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ABSTRACT
A pervasive theme in both aceounling and statistics is aggregation. However, in eontrast
to statistics, a customary standard for determining the best aggregation rule in
accounting is unavailable or, at least, not explicitly defined. Also, most accounting
procedures follow a well-specified recursive algorithm of updating a summarized
bistory number (a beginning balance sbeet number) by tbe current periods activities
(ebanges). In this paper, we present a setting in whieb tbe best accounting aggregation
rule arises naturally, resembles observed depreciation schedules, and proceeds reeur-
sively in a manner analogous to the above outlined stoek-flow updating process.

Our main results are (I) in every period the performance of the BLIJ estimate based
on active investments ean be replicated by the period's depreciation amount and (2) in
every period, the performance of the BLU estimate based on tbe entire bistory of
investments can be replicated by a recursive procedure thai updates tbe BLU estimate
of tbe previous period with tbe current period's investment realization. Depreciation
successfully satisfies multiple objectives - it serves as a periodic alloeation of realized
investment amounts and as a statistie for tbe unknown investment population mean.
Depreciation schedules eommonly used in practice, straigbt-line, aeeelerated and
deelining balance, are shown to be best in particular settings.

1. INTRODUCTION
Accounting, like statistics, is concerned with aggregation. The trick in statistics Is
to aggregate sample data so as to create the best guess for a parameter of interest
in the underlying population. For example, a sample mean is eonstrueled as an
eslimate for the tinknown population mean. The eustomary standard for 'best' in
statistics is BLU - the best (minimum variance) linear unbiased transformation of
observations. In eontrast, best aggregation procedures in accounting are harder
to define. Also, most accounting procedures follow a well-specified recursive
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algorithm of iipdaling a sumniari/ed history ntimbcr (a beginning balance sheet
number) by tbe current period's aetivities (ch;ingcs). The reasons for proccdtiies
U) iiLifold over time in this partietiiar iasbion are tinclear ln tbis paper, we present
a setting in which the best aeeounting aggregation rule arises nattiraliy, resembles
observed depieeiation sehedules. aiu! pioeeeds lectirsively in a manner similar to
the stoek-ftcnv updating outlined above,

Iii (uir iiKKiel. a linn invests eacb period, ihe eash ()iitflt)\v (investment) in eaeh
period is observed, and Ibe investment is depreeiated according to a predeter-
mined depreciation sehedulc- Ihe tutderiying ntean (>f tbe po|iulation from which
the invesiment is (.Irawii is Linknown.' We asstime the decision-makers goal is
lo aggregate realized iitvestnieni amounts to come up wilh a BIAI esliinale of
the population mean. In our setting, tbis inlonnalioii can be meaningful to a
deeision-maker iu Ibreeasting next periods iiuestnicnl- Ol eourse, (his is no! lo
say tbat our choiee of tbe stochastic process driven by poptilalion nieau(s) is the
'correct' process. I'or example, if inveslmeut follows a random walk, then
this year's reaii/ed investnieni (cash aeeounling) is all that is relevant. Otir
intent is to seleet a stochastic process that is rieh enotigh to allow for interesting
aeeruals.

We eompute two BLU estimaies. one Ibal relies only on active (still in use)
investments and tbe other tbal relies on Ihe entire history o!" investments. Our
main results are (I) in every period, tbe pertormance of Ihe "actixe" BLU estimate
eaii be replicaled by the period's deprecialion amount and (2) in every period, the
performance o\' Ibe 'bistoiy" BLL' estimate can be replicated by a weighted
average of tbe BUJ estimate of tbe previous period and Ihe eiirrenl period's
investment, where the weights are Ihe depreeiation rates themselves and the
reeuisive proeess is initialized by a depreeiation amount.

We note three related aspeels, Kirsl. Ibe besi depreciation schedule, one tbat
allows lor tbe icplieati(.>n tdlhe BLU sialislie. is unique. Seeond, the sehedtile and
the recursive weights can be ealculaled al Ibe oulscl, since Ibey are iudepeiidenl of
iineslmenl icali/alions. Third, depieeialion sinttihaiteotisly satisfies mullipie
objeetives it serves as a perioilie allocoiion of realized iit\estment amounts
and as a stalistic for ihe unknown iineslmenl population mean. Aeeot'ding lo
Ihomas (lyfiO, 1974), lor alloeations to be theoretically justifiable, they must
satisfy three criteria. The parts sb(uild add \o tbe wbole. I he method should be
unambiguous (unique given the objective runetion) and defensible (there exists an
underlying logic lor the objeetive lunction tbat is employed). In our setting,
depreciation satisfies these ei'iteria.

Our restilts stiggest tbat the Hexibilily (diseretion) inherent in the accrual
proeess can be valuable. In particular, the choice of different depreciation
schedules enables ibe firm io lailor the aeeriial lo the circumstauce. In the
constant mean ease, Ihe best depreeiaiion sehedtile is slialghl-line. Wben the
mean varies stoebastieally, il is aeeeierated. I'urther, best depreciation ean be
approximated using tbe declining balanee method: in each period the beginning
book value of tbe investments plus tbe period's new investment are depreeiated at
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a constant, group rale. We iind it reassuring that not only is there a demand for
depreciation in our setting, but that it resembles depreciation methods prevalent in
practice und commonly taught in classrooms (e.g., straight-line, accelerated,
declining balance).

The intuition for when straight-line and accelerated depreciation are optimal
can he obtained by studying the effect of non-stiitionarity in the population mean
on the OLS (ordinary least squares) problem. When the population mean is
stytionary, all past observations (investment realizations) are equally reliable
readings ofthe underlying mean. The optimal estimate is found by weighting the
observations equally. The equal-weighting scheme is achieved by using straighl-
line depreciation. On the other hand, when the mean is non-stationary, the most
recent observation is a more reliable estimate of the current population mL*an than
previous observations. As in OLS, current and past observations are used.
However, to account for the drift in the population mean, the more recent
observations are weighted more heavily in order to form the best statistic. This
weighting scheme (also referred lo as Kalman filter weights) is achieved by using
accelerated depreciation.-

There are two sources of noise (error) in our setting. One. the investment
realization can differ from the population mean due to nuise. Two, the population
mean itself can vary from period to period because of stochastic drift. For the
benchmark case, where these error temis have the same variance, the best
depreciation schedule has an aesthetic property but not one c«)nimonly encoun-
tered by accountants. The best depreciation schedule is comprised of Fibonacci
numbers. A Fibonacci sequence is one that starts with 0 (F,,) and I (F,) and each
successive number is formed by the sum ofthe previous two nutnbers. The fad
that Fibonacci numbers show up in a stylized example docs nol seem too
surprising given that they regularly appear in a variety of unrelated problems.-'
The point, of course, is not that Fibonacci numbers can show up in the best
depreciation schedule. Rather the point is (hat the best depreciation schedule
depends in a subtle fashion on the underlying cash outflow process.

The fact that accruals can be valuable in conveying infomiation has been
stressed in the literature. Demski and Sappington (1990) treat income measure-
ment as a process by which useful information is conveyed, using the language of
income measurement or asset valuation. In their setting it is always possible to
construct an accounting treatment that fully discloses the underlying (unrecorded)
cash flow stream. Brief and Owen (1970. 1973), foeus on cost assignment to
obtain a number called 'period income' which can be translated into an estimate of
a financial parameter associated with an asset sucli as its internal rate of return. In a
single-period inference problem. Arya et al. (20fl0b, 2000e) derive the 'best guess'
ofthe transactions that underlie a given set of financial statements. This derivation
is simplified by the accountant's use of double entry. Christensen and Demski
(1995) study a control problem in which audited accruals (in particular, audited
depreciation numbers) discipline other more timely sources of information and
also earry information about the environment and the agent's behaviour.
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Tbe remainder ofthe paper is organized as follows. Section 2 spccilies the cash
outflow process. Section 3 derives the BLL' statistic and interprets it as
depreciation. Section 4 concludes the paper.

2. CASH OUTFLOW PROCESS
A firm purchases an asset in every period /. / = 1,2. etc. Each :issct has a tiscful
life of rpcriods. The purijhasc price (investment or cash outflow) ofthe asset in
period / is denoted /,, where /, is drawn from ati underlying population with mean /,.
This process is formally represented as follows:

f=l\-<-', (I)
where c, is a mean 0 and variance rrj: noise term.

Additionally, the investment population mean, /,, is unknown, and is itself
getierated by a stochastic process, with (detennitiistic) growth lerm g, g > 0. as
follows:

l^gl_,+r.,. t > I (2)

where ,';, is a mean 0 and variance rr; — <7;Vv' noise term. Ihe error leniis, c,, c^,
i'.j, ;.., /. / = l . 2 ' 7 ^ / . ;irc iissumcd to be mutually independent. The
parameters governing the stochListic processes in (1) and (2), g, n^ and a-, arc
known. Since the mean can itself vary stocliastically over time, the proeess is
termed non-stationary. A degenerate case with n~ — 0 is termed stationary, since
it itnplies a notvstochastic mean.

The conventional accounting treatment of these eash outflows is to record them
as an asset and depreciate them over T periods, their useful Mlc-"' Denote the
depreciation (rate) schedule by (d[ .dl d] ). l^aeh investment, say investtnent
I,, is depreciated an amount d\l, in ils first year of existence, dil, in its seeond
year and so on. For c//. k = 1,2 T, to be a \ alid depreciation schedule, we
require it to be nou-negativc ((// -> ()) and tidy (X^^._| dj^ = I).

The depreciation in period t is denoted /), . We locus on the properties ot the
depreciation number after the firm has reached steady slate, i.e.. / > 7".̂  In steady
state, D, is calculated as follows:

D, -^ d'l'l, + dU,_. , + • • • + < / [ / , _ , _ , . t >. T

We refer to investments /̂ , /̂  , f y , ,, used in the depreciation calculation as
active investments in period /. Ihe entire histoty v\\' investments, /,, /, , /,,
includes both active and inactive investments.

The following notation will prove convenient in presenting our results. Fur all
positive integers k, define (//, as

•J] +"4V - 1/ Vv/l +4v-- -
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For crispness,weinitiallypresentour results for the ̂ ' = I case, i.e., the zero-growth
steady-state problem. Later, we show our results hold for any choice of growth.

3. RESULTS

Depreciation as a BLU statistic
In this section, we derive the BLU estimate in each period assuming only aetive
investments, i.e., the most recent Tobservations, are used. We tben check to see if
tbe performanee of this BLU statistic can be replicated by the period's deprecia-
tion number for some suitably chosen depreciation sehedule.

Tbe triek is to write the system ofequations governing cash outflows in a form
that allows for OLS to be used to determine tbe BLU estimate. For a given 7̂  say
T = 4, the system of linear equations in (I) and (2) in period t (I ^ 4) are listed
below. Note two things. One, sinee each investment's useful life is four periods, the
only active investments in period/are f,l, <^J, i and/;._,. Two, we have multiplied
the equations in (2) by \: The advantage of doing so will soon be apparent.

0 = -V7,_-, + \f. 2 -

0 ^ -y'l,-2 + '̂//-i -

0 :=r -v/;_| + \'~f - vi:

/, = /" + e,

In matrix form. I — 111 -\-;/. where

/ =

7 =

A-3
f)

1,-2

f)

A 1
0

. A _
"A-.r

I 2

- A -

/-/ =

1 0 0 0

- V \' 0 0

0 I 0 {)

U - V V 0

0 0 1 0

0 0 - V V

0 0 0 1

i; ^

- V ' 1-2

and
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Owing to the multiplication of (2) by \', Ihe error vector /? has mean 0 and ils
eovariance matrix is a^ limes ihe identity m;ilrix. Hence, OLS yields Ihc BLU
estimate for the veelor 7. Ihe 01.S eslinuile for 1 is (H'11)'''It'I. ;ind Ihe
eovariance matrix associated with this estimale is <j^.(/l'!t)' '. We are interested
in the BLL' estimate for /, denoted f. This estimate is the last element in the
[H'H) H'l vector, and its variance is the lower diagonal element in the
(J-IH'H) matrix. But what does the /, estimate have to do with
depreciation?

To answer Ihe ab(>\e question, let us calculate ihe BLU estimale for two
particular sellings: a non-slaticinary setting wiih a- = o"r = I and a sUilionary
selling wilb a;. — 1 and a; — 0. fhe BLU estimale for 1, in ihc non-sialionary
case is obtained by plugging v = 1 in f. The corresponding estimate in ihe
stationary case is; obtained by taking the liinil of /, as \' ^ oc. These solutions
are listed below.

• "rhe a;: — 1 juid n-: ̂  I case; I, -^ ly f + — f ] + =̂j- /, 2 + y]- // ? and the
variance of 7, is l--^.

• The a;. = !„ and n]- ^ 0 case; /, ^ ',/, + \f , -1- ',/, . + •/, , and the
variance oi' f is .̂

In either case, the BLU weights are non-negative and sum to one. llcncc.
these are valid depreciation rates, if depreciation is et>mputcd using these
rates, not only will each investment he fully depreciated over its useful life,
it will also coinmunieate the 'active' BLLi estimate to the reader in every
period.

Furthermore, the depreciation nieth(.)ds are distinct in Ihe two cases. In the
stationary ease, depreciation is straight-iine; \ of Ihe in\eslment is depreciated
each period. In ihe non-stationary case, depreciation is aeeelerated: ~ of the
investment is depreciated in the first perioil, ~ in the seecind, and so on. In the
stationary case, all observations are equally reliable and, hence, Ihe BLU
estimate is simply the equally weighted sample mean. In the non-stationary
case, the more recent the observation, the fewer the number of i:-shoeks
separating it from the ctirrent population mean. I'or example, the current
observation (/,) differs from the current mean (/,) only due lo an c-shock
{ei). On tbe orher hand, the previous observation (/,...i) differs from the eiirrcnt
mean due to both an c-shock (c, ,) and an ;;-shock (1:,), the latter being
assoeiated with the drift in the mean and so on. The use of an accelerated
depreciation schedule ensures that the recent, more reliable, observations are
weighted more.

rhe above argument suggests that as \' changes, the amount of acceleration in
the optimal depreciation schedule should also change in order tt) replicate the
BLU statistic. As our proposition states, Ihis coniectuie is correct. (Ali proofs are
presented in the Appendix.)
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Proposition 1.

(a) The BLU estimator in period / obtained using the T most recent
investment realizations is the depreciation atiiount DJ computed using
the rate schedule t//*, i/J* = fvy A i i/[^''^<'^n i ~ " / ) l -

(b) The best depreciation schedule is accelerated (dJ* > dl' > • • • > d]-*)
in the non-stationary ease and straigbt-line {d]* = di' = • • - = d-/) in
the stationary case.

(c) The variance assoeiated with using the estimate DJ is d]*al,.

We have already discussed the intuition for parts (a) and (b) ofthe proposition.
The intuition behind part (e) is as follows. Recall, /, is the last element in the
vector (H'H)~ H'l. The vector H'l is simply tbe veetor of investment amounts
{l,-/+] /,)• Hence, /, is a linear cornbination of these investment amounts, in
whicb If is multiplied by the lower diagonal element in (/I'll)' . But, recall
again, tbis is exaetly where the variance of the estimate resides (limes a;.). A
quick glance at our T = 4 examples confirms these findings. Since a;. = 1 in our
examples, (he coeffieient on /, {^ and T, respectively) are also tbe variances ofthe
estimates.

The aeeelerated depreciation sehedule that arises when a;. = n: deserves
comment. In this ease, the numerators and denominators in the fraetions
that comprise the best depreciation scbedule arc Fibonaeci numbers for any
choice of T. In our T = 4 example, tbe best depreciation schedule is
( ^ . yj-. ̂ , yy), and this can be written as (FT/F . . . F<;/F;:̂ . F-/Ff<. F|/F>^). where
(F,), F | . FT. F^. F4, . . . ) = (0, I, I, 2, 3 . . . . ) is the Fibonacci sequence F, =
F;_i + F,_2. Corollary I states tbis result formally.

Corollary 1. If the investment population is non-stationary with rj;: = a:, the
best depreciation sehedule is Fibonacci, i.e., (//* = F2,7 />, 1/F2/-

Recursive updating of the BLU statistic''
In the analysis so far we used only aetive investments in creating the BLU
statistic. This obviously ignores realizations whieh occurred more than T periods
ago. In this seelion, we allow for the statistic to be conditioned on the entire
history of investment realizations. Two questions arise. One, how should active
investments be combined with past investment reali/.ations to construct an
efficient statistie? Iwo, what is the cost of ignoring histow?

We begin by addressing the first question. Denote the BLU estimator in period
t, t ^ T, obtained using the entire history of/ investment realizations by BLU,.
Assume T ^ 3 and af, = a; = I. Using the Fibonacci characterization in
Corollary 1, we know the best depreciation sehedule {d^'^,dj*,dl*) is ( ^ . | , ^ ) .
When t = 3, from Proposition I, BLU^ is simply Di, sinee all investments are
active, ln the fouitb period after /^ is observed, the BLU4 weights are
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(d\". d'l\ d\\ d'l'') — (yj-. Tj-. fj-. T]). The question is; can we construct BI.U4 by
simply updating BLU^ using l^ alone or iSo we need to access /,, A ant! /.'?

Consider a weighting scheme thai places weight cf\^ — j j on l,i^ and the
remaining (1 — d'\^) — yj- weight on BLU,. By eonstruction. the weight on /,| is
the same as under BLU4. L'nder our updated weighting scheme the weights on /-.
A and /, are (i - . / / ^ ) ( / - / ' = ( A K - ^ ) = A ( | _ ,/4.)^/3. _ ,^ , (2 , _ _: _ ,,,^j
(I — d^^'')dV = (yj-)!̂ ) — -,'|. respectively. These are exactly the same weights as
under riLU4. Further, these weights have been generated using only tbe best
estimate from the previous period, the current observation, and (/,''. The next
proposition states that this recursive process works for any /, T a;, and a}.

Proposition 2. fhe BLU estimator in period /, / ;- T. obtained using the
entire history o{ investment realizations is BLU,, where BLU, is computed
reetirsively as follows;

BLU, = (1 • ,/i')BLU, I +(/; '7,

where BLU; - D\.

fhe relative weighl on ihe current realization versus history is consistent with
intuition. The longer the history, the less the impact of Ihe current observation.
For example, if T = 3 and n; = a;... the weight on lJ^ in period 4 is \-\ which is less
than iJ, the weight on /-̂  in period 3.

A simple depreciation teehnique, the declining balance method, can be used to
approximate BLU,. Under tbe deelining balance method depreciation is caleu-
lated by multiplying the book value of past investments and the current
investment by a c(;instant (independent o\' t and investment realizations) raie.
Suppose nl — a;., and a dechning balance rate ol" /- = 2 / l v ^ f I] -̂  0.618 is
used to caleuhite depreciation. 1 he BLU estimate and depreeiation in period 4
are;

= 0.048/, +0.095/2 +0.238/;, +0.614/4

= 0.034/| +0.090/2 +0.236/, +O.6IX/4

Tbe declining balance weights are approximately the same as the BLU weights.
In fact, as / gets larger, the approximation improves and, in the limit, is identical.
A quick way to see this limiting result is as folk^ws. When n^ — rr:. the BLU
weight on /, as / -> cxj approaches the inverse ofthe golden ratio, whieh is simply
/'.'' By definition, the declining balance method too imposes the weight ;• on the
most recent cash flow.̂

fhis limiting result bolds generally. And, in each case, the best declining
balance depreeiation rate, denoted / ' , is determined by taking the limit of i/j' as
/ ^ oc. This yields r'
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Corollary 2. Fur large /, deelining balance depreeiation with rate r* can be
used to approximate BLU,. The error in approximation approaches zero as /
approaches infinity.

Propositions I and 2 have shown that the best estimator in period / is D*. if only
the /act ive investments are used, and BLU,, if the entire history of investment
realizations is used. From Proposition l(c), the efficiency loss (tbe percentage
increase in the variance of tbe estimator) assoeiated witb using T rather than /
investment realizations is [d'{' ld'{) \. (If all / realizations are used, the BLU
estimate and its variance ean be obtained from Proposition 1 by replaeing Thy t.)
An tipper bound on this eftieiency loss corresponds to its limi! when ; approaches
infinity, since this implies the maximum number of observations are ignored.
From Corollary 2. this botind is id("/r') — I.

Another bound on the efficiency loss is obtained by noting that the loss is at a
maximum in tbe stationary case. Ignoring early observations is most costly in the
stationary ease since these observations, when available, are weighted just as
much as recent observations (the BLU weights are straight-line). In contrast, in
the non-stationary case, the BLU weights decline over time (the BLU weights are
:tceelerated) and. hence, ignoring past observations is less costly. 'I hese results are
summarized in the next corollary.

Corollary 3. The ettieieney loss is inereasing in y and is bounded by

Incorporating growth
In this seetion we derive results assuming a non-trivial deterministic growth in the
population mean. In this case depreciation continues to be a sufficient statistic for
the population mean, llowever, unlike betbre, depreciation is no longer the best
estimate of the mean, fhe best estimate is obtained by a sealar transformation
(independent oi' the investment realizations) ol' the depreeiation number. The
scalar transformation ofthe accrual (a suffieient statistic) serves the same purpose
as LTserves for the sum of 7 investment realizations (also a suffleient statistie) in
the zero-growth stationary ease. Ihe analogue ofthe two propositions when the
growth term is included is as follows. (C'losed-form expressions for the sealar
multiple and tor the depreciation rates, which now depend on the growth rate, are
provided in tbe proof of C\)rollary 4.)

Corollary 4. For any growth rale g:

(i) The BLU estimator in period t obtained using (he T most recent
investment realizations is a constant multiple (/»7-) of tbe depreeiation
amount D!.



690 The European Accounting Review

(ii) The BLU estimator in period /, / :> T. obtained using the entire history of
investment realizations is BLU,, where BLU, is computed recursively as
follows:

BLUy = - - - - ( 1 •-(/;-)BLU, , I m,d\'t,

where BLU; = mdy).

Hie delicate dependence of the best depreciation scbedule on the stochastic
process is further highlighted by revisiting tbe stationary setting but with g ^ \.
In this case, the best depreciation schedule is not straight-line, lo see this, note
that the system of linear equations in period t in the stationary case is of the
form /, ( , | — ljg''~^ +t',../,_|. where k runs from I to T. ifonly active items
are used, and from 1 to /, if the entire history is used. These equations ean be
rewritten as g''"''l,_.i^__^ =li-\g''' 'c,..^^.,. This rewritten form stresses that if
the observations are scaled so as to bave the same mean /,, the scaled variables
bave unequal reliability. The BLU statistic is straightforward to eonstruet the
sealed variables are weighted in the inverse proportion of tbeir variances. This
implies the ratio ofthe BLU weight on /, versus /, , is _i;. f versus /, , is g-..
and so on.

If a depreciation schedule is to replicate tbe performance ofthe I5LL! statistie,
it must maintain the same proportion of weights. Fhe best depreeiation sehedule
identified in Corollary 4 acciMiiplishes this in the stationary case by setting
di^' —dl'lg, dV =d['^/g". and so on, (d[' is caleukited to ensure depreeia-
tion is tidy,) For example, if T — 4 and g — 2, the best depreeiation schedule in
the stati(niary case is j ^^ . ^^. \̂ and j ^ . Note that wben î; > I, the best
depreciation schedule is accelerated even in the stationary ca.se. Finally, the
BLU statistic for the example is obtained using a simple rescaling of deprecia-
tion by nij^ — T4.

4. CONCLUSION
In this paper, we present a setting in whieh the best accounting aggregation rule
arises naturally, resembles observed depreci;ition schedules, antl proceeds
recursively in a simple manner. In particular, we show that the performance
of ihe BLU estimate based on aeti\'e in\estments in any period can be
replicated by the period's depreciation amount. Moreover, in ever\' period,
the performanee ofthe BLL' estimate based on the entire history o\' investments
can be replicated by a reetirsive procedure that updates the BLL; estimate ofthe
previous period with the current period's investment realization. Depreciation
successfully satisfies multiple objectives it serves as a periodie allocation of
realized investment amounts and as a statistie for tiie unknown investment
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population meati. Depreciation schedules commonly used in practice, straight-
line, accelerated and declining balance, are shown to be best in particular
settings.

Statistical results have been itnportant in a variety of aecounting-related
researeh endeavours. Rmpirieal aeeounting research routinely makes use of
statistical methods. The equivalence between infortnativeness. conditional
controllability and suftieient statistics forms the underpinnings of many of the
agency results in accounting.'' In this paper we emphasize the fact that aeerual
numbers can themselves be treated as statistical estimates of unknown population
parameters. We further emphasize that the statistical role of depreciation need not
eompromise its traditional use as an allocation device.

When depreeiation is discussed, a eommon criterion is lo elioose a depreeiation
method that best matches costs with revenues. Coneeptually the matching theory
is powerful. However, opcrationaliziiig it can sometimes be problematic. In our
setting, matching cannot be operationalized, sinee we consider only one eash
stream, the cash outflow; there is no inflow stream with whieh to match.'" One
way to view the paper is that it suggests there may be reasons to choose a
particular depreciation method even when matching cannot be operationalized.
An extension of this work would be to explicitly recognize both a cash inflow and
a eash outflow stream and study the tension that arises (if any) between the
objectives of matching and providing the best cstitnate of a chosen population
parameter. The explicit modelling of eash inflows may also permit a Feltham-
Ohlson-style analysis in which the role of individual accruals may be further
explored.

In this paper, a demand for the BLU statistie is assumed. An extension would
be to identify decision or control settings in which a demand for the BLU statistic
arises endogenously. Further, even if a larger setting can be defined in whieh a
detnand for sueh estimation arises, it raises the following question: when, if ever,
will a decision-maker strictly prefer having access to the BLU statistic rather than
make use of the entire set of investment realizations. Agency models have studied
settings in whieh the principal's limited ability to commit leads to a demand for
coarse information (see, for example, Arya et al., 2000a; Cremer, 1995;
Sappinglon, 19S6). Whether or not there are natural ageney settings in which
the optimal aggregation rule takes the form of recognizable depreeiable schedules
is an open question.
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APPENDIX

Proof of Proposition I
Proof of (a). Consider the system of linear equations in period /. when the BLU
estimate is constructed u.sitm lhe most recent 7'ohservatiotis.

1 1 ^ ' / 7 1 1

0 - - v7
"/• 11

f 7"! I '•I T

0 - -xl, . + v7, I - \r.,

1 = A I + <̂ ', I

0 = - v 7 , I + v7, - vi:,

A = A

The reason for niultipiying the j:-eiTOr equations with v is to ensure ihal the
error term in ail equations has mean zero and \ai"iant:e a^.. In inatrix Ibrni the
above equations ean be written as I — HI + i/, where

/ =

•,-T+\

' • ' ,

A - 7"+ 1
0

1,-2
0

A 1
0
/,

. H =

1
—\'

0
0
0
0
0

0 , , ,
\' , , ,

0 . , ,
0 . . .
0 , , .
0 . . .
0 . . .

0
0

1
—\'
0
0
0

()
0

(.1
\'
1
\'

0

{

{

(

0
(
\
1

and / ^

, / • • :

A ̂
A - i

7,

The 2 r - I length error vector i; has mean /.ero and its variance-covariance
matrix is GI times the identity matrix. The BLU eslimalor Tor / is
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/ = {H'H]~ Hf. The last element in the vector / is the BLU estimator for /,.
Since the operation H'l yields a vector of the most recent T investment
realizations, Ihc BLU weights on the T investment realizations reside in the last
row o\' (Hfl)' . We ncxl prove this row is

[dl dj ^ --- d. d^ \

(liven H. the matrix U'll = [/?,,]. /. / = I T, is tridiagonal and is as follows:

/;̂ . :^ I + V-, if / = I or 7"
= I + 2v~. otherwise

h,, = -V- . if7 = / + 1 . / - I r - l
= -V- . ify = / - I , / - 2 T

= 0, otherwise

By definition, a neeessary condition for

[dJ' d ' r \ ••• d l ' d l ' ]

to be the last row in ( / / ' / / ) ' is l\rM

yields [0 0 • • - 0 I], the last row in the identity matrix. This condition is aiso
sufficient because H'H has independent rows and columns and, thus, there is only
a unique vector (set of weights) such that the dot product ofthe veetorand H'H is
[0 0 ••• 0 1]. (The matrix / / ' / / has independent rows and columns since,
clearly, / / has independent columns.)

Plugging the closed-form expressions for dl* provided in the text it is
straightforward to verify that

[ 4 ' ' /J-i - - • 4^' d[^\{tl'll) = [0 0 .. - 0 I]

i.e., the following equations hold:"

2v-) + d'r*..^ 2 ("v ' ) = 0. A- = 0,

+ v - ) =
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The final step is to interpret d[' iis a depreeiatitiii I'ate, i.e., (//' > 0 for
A ' = 1 , 2 T and d[- + d]' +-• • + dj'-\ + dj'' - ]. These resuits are a
direct consequence oi tlie following:

(/; > 0 . A" = I T. ( / ; 1.1 :-- a I a n d (/, + - - - + a/ — v {(>! ^[ — a j)

Proof of (b). The stationary case corresponds to a] — (I. Hence, the best
depreciation rate in this case can be obtained by taking the limit o f f / / ' as v
approaches infinity. This yields df -- \/T. Tbis scbedule is straight-line.

In the non-statiunary case (when rr,' > 0), the besi depreciation scbedule ( / / ' is
acceleraied since a j . i^_ f a ,•_ j , 4. in.| •- 0 lor A — 1,2 T. (Recall. (// ./^,, is
the numerator in (// ' .)

Proof of (e). The B l l J eslinialor Ibr 7 ts 1 = {ll'll) Ul'i. fhe variance of
the estimate 7 is a;,(H'll) UT({H'11) ^IT] - (T;.(ITIT) ' . The last element in

the vector / is Ibe BLU estimator for /,. The variance of this estimate is, hence, the
lower rigbt-hand element of{H'll) times a;. The proof is complete since we
have already shown that tbe lower rigbl-hand clement oi'{H'H) is d(\ D

Proof of Corollary 1
•fbe proof Ibllows immediately by plugging \' - I in d[\ M

Proof of Proposition 2
By construetion. the weigbt on /, in BLU', is optimal (best). The proof is complete
if we ean show that (I — d\'' )BLU, , puts optimal weights on ali other in\'estmeni
realizations, 'l'his is indeed tbe case. This follows from the fact that {I — i/J^"'' )d[*
e q u a l s d'iff' f o r I — T. T + ] . e t c . , a n d k — \.2 /. I I

Proof of Corollary 2
From the proof of Proposition 2, we know BLU, puts a weight of c/J/ on /, ^ , ,.
As t approaches infinity, (i) the limil oi' d\' approaches ;•' - 2 / [ \ / l + 4\'- + I]
and (ii) the limil oi' d[' equals (/{'(! — d[')' , for k — 2, 3, elc.

This is a declining balance schedule, fhe beginning book value of the
investment is depreeiated each period at the rate r\ To elab(M"atc, say the
depreciable asset eost $1 . In the hrst pericKl it is depreciated /•^ In Ihe second
period Ihe book value of the asset is (I — ;*'). Tbis is depreciated al a rale r'\ In
the third peritnl the book value of the asset is (I — /"') - r ' ( I — r ' ) = (I - /• ')",
Again, tbis is depreciated al ihe rale r* and so on, I 1
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Proof of Corollary 3
Given Proposition l(c). lhe eflieicney loss is d]''fd'{' - \. Plugging lhe elosed-
form expressions for depreeialion from Proposilion l(a), atid using some tedious
algebra verifies that the elTieiency loss is tnonototiie in v.

From the above, an upper bound on the enicieney loss is obtained when \'
approaehcs infinity, "fhis upper bound corresponds to / / / ' - 1. the elTieiency loss
in the stationary ease,

Anotber upper bound on the efficiency loss eorresponds to the limit of
d'C*/d\* — I when / approaehcs infinity, since thi.s implies the maxitnum
number of observations are ignored. From Corollary 2, this bound is
d'I'/r' - I. lienec, the tiiin|(/ | ' '*/ '" '- \.t/T- 1) is an upper bound on the
efJieieney loss. \~\

Proof of Corollary 4
In this proof we present closed-form expressions for (//* and nif. The reader can
then complete the proof by following precisely the same steps as in the proofs of
Proposition I (a) and Proposition 2.

Define

) . A =- 0.5(r

and

b, - ( - / - 1)/^

Then

i-k+\ k = I T antl m, =

(The depreciation rate dj/' is non-negative since A > <̂,' > I//. > 0, and this
implies / \ > 0.) •

NOTES
1 Ijiri and Kaplan (1969, 1970) study depreciation in a setting in which cash Hows arc

known but there is uncertainty regarding the asset's useful life,
2 A Kalman tiltcr is an important dcvclopmenl in forecasting and liltenng. It is used

when there is a need to separate signals from noise. (iLS can be \'iL'\vcd as a special
case of a Kalman filter, lixamples abound. Airplanes lly on automatic coiiiro! while a
Kalman lilter fits speed and position to tlic laws ol'motion. Kalman filters arc used in
communication problems in which the medium (e.g., the troposphere tor radar, the
ocean for sonar signals) acts as a potential source of noise.
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3 "[I'ibonacci imiiibLTs luni] up m ii iiiosi liiiiUislic \;ii"ii.'ly nt appliciilioiis. and descr \cs j
book of its own. Thorns ;IIKI IC;I\CS grow in u S|iir;il pallcrn, aiul on ihc hautlioin or
apple or oak you inul live [F,] yrowlhs Tor L-\cry iwo {]'•] lurns around tlie stem. 7ho
pear Iree has cighl |l-(,| lor every three turns | | - | | and ihe willow is even more
complicated, 1.'̂  giowtlis | r - j lor every live s|)ira!s | l ' , | . Ttic champion seems to be a
suntlowei' ol" Daniel 1. O'C'onncIl (Scicnli/ic iinerictin. November, 195 1 | vvliose seeds
ehose an almost uiibcliex'able ratio of l"|_,/Ti; l44/2.vV (Straiii;, hJSS: 263). There
is. in faet, a malhematieal journal. Ihe Filiniincci Ouanciiy. de\'oied eruirely lo
Tiboiiacei numbers.

4 We assume caeh i inestmeni has zero salvage value. An alternative is lo view /, as beins!
net ol' salvage value.

5 We use the delinition of steady sl[Ue as in llalfield (I*-)?! / l'-)27: 140 I). In sleady slale,
the number of assels a firm possesses slays eonstanl. in eaeli peiiod. one assei is Hilly
deprecialed and one new assel is piircliascd.

6 We thank the referees ibr suggesting this issue.
7 As /) gels large, llie ralio oi" sneeessive f'lbonacei niiuiliers !•' , , ,)/I,, approaehes

( \ / 5 + I ) /2 , known as Ihe golden ralio. Our Bl V v\eights ai'e ol" Ihe form f , / l , , |
and. hence, they approach the inverse oi"the goklcn lalio.

S ln the liniiU Ihe deelining balance melhod fully depreeiales eaeli asset.
9 See Demski (1994) for e.Kainples in \\hicli acconnling inlbrniation is used for sialistieal

eslimalion in valualion |(_'iiapter M) and eonlrol ((.liapler I')) seltnigs.
10 Allliough Ihere is no notion of malehini; in our model. oLir view of depreeiation as an

estimate of future expenditures (since current period's de|"ireeiaiion is also HI. I) for
next period's in\ 'eslmeni| ean be viewed as derived from nialelnng. If deprecialion tells
us about the resoiirees eonsLimed in generaling past revenues, it presumably also tells
us aboul the lesouiees needed lo generale fuluie revenues,

1 I Obviously, ('.\ mill' Ihe authors did not conjeciurc the closed-forii) expression for i/['.
A construel i \e proof one Ihat derives (// uses a theorem for solvint! reeursive
equations (sec, for example. Theorem 4. li), Niven c/ til.. I"-)')!: 1 ')9). hileresled readers
can e-mail aryai'c'eob.osu.edu f"or delaiN oi" sueh a proof.
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