
Bayesian control function linear IV:
Testing for confounding and weak instruments

A linear structural causal model (SCM) as depicted in the DAG below is
plagued by an omitted, correlated variable problem.

An instrumental variable strategy identifies the causal effect of interest and
may effectively estimate the parameter so long as the confounding is not too
severe and the instruments are not too weak. However, gauging the severity
of such problems can be challenging. We propose a control function linear-IV
(CF-IV) strategy and conduct simulations to assess its relative effectiveness by
comparing results with Bayesian linear regression (OLS), Bayesian IV in which
the first stage regression is sampled (dynamic-IV), and Bayesian IV in which
the first stage regression is fixed (static-IV).
The model is as depicted in the DAG above. That is,

Z = Uz, Uz ∼ N (0, 1)
X = aZ + gU + Ux, Ux ∼ N (0, 1)
Y = bX + hU + Uy, Uy ∼ N (0, 1)

a = 1, b = 1 U ∼ N (0, 1)
g = {1, 5, 10, 50} h = {−50,−10, 10, 50}

The values of g and h are the experimental values where the weakness of the
instrument is increasing in g and the degree of confounding is increasing in the
absolute value of h, holding other things equal.

The OLS estimand the regression coeffi cient of Y onto X, rY X , is
2+g2+gh
2+g2

while the linear-IV estimand is rY Z
rXZ

= ab
a = b = 1. Hence, OLS bias is deter-

mined by gh
2+g2 , for instance, if h = 0 the bias is zero. When h is negative, we

have a Simpson’s reversal paradox frame, that is, the OLS estimate is negative
while the parameter of interest is b = 1. Also, since projecting X into Z re-
sults in loss of information, linear-IV is less effi cient than OLS (produces wider
credible intervals in the Bayesian frame).
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1 Control function-IV strategy

An alternative linear-IV strategy derives from a control function strategy. Regress
Y onto X and ux, where ux is the residuals from the first stage regression of X
onto Z. The estimand for the causal effect of X on Y is b = 1. The idea is as
follows. The first stage regression gives

ux =MzX = (I − Pz)X

where
Pz = Z

(
ZTZ

)−1
ZT

the projection matrix in the columns of Z. The second stage regression, by
double residual regression, involves recovering the residuals from conditioning
X on ux

resx = X − PuxX
= X −MzX

(
XTMzX

)−1
XTMzX

= X −MzX

= PzX

where Pux = MzX
(
XTMzX

)−1
XTMz. Since PzX is precisely the quantity

employed by standard linear-IV, control function linear-IV produces the same
estimand, b = 1. In addition, the coeffi cient on ux is

gh
1+g2 . In other words, it’s

an indicator of the extent of confounding.

2 Simulation

We report 20 simulations of 1, 000 posterior draws (20, 000 draws) for each
pair (g, h) for each strategy based on samples of size n = 1, 000. Priors are
diffuse (zero means and null information matrices). The simulations compare
the performance of the control function IV (CF-IV) strategy with dynamic-IV
(first stage sampled like the CF-IV strategy), static-IV (first stage fixed), and
OLS (no instruments). In addition, to exploring the effi cacy of the control
function-IV in reducing bias and gauging the extent of confounding, dynamic
sampling of the first stage regression may help to mitigate the bias associated
with weak instruments (large values of g). Let dCF−IV be the coeffi cient on ux
for the control function linear-IV strategy, b is the target estimand, and a is the
first stage estimand (first-stage simulation results reported only for the sampled
strategies, the same sample is employed for the control function and dynamic
IV strategies).
First, we report results when the instrument is reasonably strong, g = 1, but
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confounding is high, h = 10,−10.

dCF−IV bCF−IV bdynamic−IV bstatic−IV bOLS a
mean 5.004 0.946 0.956 0.952 4.307 0.992

std. dev. 0.473 0.443 0.446 0.442 0.173 0.067
quantile:
1% 4.052 −0.238 −0.200 −0.210 3.905 0.848
2.5% 4.178 −0.030 0.013 0.009 3.969 0.869
5% 4.294 0.170 0.188 0.193 4.021 0.888
10% 4.437 0.370 0.380 0.381 4.081 0.910
25% 4.676 0.673 0.674 0.671 4.190 0.949
50% 4.967 0.977 0.973 0.974 4.307 0.990
75% 5.291 1.255 1.263 1.261 4.424 1.031
90% 5.624 1.487 1.505 1.498 4.530 1.075
95% 5.844 1.622 1.653 1.635 4.590 1.109
97.5% 6.057 1.729 1.786 1.756 4.644 1.144
99% 6.309 1.849 1.918 1.884 4.710 1.181
Posterior simulation for a = 1, b = 1, d = 10

2 , g = 1, h = 10, bias =
10
3

dCF−IV bCF−IV bdynamic−IV bstatic−IV bOLS a
mean −4.966 0.979 0.969 0.968 −2.340 0.997

std. dev. 0.492 0.442 0.441 0.436 0.181 0.061
quantile:
1% −6.136 0.041 0.013 0.012 −2.762 0.867
2.5% −5.942 0.162 0.154 0.142 −2.695 0.886
5% −5.788 0.271 0.261 0.261 −2.642 0.903
10% −5.613 0.409 0.399 0.404 −2.575 0.923
25% −5.304 0.665 0.655 0.658 −2.463 0.955
50% −4.955 0.971 0.965 0.966 −2.338 0.994
75% −4.615 1.282 1.270 1.272 −2.214 1.035
90% −4.329 1.558 1.540 1.533 −2.109 1.077
95% −4.178 1.713 1.707 1.689 −2.046 1.105
97.5% −4.059 1.855 1.843 1.824 −1.991 1.132
99% −3.919 2.040 2.014 1.973 −1.927 1.157
Posterior simulation for a = 1, b = 1, d = −10

2 , g = 1, h = −10, bias =
−10
3

With high levels of confounding but a strong instrument, these results are as
expected. All three instrumental variable strategies produce credible intervals
around the true parameter value, the control function IV also effectively predicts
the extent of confounding and OLS is biased as predicted. Further, the credible
intervals for OLS are much tighter than those for IV but the bias is suffi ciently
severe that the interval fails to even approach parameter b and as suggested
earlier the sign is even wrong when h = −10.
Next, we explore effi cacy of these strategies with a weaker instrument, g = 5
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but h remains 10,−10.

dCF−IV bCF−IV bdynamic−IV bstatic−IV bOLS a
mean 2.103 0.819 0.918 0.890 2.854 0.956

std. dev. 0.505 0.502 0.480 0.442 0.025 0.195
quantile:
1% 1.320 −0.806 −0.247 −0.260 2.792 0.522
2.5% 1.399 −0.385 −0.055 −0.068 2.801 0.591
5% 1.4723 −0.097 0.093 0.098 2.810 0.643
10% 1.565 0.178 0.284 0.287 2.821 0.707
25% 1.754 0.569 0.598 0.287 2.838 0.821
50% 2.011 0.912 0.943 0.935 2.856 0.954
75% 2.355 1.167 1.250 1.213 2.872 1.088
90% 2.742 1.352 1.508 1.422 2.886 1.210
95% 3.023 1.446 1.666 1.535 2.894 1.282
97.5% 3.307 1.515 1.799 1.634 2.902 1.346
99% 3.728 1.590 1.972 1.737 2.911 1.422
Posterior simulation for a = 1, b = 1, d = 50

26 , g = 5, h = 10, bias =
50
27

dCF−IV bCF−IV bdynamic−IV bstatic−IV bOLS a
mean −2.063 1.1370 1.102 1.069 −0.857 0.986

std. dev. 0.594 0.592 0.629 0.506 0.025 0.236
quantile:
1% −4.053 0.268 0.157 0.156 −0.924 0.470
2.5% −3.486 0.341 0.262 0.261 −0.914 0.547
5% −3.127 0.414 0.350 0.357 −0.904 0.611
10% −2.771 0.521 0.463 0.471 −0.890 0.689
25% −2.328 0.741 0.674 0.692 −0.872 0.819
50% −1.961 1.036 0.988 1.010 −0.855 0.976
75% −1.665 1.402 1.391 1.378 −0.840 1.144
90% −1.445 1.842 1.865 1.754 −0.827 1.300
95% −1.341 2.195 2.238 2.005 −0.820 1.390
97.5% −1.261 2.556 2.591 2.211 −0.813 1.460
99% −1.195 3.135 3.196 2.456 −0.806 1.541
Posterior simulation for a = 1, b = 1, d = −50

26 , g = 5, h = −10, bias =
−50
27

Even though the instrument is weaker than the above cases, the IV strategies
effectively addresses the confounding while OLS is substantially biased. Also,
dCF−IV from the control function-IV is an effective gauge of confounding.
Next, we explore effi cacy of these strategies with an even weaker instrument,
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g = 10 but h remains 10,−10.

dCF−IV bCF−IV bdynamic−IV bstatic−IV bOLS a
mean 1.652 0.338 143.0 0.913 1.980 1.067

std. dev. 43.92 43.92 17100. 0.717 0.008 0.449
quantile:
1% 0.428 −6.035 −2.738 −2.070 1.962 0.027
2.5% 0.502 −2.326 −0.887 −0.914 1.965 0.180
5% 0.552 −0.884 −0.313 −0.349 1.967 0.318
10% 0.610 −0.072 0.166 0.159 1.970 0.475
25% 0.732 0.665 0.710 0.735 1.974 0.761
50% 0.942 1.047 1.100 1.090 1.979 1.078
75% 1.327 1.258 1.441 1.306 1.985 1.382
90% 2.061 1.381 1.794 1.462 1.990 1.644
95% 2.875 1.438 2.057 1.560 1.993 1.792
97.5% 4.317 1.487 2.540 1.673 1.995 1.917
99% 8.033 1.562 4.323 1.903 1.998 2.063
Posterior simulation for a = 1, b = 1, d = 100

101 , g = 10, h = 10, bias =
100
102

dCF−IV bCF−IV bdynamic−IV bstatic−IV bOLS a
mean −1.257 1.267 −249.7 1.118 0.020 0.983

std. dev. 27.99 27.99 32163. 0.660 0.007 0.411
quantile:
1% −8.103 0.428 −5.481 0.131 0.004 0.020
2.5% −4.311 0.518 −0.070 0.330 0.006 0.171
5% −2.942 0.579 0.358 0.442 0.008 0.309
10% −2.101 0.645 0.481 0.548 0.011 0.457
25% −1.397 0.784 0.664 0.725 0.015 0.704
50% −0.999 1.010 0.932 0.978 0.020 0.987
75% −0.773 1.409 1.402 1.329 0.025 1.262
90% −0.634 2.113 2.314 1.806 0.029 1.508
95% −0.569 2.952 3.435 2.314 0.032 1.653
97.5% −0.509 4.325 5.615 2.968 0.034 1.785
99% −0.420 8.107 15.24 3.815 0.037 1.948

Posterior simulation for a = 1, b = 1, d = −100
101 , g = 10, h = −10, bias =

−100
102

Weak instruments seems to produce highly variable and biased Dynamic-IV
causal estimates. Otherwise, weakening of the instrument produces moderately
poorer results. Next, we explore extreme confounding with a relatively strong
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instrument, g = 1, h = −50, 50.

dCF−IV bCF−IV bdynamic−IV bstatic−IV bOLS a
mean 25.96 0.178 0.239 0.250 17.69 0.975

std. dev. 2.836 2.489 2.474 2.452 1.061 0.059
quantile:
1% 19.01 −6.396 −6.103 −6.110 15.36 0.830
2.5% 20.13 −5.214 −4.985 −4.968 15.69 0.853
5% 21.14 −4.160 −3.965 −3.977 15.97 0.874
10% 22.26 −2.984 −2.871 −2.865 16.32 0.899
25% 24.17 −1.316 −1.272 −1.246 16.93 0.938
50% 26.02 0.299 0.310 0.330 17.69 0.977
75% 27.83 1.773 1.805 1.823 18.43 1.015
90% 29.49 3.158 3.280 3.225 19.09 1.049
95% 30.56 4.133 4.187 4.137 19.46 1.070
97.5% 31.47 4.949 5.069 5.069 19.76 1.087
99% 32.64 5.998 6.064 6.038 20.09 1.106
Posterior simulation for a = 1, b = 1, d = 50

2 , g = 1, h = 50, bias =
50
3

dCF−IV bCF−IV bdynamic−IV bstatic−IV bOLS a
mean −24.71 0.685 0.646 0.625 −15.93 1.002

std. dev. 2.831 2.699 2.675 2.676 1.163 0.066
quantile:
1% −31.12 −5.010 −5.098 −5.058 −18.71 0.854
2.5% −30.16 −4.320 −4.409 −4.425 18.30 0.875
5% −29.30 −3.698 −3.698 −3.709 −17.92 0.895
10% −28.38 −2.821 −2.793 −2.849 −17.43 0.917
25% −26.74 −1.279 −1.284 −1.330 −16.67 0.955
50% −24.70 0.628 0.596 0.567 −15.91 1.002
75% −22.65 2.567 2.543 2.536 −15.18 1.048
90% −21.02 4.239 4.204 4.189 −14.43 1.088
95% −20.14 5.168 5.071 5.054 −13.99 1.110
97.5% −19.38 6.006 5.809 5.766 −13.61 1.129
99% −18.60 6.921 6.595 6.605 −13.24 1.151
Posterior simulation for a = 1, b = 1, d = −50

2 , g = 1, h = −50, bias =
−50
3

Despite the first-stage indicating a reasonably strong instrument, with ex-
treme levels of confounding, linear-IV does not effectively recover the causal
parameter of interest (most any credible interval includes zero with mean and
median biased toward zero). However, the control function-IV provides strong
evidence of confounding suggesting that OLS (which is bounded substantially
away from the true parameter value) is not reliable. Weaker instruments pre-
dictably produce further deterioration of results (not reported), however, the
control function-IV continues to reliably indicate confounding unless the instru-
ment is extremely weak (for g = 50, the first-stage indicates serious weakness
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and the control function-IV strategy has little diagnostic power as the credible
intervals are quite wide where almost all intervals include zero).
All linear-IV strategies perform similarly with differences indistinguishable

from sampling variation. This is somewhat surprising as evidence on the strength
of the instrument was expected to differ between dynamic and static sampling
of the first-stage regression. The first stage credible interval seems to effectively
gauge weakness in the instrument. Finally, the control function-IV appears to
effectively gauge the level of confounding. An added diagnostic tool for linear
models.

3 Multiple confounded effects

If we wish to explore multiple confounded effects, the analysis is similar. We
illustrate with two confounded effects which requires a minimum of two instru-
ments. The DAG G below depicts the situation.

DAG G

Suppose the causal effect of interest is Pr (Y | do (X1 = x1) , do (X2 = x2)).
The back-doors into causal variables X1 and X2 cannot be blocked due to the
unobservable variables U1 and U2. However, Z1 and Z2 satisfy the conditions
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for instruments. They are related to X1 and X2 but independent of Y in the
graph removing the direct paths from X1 to Y and X2 to Y , Gα.

DAG Gα

Since X1 and X2 are colliders in DAG Gα, Y is independent of Z1 and Z2.
Linear-IV, by components, involves rY Z1·Z2 = ab + ef, rY Z2·Z1 = bc +

df, rX1Z1·Z2 = a, rX1Z2·Z1 = c, rX2Z1·Z2 = e, rX2Z2·Z1 = d. The causal estimands
b and f can be recovered from a system of linear equations. For instance,

rY Z1·Z2
rX1Z1·Z2

=
ab+ ef

a
= b+

e

a
f

rY Z2·Z1
rX1Z2·Z1

=
bc+ df

c
= b+

d

c
f

or

A

[
b
f

]
=

[ rY Z1·Z2
rX1Z1·Z2rY Z2·Z1
rX1Z2·Z1

]
where

A =

[
1

rX2Z1·Z2
rX1Z1·Z2

1
rX2Z2·Z1
rX1Z2·Z1

]
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It is noteworthy, that A is full rank and we have exhausted the information in
the instrumental variable strategy in the above steps.
Of course, standard linear-IV solves this system of equations in the conven-

tional two-step process and the same applies to the control function-IV strategy.
Let

PZ = Z
(
ZTZ

)−1
ZT

where Z =
[
Z1 Z2

]
and X =

[
X1 X2

]
. Then[

b
f

]
=
(
XTPZX

)−1
XTPZY

Also, let Xu =
[
X1 X2 u1 u2

]
where u1 = (I − PZ)X1 and u2 =

(I − PZ)X2 or Xu =
[
X (I − PZ)X

]
. Then, the control function-IV strat-

egy recovers the causal estimands as follows.
b

f
a1a2V ar[U1]

a21V ar[U1]+V ar[UX1 ]
a3a4V ar[U2]

a23V ar[U2]+V ar[UX2 ]

 =
(
XT
uXu

)−1
XT
u Y

Again, the estimands on u1 and u2 indicate the level of confounding.1

1Standard errors based on classical OLS estimates are misleading for the control function-
IV strategy as the estimate of V ar [ε] is downward biased. However, Bayesian credible intervals
avoid the problem.
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