Z along with Z → Y creates a back-door path which can only be
blocked by conditioning on Z but conditioning on Z d-connects the back-door
path created by the two bows. The causal effect of X on Y is confounded.

We cannot even identify a conditional causal effect for figure 2.10(d). Con-
ditional on do (Z = z), we can exchange action do (X = x) with observation as
(Y ⊥ X | Z)GZX

. However, we cannot exchange action do (Z = z) with obser-

vation even conditional on do (X = x) since there is no subgraph in which Y
and Z are conditionally independent.
The causal effect of X on Y in figure 2.10(e) is confounded similarly to that

in figure 2.10(d). Z → X along with the bow between Z and Y creates a
back-door path blocked by conditioning on Z but conditioning on Z (a collider
with respect to the two bows) creates a back-door path through the two bows.
Hence, the causal effect of X on Y is confounded.
Again, we cannot identify a conditional causal effect for figure 2.10(e). Con-

ditional on do (Z = z), we can exchange action do (X = x) with observation as
(Y ⊥ X | Z)GZX

. However, we cannot exchange action do (Z = z) with observa-

tion even conditional on do (X = x). We could delete do (Z = z) conditional on
do (X = x) but we need to delete do (Z = z) conditional on observation X = x
but cannot since Z is ancestor to X leaving subgraph G

Z(X)
equivalent to G.

The causal effect of X on Y in figure 2.10(f) is confounded similarly to
figure 2.10(b). In this case it is the portion of the front-door adjustment to
Pr (Y | do (z)) in which a back-door bow exists to prevent identification.
We cannot identify a conditional causal effect for figure 2.10(f). No sub-

graphs permit replacement of action do (X = x) or do (Z = z) with observation.
While we can delete action do (X = x) conditional on do (Z = z), we cannot
replace action do (Z = z).
The causal effect of X on Y in figure 2.10(g) is not identifiable similarly to

figure 2.10(b). The front-door Z1 requires a back-door covariate Z2 but Z2 is a
collider with respect to the two bows and conditioning on Z2 creates a back-door
through the two bows with respect to Pr (Z1 | do (x)). Hence, the causal effect
of X on Y is inescapably confounded.
Similar to figures 2.10(b) and (c), conditional action do (X = x) and do (Z = z)

on Y , or conditional causal effect (X → Y | Z), is identified for figure 2.10(g)
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where Z = {Z1, Z2}. By rule 2 (Y ⊥ X | Z)GZX
and (Y ⊥ Z | X)GZ

so that

Pr (y | do (x) , do (z)) = Pr (y | do (x) , z)

= Pr (y | x, do (z))

= Pr (y | x, z)

The causal effect of X on Y in figure 2.10(h) is confounded similarly to figure
2.10(g). The front-door W requires a back-door covariate Z but Z is a collider
with respect to the two bows and conditioning on Z creates a back-door through
the two bows with respect to Pr (W | do (x)). Hence, the causal effect of X on
Y is inescapably confounded. Further, no combination of action X and action
or covariate W and/or Z identifies a conditional causal effect for figure 2.10(h).

To this point, we’ve confined attention to DAGs and nonparametric identifi-
cation of causal effects. Next, we explore causal effects for a parametric, linear
model involving a cyclic graph.

3 Structural models and counterfactuals

Structural models are fundamentally linked to causal graphs. Invariant func-
tional relations are represented by arcs in the graph. Pearl [2010] describes three
hierarchical elements to causal effects: action, prediction, and counterfactual.
We illustrate these ideas via a simple model of economic equilibrium.
Consider the following system of Gaussian-linear equations depicting supply

and demand for a product (Goldberger [1992]).

q = b1p+ d1i+ u1

p = b2q + d2w + u2

where q is household demand for the product, p is the unit price for the product,
i is household income, w is the wage rate for producing the product, and u1
and u2 are error terms – unobserved or omitted terms associated with supply
and demand for the product. The cyclic graph represented by this system is in
figure 3.1.

As I and W are exogenous while Q and P are endogenous, we can rewrite
the system of equations12

Y = AY + ε

or
(I2 −A)Y = ε

12Since household income is denoted I, the identify matrix (also denoted I) is subscripted
by its dimension.
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Figure 3.1: Equilibrium DAG

where

Y =

[
Q

P

]
,

A =

[
0 b1

b2 0

]
,

and

ε = DI (X + U) =

[
d1I + U1

d2W + U2

]
for

DI =
[
D I2

]
=

[
d1 0 1 0

0 d2 0 1

]
,

X =

[
I
W

]
,

U =

[
U1
U2

]
Then,

Y = (I2 −A)
−1
ε

where
E [Y ] = (I2 −A)

−1
E [ε]

and

V ar [Y ] = ΣY Y = (I2 −A)
−1
DIΣεεD

T
I

(
(I2 −A)

−1
)T
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for

Σεε =

[
ΣXX ΣXU

ΣUX ΣUU

]

=


σ2I 0 0 0

0 σ2W 0 0

0 0 σ2U1 0

0 0 0 σ2U2


3.1 Joint distribution for (Y,X, U)

The joint distribution of

 Y

X

U

 is multivariate normal with mean vector



E [Q]

E [P ]

E [I]

E [W ]

E [U1]

E [U2]


and variance

 ΣY Y ΣY X ΣY U

ΣXY ΣXX ΣXU

ΣUY ΣUX ΣUU

 where
ΣY Y

= (I2 −A)
−1
DIΣεεD

T
I

(
(I2 −A)

−1
)T

=
1

(1− b1b2)2
×[

σ2U1 + b21σ
2
U2

+ d21σ
2
I + b21d2σ

2
W b2σ

2
U1

+ b1σ
2
U2

+ b2d
2
1σ

2
I + b1d

2
2σ

2
W

b2σ
2
U1

+ b1σ
2
U2

+ b2d
2
1σ

2
I + b1d

2
2σ

2
W b22σ

2
U1

+ σ2U2 + b22d
2
1σ

2
I + d22σ

2
W

]

ΣY X = (I2 −A)
−1
DΣXX

=
1

1− b1b2

[
d1σ

2
I b1d2σ

2
W

b2d1σ
2
I d2σ

2
W

]

ΣY U = (I2 −A)
−1

ΣUU

=
1

1− b1b2

[
σ2U1 b1σ

2
U2

b2σ
2
U1

σ2U2

]
Then, for example, conditioning on observation of I = i and W = w leads

to

E [Y | I = i,W = w] = E [Y ] + ΣY XΣ−1XX

([
i

w

]
− E

[
I

W

])
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3.2 Action, prediction, counterfactual queries

We pose three questions.
1. What is expected demand Q if price is controlled at P = p0? [action]
2. What is expected demand Q if price is reported at P = p0? [prediction]
3. Given a current price P = p0, what is expected demand Q if we were to

control the price at P = p1? [counterfactual]
The first query (intervention prior to observation) involves do (P = p0) and

changes the equations (eliminates paths from ancestors to P in the graph; that

is, Q
b2→ P , W

d2→ P , and U2 → P are effectively removed from the graph) to

q = b1p0 + d1i+ u1

p = p0

Expected demand given I = i and do (P = p0) is

E [Q | do (P = po) , I = i] = b1p0 + d1i+ E [U1 | I = i]

Since U1 and I are independent (depicted in the graph),

E [U1 | I = i] = E [U1]

E [U1] = E [Q]− b1E [P ]− d1E [I]

and

E [Q | do (P = po) , I = i] = E [Q] + b1 (p0 − E [P ]) + d1 (i− E [I]) (action)

The second query (observation without intervention) is more standard in the
econometrics literature and fundamentally different from the first.

E [Q | P = po, I = i,W = w] = b1p0 + d1i+ E [U1 | P = po, I = i,W = w]
(prediction)

where for the joint distribution assigned

E [U1 | P = po, I = i,W = w]

=
b2σ

2
U1
{b2E [Q] + p0 − E [P ]− d2 (w − E [W ])− b2 (b1p0 + d1i)}

b22σ
2
U1

+ σ2U2

+
σ2U2 {E [Q]− b1E [P ]− d1E [I]}

b22σ
2
U1

+ σ2U2

Unlike query one, p0 affects Q (through E [U1 | P = po, I = i,W = w]) even
when b1 = 0.
Clearly, upon observing and conditioning on P = p0, U is no longer indepen-

dent of X. This is confirmed by d-connectedness/d-separation from the graph.
For Z = ∅, U1 is d-separated from I (as well asW and U2) and U2 is d-separated
from W (as well as I and U1). Hence, these variables are unconditionally un-
correlated as expressed in Σεε. However, P is a collider and conditioning on P
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d-connects all variables. Consequently, all of these variables have nonzero corre-
lation (unless the appropriate coeffi cient, b1, d1, or d2, equals zero) as indicated
by their variance conditional on P .

ΣIWU1U2|P =

1

b22σ
2
U1

+ σ2U2 + b22d
2
1σ

2
I + d22σ

2
W

×
α1 −b2d1d2σ2Iσ2W −b22d1σ2U1σ

2
I −b2d1σ2U2σ

2
I

−b2d1d2σ2Iσ2W α2 −b2d2σ2U1σ
2
W −d2σ2U2σ

2
W

−b22d1σ2U1σ
2
I −b2d2σ2U1σ

2
W α3 −b2σ2U1σ

2
U2

−b2d1σ2U2σ
2
I −d2σ2U2σ

2
W −b2σ2U1σ

2
U2

α4


where

α1 = σ2I(b
2
2σ

2
U1 + σ2U1 + d22σ

2
w)

α2 = σ2W (σ2U2 + b22(σ
2
U1 + d21σ

2
I))

α3 = σ2U1(σ
2
U2 + b22d

2
1σ

2
I + d22σ

2
W )

and
α4 = σ2U2(b

2
2(σ

2
U1 + d21σ

2
I) + d22σ

2
W )

The third query (observation followed by intervention) asks the counterfac-
tual expectation of QP=p1 conditional on observing (P = po, I = i,W = w).

E [QP=p1 | P = po, I = i,W = w] = b1p1 + d1i+ E [U1 | P = po, I = i,W = w]
(counterfactual)

where everything is the same as for query two except b1p0 is replaced by b1p1.

4 Partial compliance and bounding

Suppose treatment is randomly assigned and indicated by Z (independent of
other factors U , X is a collider, – Z serves as an instrumental variable), X
indicates treatment received, and Y is observed outcome as depicted by the
causal graph in figure 4.1.

Imperfect compliance can lead to partial (rather than point) identification
(upper and lower bounds) of the causal effect.
Consider the case where X, Y , and Z are binary, z1 (z0) indicates treatment

is assigned (not assigned), x1 (x0) indicates treatment is administered (not ad-
ministered), y1 (y0) indicates a positive (negative) response. U , on the other
hand, may combine discrete and continuous (unspecified) random variables.
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Figure 4.1: Partial compliance DAG

The joint distribution decomposes as

Pr (y, x, z, u) = Pr (y | x, z, u) Pr (x | z, u) Pr (z | u) Pr (u)

Since Z is related to Y only throughX, and Z and U are marginally independent
(X is a collider) we have

Pr (y | x, z, u) = Pr (y | x, u)

and
Pr (z | u) = Pr (z)

Therefore, the decomposition becomes

Pr (y, x, z, u) = Pr (y | x, u) Pr (x | z, u) Pr (z) Pr (u)

which is still unobservable as U is unobserved. However, the conditional distri-
butions are observable

Pr (y, x | zj) =
∑
u

Pr (y | x, u) Pr (x | zj , u) Pr (u) , j = 0, 1

With imperfect compliance, our challenge is to bound the quantities of in-
terest based on the observable distributions Pr (y, x | z0) and Pr (y, x | z1). We
try to utilize these distributions along with do-calculus rule 2 to address the
unobservable causal effects

Pr (y1 | do (xj)) =
∑
u

Pr (y1 | do (xj) , u) Pr (u | do (xj))

=
∑
u

Pr (y1 | do (xj) , u) Pr (u)

=
∑
u

Pr (y1 | xj , u) Pr (u)
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The second line follows from rule 3 as (X ⊥ U | ∅)GX
where Y is a collider. The

last line employs rule 2 where (Y ⊥ X | U)GX
. Then, we attempt to identify

the average change in Y due to treatment (the average causal effect) from these
distributions.

ACE (X → Y ) = Pr (y1 | do (x1))− Pr (y1 | do (x0))

=
∑
u
{Pr (y1 | x1, u)− Pr (y1 | x0, u)}Pr (u)

Unfortunately, causal effects cannot be directly addressed as the (back-door
adjustment) equation involves unobservables, U . As a result we’re left to work
with the observable conditional distributions. This connection involves multiple
steps, bear with us.
The structural equation associated with two binary variables is

y = f (x, u)

which simplifies to four possible cases.

f0 : y = 0

f1 : y = x

f2 : y 6= x

f3 : y = 1

where regardless of its rich composition, U simply combines with binary X to
produce binary Y .

4.1 Canonical representation for U

Let the variable Rx represent compliance behavior where rx = 0, 1, 2, 3 repre-
sents a never-taker, complier, defier, and always-taker, respectively. Then,

x = fX (z, xr) =

x0 if rx = 0,
x0 if rx = 1 and Z = z0,
x1 if rx = 1 and Z = z1,
x1 if rx = 2 and Z = z0,
x0 if rx = 2 and Z = z1,
x1 if rx = 3

Likewise, the variable Ry represents response behavior to treatment where
ry = 0, 1, 2, 3 represents never-recover, helped, harmed, always-recover.

y = fY (x, yr) =

y0 if ry = 0,
y0 if ry = 1 and X = x0,
y1 if ry = 1 and X = x1,
y1 if ry = 2 and X = x0,
y0 if ry = 2 and X = x1,
y1 if ry = 3
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These mapping variables replace U in the graph depicted in figure 4.2 where
the double arrow (bow) between Rx and Ry indicates they may not be indepen-
dent.

Figure 4.2: Canonical representation for U

Since
Pr (y1 | do (x1)) = Pr (ry = 1) + Pr (ry = 3)

and
Pr (y1 | do (x0)) = Pr (ry = 2) + Pr (ry = 3)

the average causal effect of treatment is

ACE (X → Y ) = Pr (y1 | do (x1))− Pr (y1 | do (x0))

= Pr (ry = 1)− Pr (ry = 2)

4.2 Natural bounds

Pearl [1995] identifies natural bounds for the average causal effect, ACE (X → Y ).13

Pr (y1 | z1)− Pr (y1 | z0)− Pr (y1, x0 | z1)− Pr (y0, x1 | z0)
≤ ACE (X → Y ) ≤

Pr (y1 | z1)− Pr (y1 | z0) + Pr (y0, x0 | z1) + Pr (y1, x1 | z0)

The natural lower bound is success following compliant treatment

min Pr (y1 | do (x1)) = Pr (y1 | z1)− Pr (y1, x0 | z1)
= Pr (y1, x1 | z1)

13See the appendix for a sketch of Pearl’s proof for the natural bounds on ACE (X → Y ).
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less the complement of failure following compliant nontreatment

max Pr (y1 | do (x0)) = Pr (y1 | z0) + Pr (y0, x1 | z0)
= 1− Pr (y0, x0 | z0)

The natural upper bound is analogous. It leads with the complement to
failure following compliant treatment

max Pr (y1 | do (x1)) = Pr (y1 | z1) + Pr (y0, x0 | z1)
= 1− Pr (y0, x1 | z1)

then subtracts success following compliant nontreatment

min Pr (y1 | do (x0)) = Pr (y1 | z0)− Pr (y1, x1 | z0)
= Pr (y1, x0 | z0)

The width of the natural bounds is determined by the rate of noncompliance
Pr (x1 | z0) + Pr (x0 | z1).

upper bound − lower bound

= {Pr (y1 | z1)− Pr (y1 | z0) + Pr (y0, x0 | z1) + Pr (y1, x1 | z0)}
−{Pr (y1 | z1)− Pr (y1 | z0)− Pr (y1, x0 | z1)− Pr (y0, x1 | z0)}

= {Pr (y0, x0 | z1) + Pr (y1, x1 | z0)} − {−Pr (y1, x0 | z1)− Pr (y0, x1 | z0)}

Summing over Y produces the width on the bounds.

{Pr (y0, x0 | z1) + Pr (y1, x0 | z1)}+ {Pr (y1, x1 | z0) + Pr (y0, x1 | z0)}
= Pr (x0 | z1) + Pr (x1 | z0)

Or

upper bound − lower bound

= {1− Pr (y0, x1 | z1)− Pr (y1, x0 | z0)}
−{Pr (y1, x1 | z1)− [1− Pr (y0, x0 | z0)]}

= {1− Pr (y0, x1 | z1)− Pr (y1, x1 | z1)}
−{Pr (y1, x0 | z0)− [1− Pr (y0, x0 | z0)]}

= {1− Pr (x1 | z1)} − {Pr (x0 | z0)− 1}
= {Pr (x0 | z1)}+ {Pr (x1 | z0)}

4.3 Linear programming bounds

We can tighten these bounds if we formulate upper and lower bounds on the
average causal effect of treatment via a linear objective function subject to linear
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constraints, thus, a linear programming formulation for the bounds (Balke and
Pearl [1997]). The conditional distributions Pr (y, x | zj) , j = 0, 1 can be written

p00.0 = Pr (y0, x0 | z0) , p00.1 = Pr (y0, x0 | z1) ,
p01.0 = Pr (y0, x1 | z0) , p01.1 = Pr (y0, x1 | z1) ,
p10.0 = Pr (y1, x0 | z0) , p10.1 = Pr (y1, x0 | z1) ,
p11.0 = Pr (y1, x1 | z0) , p11.1 = Pr (y1, x1 | z1)

Now, let the joint probability Pr (rx, ry) be written

qjk = Pr (rx = j, ry = k) , j, k = 0, 1, 2, 3

This leads to

Pr (y1 | do (x1)) = Pr (ry = 1) + Pr (ry = 3)

= q01 + q11 + q21 + q31 + q03 + q13 + q23 + q33

and

Pr (y1 | do (x0)) = Pr (ry = 2) + Pr (ry = 3)

= q02 + q12 + q22 + q32 + q03 + q13 + q23 + q33

Equality constraints can be written Rq = p

p00.0 = q00 + q01 + q10 + q11, p00.1 = q00 + q01 + q20 + q21,
p01.0 = q20 + q22 + q30 + q32, p01.1 = q10 + q12 + q30 + q32,
p10.0 = q02 + q03 + q12 + q13, p10.1 = q02 + q03 + q22 + q23,
p11.0 = q21 + q23 + q31 + q33, p11.1 = q11 + q13 + q31 + q33

The linear program for the lower bound on Pr (y1 | do (x1)) is14

min
q≥0

q01 + q11 + q21 + q31 + q03 + q13 + q23 + q33

s.t. Rq = p
3∑
j=0

3∑
k=0

qjk = 1

The solution for the lower bound on Pr (y1 | do (x1)) can be expressed

Pr (y1 | do (x1)) ≥ max


p11.1,
p11.0,

−p00.0 − p01.0 + p00.1 + p11.1,
−p01.0 − p10.0 + p10.1 + p11.1


The upper bound on Pr (y1 | do (x1)) is

Pr (y1 | do (x1)) ≤ min


1− p01.1,
1− p01.0,

p00.0 + p11.0 + p10.1 + p11.1,
p10.0 + p11.0 + p00.1 + p11.1,


14There are seven linearly independent equations in the constraints for both the primal

and dual programs. See the appendix for details on the derivation of the linear programming
bounds.
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The linear program for the lower bound on Pr (y1 | do (x0)) is

min
q≥0

q02 + q12 + q22 + q32 + q03 + q13 + q23 + q33

s.t. Rq = p
3∑
j=0

3∑
k=0

qjk = 1

The solution for the lower bound on Pr (y1 | do (x0)) can be expressed

Pr (y1 | do (x0)) ≥ max


p10.1,
p10.0,

p10.0 + p11.0 − p00.1 − p11.1,
p01.0 + p10.0 − p00.1 − p01.1


The upper bound on Pr (y1 | do (x0)) is

Pr (y1 | do (x0)) ≤ min


1− p00.1,
1− p00.0,

p01.0 + p10.0 + p10.1 + p11.1,
p10.0 + p11.0 + p01.1 + p10.1,


Since the average causal effect is the difference between these two quantities,

bounds for ACE (X → Y ) can be found based on the above. The lower bound
for ACE (X → Y ) is

ACE (X → Y )lower = Pr (y1 | do (x1))lower − Pr (y1 | do (x0))upper

= max


p11.1,
p11.0,

−p00.0 − p01.0 + p00.1 + p11.1,
−p01.0 − p10.0 + p10.1 + p11.1


−min


1− p00.1,
1− p00.0,

p01.0 + p10.0 + p10.1 + p11.1,
p10.0 + p11.0 + p01.1 + p10.1,


while the upper bound for ACE (X → Y ) is

ACE (X → Y )upper = Pr (y1 | do (x1))upper − Pr (y1 | do (x0))lower

= min


1− p01.1,
1− p01.0,

p00.0 + p11.0 + p10.1 + p11.1,
p10.0 + p11.0 + p00.1 + p11.1,


−max


p10.1,
p10.0,

p10.0 + p11.0 − p00.1 − p11.1,
p01.0 + p10.0 − p00.1 − p01.1


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Alternatively, the average causal effect can be written

ACE (X → Y ) = Pr (ry = 1)− Pr (ry = 2)

= q01 + q11 + q21 + q31 − (q02 + q12 + q22 + q32)

Then, the linear program for the lower bound is

min
q≥0

q01 + q11 + q21 + q31 − (q02 + q12 + q22 + q32)

s.t. Rq = p
3∑
j=0

3∑
k=0

qjk = 1

The solution for the lower bound of ACE (X → Y ) can be expressed

ACE (X → Y ) ≥ max



p11.1 + p00.0 − 1,
p11.0 + p00.1 − 1,

p11.0 − p11.1 − p10.1 − p01.0 − p10.0,
p11.1 − p11.0 − p10.0 − p01.1 − p10.1,

−p01.1 − p10.1,
−p01.0 − p10.0,

p00.1 − p01.1 − p10.1 − p01.0 − p00.0,
p00.0 − p01.0 − p10.0 − p01.1 − p00.1


The upper bound program for ACE (X → Y ) is analogous with solution

ACE (X → Y ) ≤ min



1− p01.1 − p10.0,
1− p01.0 + p10.1,

−p01.0 + p01.1 + p00.1 + p11.0 + p00.0,
−p01.1 + p11.1 + p00.1 + p01.0 + p00.0,

p11.1 + p00.1,
p11.0 + p00.0,

−p10.1 + p11.1 + p00.1 + p11.0 + p10.0,
−p10.0 + p11.0 + p00.0 + p11.1 + p10.1


Next, we append to this discussion a brief reference to the average treatment

effect on the treated.

4.4 Treatment on the treated

When an analyst is interested in the effect of an existing program under its
current incentive system and current participants then the quantity of interest is
treatment on treated rather than the average treatment effect (which gauges the
effect of introducing a new program randomly over the population). Treatment
on the treated is quantified as

ETT (X → Y ) = Pr (Yx̂1 = y1 | x1)− Pr (Yx̂0 = y1 | x1)
=

∑
u

[Pr (y1 | x1, u)− Pr (y1 | x0, u)] Pr (u | x1)
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where Yx̂j refers to outcome when intervening with action xj and conditioning
on x1 refers to the subpopulation observed in the treatment regime.
Pearl [1995] derives bounds on ETT (X → Y ) 15

Pr (y1 | z1)− Pr (y1 | z0)
Pr (x1) /Pr (z1)

− Pr (y0, x1 | z0)
Pr (x1)

≤ ETT (X → Y ) ≤
Pr (y1 | z1)− Pr (y1 | z0)

Pr (x1) /Pr (z1)
+

Pr (y1, x1 | z0)
Pr (x1)

or

(p11.1 + p10.1)− (p11.0 + p10.0)

[(p11.1 + p01.1) Pr (z1) + (p11.0 + p01.0) Pr (z0)] /Pr (z1)

− p01.0
(p11.1 + p01.1) Pr (z1) + (p11.0 + p01.0) Pr (z0)

≤ ETT (X → Y ) ≤
(p11.1 + p10.1)− (p11.0 + p10.0)

[(p11.1 + p01.1) Pr (z1) + (p11.0 + p01.0) Pr (z0)] /Pr (z1)

+
p11.0

(p11.1 + p01.1) Pr (z1) + (p11.0 + p01.0) Pr (z0)

Alternatively, the bounds can be expressed16

P (y1)− P (x1 | z0)− P (y1, x0 | z0)
P (x1)

≤ ETT (X → Y ) ≤
P (y1)− P (y1, x0 | z0)

P (x1)

15See the appendix for a sketch of Pearl’s proof for the bounds on ETT (X → Y ).
16The lower bound can be written

Pr (y1 | z1) Pr (z1)− Pr (y1 | z0) [1− Pr (z0)]− Pr (y0, x1 | z0)
Pr (x1)

=
Pr (y1, z1) + Pr (y1, z0)− Pr (y1, x1 | z0)− Pr (y1, x0 | z0)− Pr (y0, x1 | z0)

Pr (x1)

=
P (y1)− P (x1 | z0)− P (y1, x0 | z0)

P (x1)

By analogous derivation, the upper bound can be expressed

Pr (y1 | z1) Pr (z1)− Pr (y1 | z0) [1− Pr (z0)] + Pr (y1, x1 | z0)
Pr (x1)

=
Pr (y1, z1) + Pr (y1, z0)− Pr (y1, x1 | z0)− Pr (y1, x0 | z0) + Pr (y1, x1 | z0)

Pr (x1)

=
P (y1)− P (y1, x0 | z0)

P (x1)

46



Clearly, if P (x1 | z0) = 0 then ETT (X → Y ) is point-identified.
Next, we consider an example to illustrate partial identification for both the

average causal effect and treatment on the treated.

4.5 Partial identification example

Suppose the data generating process is as follows.

p00.0 = 0.919 p00.1 = 0.315
p01.0 = 0.000 p01.1 = 0.139
p10.0 = 0.081 p10.1 = 0.073
p11.0 = 0.000 p11.1 = 0.473

Pr (z1) = 0.500 Pr (z0) = 0.500

The compliance rate

Pr (x1 | z1) = p11.1 + p01.1

= 0.473 + 0.139

= 0.612

the encouragement effect or intent to treat17

Pr (y1 | z1)− Pr (y1 | z0)
= (p11.1 + p10.1)− (p11.0 + p10.0)

= (0.473 + 0.073)− (0.000 + 0.081)

= 0.465

and the mean difference

Pr (y1 | x1)− Pr (y1 | x0)

=
p11.1 Pr (z1) + p11.0 Pr (z0)

(p11.1 + p01.1) Pr (z1) + (p11.0 + p01.0) Pr (z0)

− p10.1 Pr (z1) + p10.0 Pr (z0)

(p10.1 + p00.1) Pr (z1) + (p10.0 + p00.0) Pr (z0)

=
0.473 · 0.5 + 0.0 · 0.5

(0.473 + 0.139) 0.5 + (0.0 + 0.0) 0.5

− 0.073 · 0.5 + 0.081 · 0.5
(0.073 + 0.315) 0.5 + (0.081 + 0.919) 0.5

= 0.661925

describe the data.
However, partial compliance implies the average causal effect cannot be point

identified but substantial insight can be gained from its bounds.

0.392 ≤ ACE (X → Y ) ≤ 0.780

17Apparently, this is the measure employed by the Food and Drug Administration (FDA)
in drug trials.
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where

ACE (X → Y )lower = Pr (y1 | do (x1))lower − Pr (y1 | do (x0))upper

= max


p11.1,
p11.0,

−p00.0 − p01.0 + p00.1 + p11.1,
−p01.0 − p10.0 + p10.1 + p11.1


−min


1− p00.1,
1− p00.0,

p01.0 + p10.0 + p10.1 + p11.1,
p10.0 + p11.0 + p01.1 + p10.1,


= max


0.473,

0.,
−0.131,
0.465

−min


0.685,
0.081,
0.627,
0.293


= 0.473− 0.081 = 0.392

and

ACE (X → Y )upper = Pr (y1 | do (x1))upper − Pr (y1 | do (x0))lower

= min


1− p01.1,
1− p01.0,

p00.0 + p11.0 + p10.1 + p11.1,
p10.0 + p11.0 + p00.1 + p11.1,


−max


p10.1,
p10.0,

p10.0 + p11.0 − p00.1 − p11.1,
p01.0 + p10.0 − p00.1 − p01.1


= min


0.861,

1.,
1.465,
0.869

−max


0.073,
0.081,
−0.707,
−0.373


= 0.861− 0.081 = 0.780

Remarkably, even though 38.8% failed to comply with treatment we can con-
clude that at least 39.2% of the population would benefit from treatment.
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The natural bounds for ACE (X → Y ) are the same as above.

Pr (y1 | z1)− Pr (y1 | z0)− Pr (y1, x0 | z1)− Pr (y0, x1 | z0)
= p11.1 + p10.1 − (p11.0 + p10.0)− p10.1 − p01.0
= 0.473 + 0.073− (0.000 + 0.081)− 0.073− 0.000

= 0.392

≤ ACE (X → Y ) ≤
Pr (y1 | z1)− Pr (y1 | z0) + Pr (y0, x0 | z1) + Pr (y1, x1 | z0)

= p11.1 + p10.1 − (p11.0 + p10.0) + p00.1 + p11.0

= 0.473 + 0.073− (0.000 + 0.081) + 0.315 + 0.000

= 0.780

Or

Pr (y1, x1 | z1)− [1− Pr (y0, x0 | z0)]
= p11.1 − 1 + p00.0

= 0.473− 1 + 0.919

= 0.392

≤ ACE (X → Y ) ≤
1− Pr (y0, x1 | z1)− Pr (y1, x0 | z0)

= 1− p01.1 − p10.0
= 1− 0.139− 0.081

= 0.780

The width of the interval equals the likelihood of noncompliance.

Pr (x1 | z0) + Pr (x0 | z1) = p11.0 + p01.0 + p10.1 + p00.1

= 0.000 + 0.000 + 0.073 + 0.315

= 0.780− 0.392 = 0.388

Since Pr (x1 | z0) = 0, ETT (X → Y ), treatment effect on the treated, is
point identified. The first term in the upper and lower bounds is the same, the
only difference arises in the second term of each bound but when no one adopts
treatment that was not assigned treatment this term vanishes in each bound
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(p01.0 = p11.0 = 0).

(p11.1 + p10.1)− (p11.0 + p10.0)

[(p11.1 + p01.1) Pr (z1) + (p11.0 + p01.0) Pr (z0)] /Pr (z1)

− p01.0
(p11.1 + p01.1) Pr (z1) + (p11.0 + p01.0) Pr (z0)

= 0.759804

≤ ETT (X → Y ) ≤
(p11.1 + p10.1)− (p11.0 + p10.0)

[(p11.1 + p01.1) Pr (z1) + (p11.0 + p01.0) Pr (z0)] /Pr (z1)

− p11.0
(p11.1 + p01.1) Pr (z1) + (p11.0 + p01.0) Pr (z0)

= 0.759804

This indicates that 76% of current participants benefit from treatment.

4.6 Test of instruments

Conventional wisdom indicates unobservability makes empirical tests of instru-
ments or model exogeneity unassailable. However, Balke and Pearl’s bounds
provide a test of severe model or instrument failure, that is, the test does not
always identify poor instruments (or general model mis-specification) but in ex-
treme cases it can be useful. The test requires that each of the conditions in
the upper bound of ACE (X → Y ) lie at or above each condition in the lower
bound of ACE (X → Y ). Balke and Pearl’s conditions simplify as

p00.0 + p10.1 ≤ 1

p10.0 + p00.1 ≤ 1

p01.0 + p11.1 ≤ 1

p11.0 + p01.1 ≤ 1

when any of these conditions is violated the model is mis-specified.18 Therefore,
when one of these conditions fails the thought experiment reflected in our causal
graph is inconsistent with the data.19

In particular, the first two upper and lower bounds on Pr (y1 | do (x0)) yield
two of the conditions

lower upper
p10.1 1− p00.0
p10.0 1− p00.1

18When the observed probabilities (frequencies) are inconsistent with these conditions there
is no feasible solution to the linear program (described above) from which the bounds on
ACE (X → Y ) are derived.
19Not only may the power of the test be somewhat lacking, but also sampling error can

indicate model deficiency when there is none. In other words, as usual both kinds of errors
(false model rejection and failure to detect model inadequacy) are possible.
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and the other two conditions come from the first two upper and lower bounds
on Pr (y1 | do (x1))

lower upper
p11.1 1− p01.0
p11.0 1− p01.1

where conditioning on z0 is compared with conditioning on z1 as otherwise the
test is not diagnostic.
Instrument inequality defined by violation of any of the above conditions

occurs when manipulation of the instrument has substantial impact on outcome
but treatment remains unchanged. This is (weakly) consistent with traditional
econometric intuition that forbids the instruments from impacting outcome con-
ditional on treatment (and perhaps covariates).
These conditions generalize for multivalued X,Y, or Z as

max
x

∑
y

[
max
z

Pr (y, x | z)
]
≤ 1

and for continuous Y or Z (but X remains discrete20) as∫
y

[
max
z
f (y | x, z) Pr (x | z)

]
dy ≤ 1 ∀x

The instrument inequality can be tightened considerably if there are no
defiers in the population, that is,

Pr (x1 | z1, u) ≥ Pr (x1 | z0, u) ∀u

Then, the instrument inequality is

Pr (y, x1 | z1) ≥ Pr (y, x1 | z0)
Pr (y, x0 | z0) ≥ Pr (y, x0 | z1)

∀y ∈ {y1, y0}

Violations of these conditions indicate selection bias, direct effect of Z on Y , or
defiers in the population.

4.7 Gibbs sampler

Thus far we’ve discussed identification implications (or possibilities with un-
limited sample size) of imperfect compliance. Now, we discuss a latent vari-
able, finite-sample (of size n) estimation approach. Since identification revolves
around 16 compliance-response (CR) pairs that are unobserved while only pyx.z
is observed, the challenge is to recover Pr (vCR | data = {pyx.z}) where vCR
refers to the frequency or probability of CR.

Following Chickering and Pearl [1997], we employ a two-step Gibbs sampler
to address the latency of CR. A Gibbs sampler is a Markov chain Monte Carlo

20The density is unconstrained for continuous X negating the power of the test.
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method that draws from the full set of conditional posterior distributions to
eventually yield draws from the marginal posterior of interest.
The first conditional posterior is

Pr
(
cri | vcri , data = {pyx.z}

)
∝ f

(
xi, yi | zi, cri

)
vcri

where the superscript refers to individual i in the sample and f
(
xi, yi | zi, cri

)
is

an indicator function equal to one when x, y, z agrees with cr and zero otherwise.
This is recognized as a multinomial distribution and generates values for the
latent variable CR (the reason a Gibbs sampler is called upon in this setting; if
CR values were observed we could simply employ posterior simulation).
Since vcri is unknown we begin with some initial value and replace it in

subsequent rounds with draws from the second conditional posterior distribution

Pr
(
vCR | cr1, . . . , crn

)
∝

3∏
i=0

3∏
j=0

(
vcrij

)Nij+N
′
ij−1

where Nij refers to the number of draws corresponding to crij from the first
conditional posterior and N

′

ij refers to the prior concentration parameter for a
Dirichlet distribution (or can be thought of as the result of a previous exper-
iment; our experiments employ N

′

ij = 1 for all vcrij or uniform priors). This
conditional posterior follows a Dirichlet distribution and generates vCR draws.
Since

ACE (X → Y ) =
3∑
i=0

vc=i,r=1 −
3∑
i=0

vc=i,r=2,

Pr (y1 | do (x1)) =
3∑
i=0

vc=i,r=1 +
3∑
i=0

vc=i,r=3,

Pr (y1 | do (x0)) =
3∑
i=0

vc=i,r=2 +
3∑
i=0

vc=i,r=3

are deterministic functions of vCR they can be simulated directly from vCR.
Sampling is repeated a large number of times (10, 000 in our case) and the

first set of draws (5, 000) are discarded as burn-in since some of them are unlikely
to be representative of the distribution of interest.
We consider three examples. One in which the average causal effect is

point-identified, a second in which ACE (X → Y ) is partially-identified, and
a third involving a counterfactual query regarding an individual in a partially-
identified setting. We report histograms of ACE (X → Y ) ,Pr (y1 | do (x1)) ,
and Pr (y1 | do (x0)) for samples of size n = 100 and 1, 000.

Example 5 (point-identified Gibbs sampler) Suppose the data are gener-
ated from

p00.0 = 0.55 p00.1 = 0.45
p01.0 = 0.45 p01.1 = 0.
p10.0 = 0. p10.1 = 0.
p11.0 = 0. p11.1 = 0.55

Pr (z1) = 0.50 Pr (z0) = 0.50
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Then, the causal effects of interest are point-identified.

ACE (X → Y ) = 0.55,

Pr (y1 | do (x1)) = 0.55,

Pr (y1 | do (x0)) = 0.0

The sample data generated as well as sample-implied bounds and estimated av-
erage causal effects from the Gibbs sampler simulations are as follows.

N (y, x, z) n = 100 n = 1, 000
(0, 0, 0) 30 295
(0, 1, 0) 23 224
(1, 0, 0) 0 0
(1, 1, 0) 0 0
(0, 0, 1) 20 221
(0, 1, 1) 0 0
(1, 0, 1) 0 0
(1, 1, 1) 27 260

n = 100 n = 100 n = 1, 000 n = 1, 000
sample-implied mean sample-implied mean
bounds21 estimate bounds estimate

ACE (X → Y ) (0.574, 0.558) 0.444 (0.541, 0.568) 0.542
Pr (y1 | do (x1)) (0.574, 0.566) 0.553 (0.541, 0.568) 0.554
Pr (y1 | do (x0)) (0.008, 0) 0.109 0. 0.012

Since the samples are not balanced, the average causal effects with these large
sample frequencies rather than the population frequencies (probabilities) would
have narrow bounds (as indicated by the implied intervals) rather than be point-

21For the n=100 sample, frequency-implied bounds are reversed (with the lower bound
slightly exceeding the upper bound) as a result of sampling variation (sampling error).
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identified. Histograms for the average causal effects are below.

ACE (X → Y ) , n = 100 ACE (X → Y ) , n = 1, 000

Pr (y1 | do (x1)) , n = 100 Pr (y1 | do (x1)) , n = 1, 000

Pr (y1 | do (x0)) , n = 100 Pr (y1 | do (x0)) , n = 1, 000
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As expected, the intervals are much tighter for the larger samples but all are
consistent with large-sample point-identification.

Example 6 (partially-identified Gibbs sampler) Suppose the data are gen-
erated as in 4.4

p00.0 = 0.919 p00.1 = 0.315
p01.0 = 0.000 p01.1 = 0.139
p10.0 = 0.081 p10.1 = 0.073
p11.0 = 0.000 p11.1 = 0.473

Pr (z1) = 0.500 Pr (z0) = 0.500

Then, the causal effects of interest are partially-identified with bounds as reported
earlier.

ACE (X → Y ) = (0.392, 0.780) ,

Pr (y1 | do (x1)) = (0.473, 0.861) ,

Pr (y1 | do (x0)) = 0.081

The sample data generated as well as sample-implied bounds and estimated av-
erage causal effects from the Gibbs sampler simulations are as follows.

N (y, x, z) n = 100 n = 1, 000
(0, 0, 0) 49 458
(0, 1, 0) 0 0
(1, 0, 0) 3 30
(1, 1, 0) 0 0
(0, 0, 1) 16 167
(0, 1, 1) 5 73
(1, 0, 1) 3 34
(1, 1, 1) 24 238

n = 100 n = 100 n = 1, 000 n = 1, 000
sample-implied mean sample-implied mean

bounds estimate bounds estimate
ACE (X → Y ) (0.447, 0.829) 0.523 (0.408, 0.786) 0.575
Pr (y1 | do (x1)) (0.505, 0.891) 0.681 (0.470, 0.852) 0.657

Pr (y1 | do (x0))
22 (0.063, 0.058) 0.157 (0.066, 0.061) 0.082

22These bounds are based on linear programming maxima and minima identified earlier.
However, upper and lower bounds are reversed and with these frequencies there are no fea-
sible solutions to the linear programs. This is suggestive of some model mis-specification or
an unrepresentative sample. In this case, the inconsistency in the bounds, albeit a narrow
discrepancy, is apparently due to sampling variation (or sampling error).
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Histograms for the average causal effects are below.

ACE (X → Y ) , n = 100 ACE (X → Y ) , n = 1, 000

Pr (y1 | do (x1)) , n = 100 Pr (y1 | do (x1)) , n = 1, 000

Pr (y1 | do (x0)) , n = 100 Pr (y1 | do (x0)) , n = 1, 000
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Again, the intervals are narrower for the larger samples but substantially wider
than the point-identified example 5 which is consistent with large-sample iden-
tification predictions.

Example 7 (counterfactual query) Suppose we’re interested in evaluating
counterfactual treatment for a subject in the experiment. Further, suppose the
subject was assigned to the control group, complied with control assignment,
and did not respond (z0, x0, y0). We ask what would be the subject’s response
to treatment (a counterfactual query)? First, given the subject’s behavior in
the experiment we know the individual is either a never-taker or a complier.
Second, we know the individual’s response is either never-recover or helped by
treatment. Hence, the individual can be categorized in one of four compliance-
response pairs: (cr00, cr01, cr10, cr11). Our question then translates into

Pr
(
yZ=z11 | z0, x0, y0

)
which can be written as

g (vCR) =
vcr01 + vcr11

vcr00 + vcr01 + vcr10 + vcr11

This function g (vCR) replaces ACE (X → Y ) in a Gibbs sampler with other
elements unchanged from example 6 except the draws are from the sample as
opposed to multinomial draws from the population.

N (y, x, z) n = 337
(0, 0, 0) 158
(0, 1, 0) 14
(1, 0, 0) 0
(1, 1, 0) 0
(0, 0, 1) 52
(0, 1, 1) 23
(1, 0, 1) 12
(1, 1, 1) 78

Partial-identification (large sample) bounds for g (vCR) from a (nonlinear) pro-
gram are

0.506 ≤ g (vCR) ≤ 0.857

The Gibbs sampler produces a mean for g (vCR) = 0.705 and a histogram con-
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sistent with the partial-identification bounds.

First, the histogram is largely consistent with the large-sample identification
interval. Moreover, this is a rather remarkable expected benefit to treatment
especially when we consider a 39% noncompliance rate amongst those assigned
to treatment and a sample of only 337 individuals.
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5 Appendix

5.1 Augmented DAGs and do-calculus

In this section, we attempt to crystalize understanding of the do-calculus theo-
rem by augmenting the rule 2 DAG in figure 2.6 and the rule 3 DAG in figure
2.8. These augmented DAGs provide relatively simple illustrations of how rules
2 and 3 help to identify the causal effect of X on Y as well as when one rule
aids identification and others fail to apply.
Do-calculus rule 2 is illustrated with an augmented DAG in figure 5.1. The

Figure 5.1: Augmented rule 2 DAG

back-door path from X to Y (X ← Z → U1 → Y ) is blocked (or d-separated) by
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Z.23 As indicated by rule 2, it makes no difference in assessing the probability of
Y given X if Z is observed or set via action. However, any attempt to eliminate
observed Z (rule 1) or action Z (rule 3) opens the back-door and confounds the
causal effect of X on Y . Z is independent of Y given X only in DAG GXZ
reinforcing rule 2.
Do-calculus rule 3 is illustrated with an augmented DAG in figure 5.2. The

Figure 5.2: Augmented rule 3 DAG

23 Identification of the causal effect of X on Y calls for action to be translated into obser-
vation. The intent of the current discussion is to illustrate the do-calculus rules rather than
complete causal effect identification. When feasible, causal effect identification (associated
with a DAG) is typically satisfied by back-door and/or front-door adjustments.
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path X → W → Z ← U1 → Y is blocked by the collider Z in GX when action
do (x) is in play. Since a collider d-separates when we don’t condition on it (else
the causal effect of X on Y is confounded), we would drop conditioning on Z.
Equivalently, the action do(Z) effectively eliminates the paths into Z, W → Z
and Z ← U1, thus d-separating the back-door from X to Y . Therefore, action Z
can be inserted or deleted without impacting the probability of Y given {X,W},
as indicated by rule 3. On the other hand, rules 1 and 2 don’t apply in this
setting as conditioning on observed Z, a collider, is different than deletion (rule
1) or action (rule 2).

5.2 Linear programming bounds for ACE(X → Y )

Bounds on causal effects, Pr (y1 | do (x)), or average causal effects

ACE (X → Y ) = Pr (y1 | do (x1))− Pr (y1 | do (x0))

are derived from the dual program. For example, if the lower bound primal
program is24

min
q≥0

πT q

s.t. Rq = p

where π is the appropriate coeffi cient vector (comprised of zeroes and ones)25

to address the causal effect of interest, then the dual program is

max
λ

pTλ

s.t. RTλ ≤ π

Since λ is an 8-tuple that can be written in terms of 0 and ±1, there are
potentially 38 = 6, 561 λ-vectors. From these potential solutions, we determine
those that are feasible, that is, those that satisfy RTλ ≤ π. Based on this
reduced set of potential basic solutions, we find those that maximize pTλ and
remain feasible (most potential solutions are dominated). This leads to the
bounds described in the text.
Upper bounds are determined analogously where the dual program is26

min
λ

pTλ

s.t. RTλ ≥ π

5.3 Natural bounds for ACE(X → Y )

Define four functions:

f0 (u) = Pr (y1 | x0, u) g0 (u) = Pr (x1 | z0, u)
f1 (u) = Pr (y1 | x1, u) g1 (u) = Pr (x1 | z1, u)

24Since
3∑

j=0

3∑
k=0

qjk = 1 is a redundant constratint we omit it in this discussion.

25The coeffi cient vector π is comprised of 0 and ±1 for average causal effects.
26For the upper bound on Pr (y1 | do (x)), we can work with 8-tuple λ′s comprised of 0 and

1 or 28 = 256 potential vectors.
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Then, we can depict components of Pr (y, x | z) as expectations of these func-
tions:

a ≡ Pr (y1, x0 | z0) = E [f0 (1− g0)]
b ≡ Pr (y1, x0 | z1) = E [f0 (1− g1)]
c ≡ Pr (x1 | z0) = E [g0]

d ≡ Pr (x1 | z1) = E [g1]

e ≡ Pr (y1, x1 | z0) = E [f1g0]

h ≡ Pr (y1, x1 | z1) = E [f1g1]

For any two random variables R and S such that 0 ≤ R,S ≤ 1

1 + E [RS]− E [S] ≥ E [R] ≥ E [RS]

as E [(1−R) (1− S)] ≥ 0. Further, the inequality holds for any pair of f, g
functions since they are bounded between zero and one leading to

1 + E [f1g0]− E [g0] ≥ E [f1] ≥ E [f1g0]

1 + E [f1g1]− E [g1] ≥ E [f1] ≥ E [f1g1]

1 + E [f0 (1− g0)]− E [1− g0] ≥ E [f0] ≥ E [f0 (1− g0)]
1 + E [f0 (1− g1)]− E [1− g1] ≥ E [f0] ≥ E [f0 (1− g1)]

or, can also be expressed

max {h, e} ≤ E [f1] ≤ min {(1 + e− c) , (1 + h− d)}
h ≤ E [f1] ≤ 1 + h− d

max {a, b} ≤ E [f0] ≤ min {(a+ c) , (b+ d)}
a ≤ E [f0] ≤ a+ c

where natural minima, maxima are indicated in each second line.
ACE(X → Y ) = E [f1]− E [f0] and the lower bound is

minE [f1]−maxE [f0]

= h− (a+ c)

= Pr (y1, x1 | z1)− Pr (y1, x0 | z0)− Pr (x1 | z0)
= Pr (y1, x1 | z1)− [1− Pr (y0, x0 | z0)]

while the upper bound is

maxE [f1]−minE [f0]

= 1 + h− d− a
= 1 + Pr (y1, x1 | z1)− Pr (x1 | z1)− Pr (y1, x0 | z0)
= 1− Pr (y0, x1 | z1)− Pr (y1, x0 | z0)

as indicated in the text.
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5.4 Natural bounds for ETT(X → Y )

Continue with definitions assigned in the appendix section 5.3 on natural bounds
for ACE (X → Y ) where

Pr (y1 | x1, u)− Pr (y1 | x0, u) = f1 (u)− f0 (u)

Then,

ETT (X → Y ) = E [f1 (u)− f0 (u) | X = x1]

=
∑
u

[f1 (u)− f0 (u)] Pr (u | x1)

=
1

Pr (x1)

∑
u

[f1 (u)− f0 (u)] Pr (x1 | u) Pr (u)

=
1

Pr (x1)

∑
u

∑
z

[f1 (u)− f0 (u)] Pr (x1 | z, u) Pr (z) Pr (u)

=
1

Pr (x1)

∑
u

[f1 (u)− f0 (u)] [Pr (z1) g1 (u) + Pr (z0) g0 (u)] Pr (u)

=
1

Pr (x1)
E {[f1 (u)− f0 (u)] [Pr (z1) g1 (u) + (1− Pr (z1)) g0 (u)]}

=
1

Pr (x1)
E

[
Pr (z1) f1g1 + (1− Pr (z1)) f1g0
−Pr (z1) f0g1 − (1− Pr (z1)) f0g0

]
=

1

Pr (x1)

{
Pr (z1)h+ (1− Pr (z1)) e− Pr (z1) (E [f0]− b)

− (1− Pr (z1)) (E [f0]− a)

}
=

1

Pr (x1)
{Pr (z1) (h+ b) + (1− Pr (z1)) (e+ a)− E [f0]}

=
1

Pr (x1)

{
Pr (z1) (E [f1g1] + E [f0 (1− g1)])

+ (1− Pr (z1)) (E [f1g0] + E [f0 (1− g0)])− E [f0]

}
=

1

Pr (x1)

{
Pr (z1) (Pr (y1, x1 | z1) + Pr (y1, x0 | z1))

+ Pr (z0) (Pr (y1, x1 | z0) + Pr (y1, x0 | z0))− E [f0]

}
=

1

Pr (x1)
{Pr (z1) Pr (y1 | z1) + Pr (z0) Pr (y1 | z0)− E [f0]}

=
1

Pr (x1)
{Pr (y1)− E [f0]}

Focusing on are noncompliance in experimental trials, Pr (x1 | z0), and we know
from section 5.3

a ≤ E [f0] ≤ a+ c

or
Pr (y1, x0 | z0) ≤ E [f0] ≤ Pr (y1, x0 | z0) + Pr (x1 | z0)

Therefore,

Pr (y1)− Pr (y1, x0 | z0)− Pr (x1 | z0)
Pr (x1)

≤ ETT (X → Y ) ≤ Pr (y1)− Pr (y1, x0 | z0)
Pr (x1)
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as indicated in the text. The result affi rms the treatment effect on the treated
is point-identified if there is full compliance when no treatment is assigned,
Pr (x1 | z0) = 0.
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