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Abstract

 

In this paper, we embed the double entry accounting structure in a simple belief revision
(estimation) problem. We ask the following question: Presented with a set of financial state-
ments (and priors), what is the reader’s “best guess” of the underlying transactions that gen-
erated these statements? Two properties of accounting information facilitate a particularly
simple closed form solution to this estimation problem. First, accounting information is the
outcome of a linear aggregation process. Second, the aggregation rule is double entry.
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Condensé

 

Les auteurs enchâssent la structure de la comptabilité en partie double dans un problème
simple de révision d’opinion (estimation). Ils posent la question suivante : quelle sera la
meilleure estimation du lecteur à qui l’on présente un jeu d’états financiers (et de préalables) en
ce qui a trait aux opérations sous-jacentes qui ont généré ces états financiers ? Deux propriétés
de l’information comptable sont propices à une solution de nature fermée particulièrement
simple. Premièrement, l’information comptable est le résultat d’un processus d’agrégation
linéaire. Deuxièmement, la règle d’agrégation est la consignation en partie double.

La résolution intégrale du problème d’estimation comporte quatre étapes.

1. La construction d’une représentation algébrique linéaire du processus comptable. Cette
première étape nécessite la définition d’une matrice à double entrée permettant de
transformer un grand nombre d’opérations en un petit nombre de soldes de comptes.

2. La définition des sous-espaces fondamentaux (c’est-à-dire l’espace rangée, l’espace
nul, l’espace colonne et l’espace nul gauche) de la matrice à double entrée. Dans un
problème d’algèbre linéaire caractéristique, le choix d’une base pour l’espace nul peut
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être un exercice fastidieux. Heureusement, le problème comptable ne soulève pas ce
genre de difficulté puisque la base peut être définie au premier coup d’œil. Cela
découle directement du principe de double entrée de la comptabilité en vertu duquel la
matrice linéaire de transformation comptable est une matrice d’incidence. La matrice
d’incidence, à son tour, permet la représentation géométrique des relations comptables
sous forme de diagramme orienté.

3. À partir des états financiers, la résolution du problème pour tous les vecteurs d’opérations
susceptibles d’avoir généré les états financiers. Il s’agit en d’autres termes de remonter
des états financiers aux opérations. C’est là que les sous-espaces fondamentaux ont
leur utilité. Tous les vecteurs d’opérations cohérents présentent le même élément
espace rangée. Ils ne diffèrent que dans le poids accordé aux vecteurs d’espaces nuls.

4. À partir des vecteurs d’opérations possibles définis à l’étape précédente, le choix du
vecteur d’opérations qui minimise la fonction de perte du lecteur. La décomposition
orthogonale des vecteurs d’opérations cohérents en leurs éléments espace rangée et
espace nul se révèle appropriée dans le calcul des opinions postérieures du lecteur.
Dans le contexte de l’analyse, les convictions préalables du lecteur garantissent l’indé-
pendance des deux éléments. Cela, ajouté au fait que toute l’information de l’espace
nul est perdue en cours d’agrégation, suppose que la conviction postérieure du lecteur
de l’élément espace nul est la même que sa conviction préalable — aucune mise à jour ne
touche l’espace nul. D’autre part, une mise à jour explicite touche l’espace rangée. Étant
donné un ensemble particulier de soldes de comptes, il existe un et un seul élément espace
rangée possible. La somme des deux éléments donne la moyenne postérieure du lecteur.
En supposant une fonction de perte quadratique, la moyenne postérieure correspond à la
meilleure estimation du lecteur.

Les auteurs étendent brièvement la caractérisation algébrique linéaire à l’exploration
d’un problème de classification dans lequel la tâche du lecteur consiste à classer l’entreprise
dans l’une de deux catégories, à partir des états financiers observés. Ce problème est quel-
que peu délicat du fait que la comptabilité en partie double induit une interdépendance entre
les comptes, même lorsque les opérations sont indépendantes. Les plates-formes comp-
tables sont comparées sur le plan de la capacité de discrimination. Il est possible de mesurer
le pouvoir de classification d’une plate-forme en calculant 
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 à partir d’une régression de
l’écart des moyennes des opérations pour les types d’entreprises des rangées de la plate-
forme comptable. La plate-forme qui présente un 
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 plus élevé a un pouvoir de classifica-
tion supérieur pour le problème particulier à l’étude. De plus, si l’espace nul d’une plate-
forme est un sous-espace de l’espace nul de l’autre plate-forme, la première plate-forme est
(légèrement) préférable à la seconde dans tous les contextes où l’on souhaite davantage
d’information.

 

1. Introduction

 

Linear representations have proved illuminating in analyses of many fundamental
accounting problems. The use of local linear approximations to represent cost
functions, the formulation of constrained profit maximization problems, the equiva-
lence of reciprocal cost allocation, and a linear program that does not require any allo-
cation are some examples that come to mind.

 

1

 

 The most basic linear transformation
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met by accountants is the double entry system that converts transaction amounts
into financial statements.

The paper takes its cue from Demski 1992. In discussing the information content
school, Demski (1992, 4–5) writes, “In broad terms, this school is based on the
economics of uncertainty. Accounting enters as a source of information. ... Use of
the accountant’s services is endogenous here. In a single person theory, for exam-
ple, Bayesian revision, given exogenous specification of beliefs, provides a more
endogenous view of accounting. ... This legacy of the information content school
does not come without cost. The modeling is abstract (as it should be) and largely
without accounting (as it should not be).”

Our aim is modest. In this paper, we embed the double entry accounting struc-
ture in a simple belief revision (estimation) problem. We ask the following ques-
tion: Presented with a set of financial statements (and priors), what is the reader’s
“best guess” of the underlying transactions that generated these statements?

 

2 

 

Two
properties of accounting information facilitate a particularly simple closed form
solution to this estimation problem. First, accounting information is the outcome
of a linear aggregation process. Second, the aggregation rule is double entry.

 

3

 

The complete solution to the estimation problem is determined in four steps.

1. Construct a linear algebraic representation of the accounting process. Specify
a double entry matrix that transforms a large number of transactions into a
small number of account balances.

2. Identify the fundamental subspaces (i.e., the row space, nullspace, column
space, and left nullspace) of the double entry matrix. In a typical linear algebra
problem finding a basis for the nullspace can be a tedious exercise. Happily, in
the accounting problem this is not the case. A basis is available at a glance.
This result follows directly from the double entry property of accounting,
which ensures that the accounting linear transformation matrix is an incidence
matrix. The incidence matrix, in turn, allows a geometric representation of the
accounting relationships in the form of a directed graph.

3. Given financial statements, solve for all possible transactions vectors that
could have generated the statements. That is, invert from financial statements
to transactions. This is where the fundamental subspaces come in handy. All
consistent transaction vectors have the same row space component. They differ
only in the weight they place on the nullspace vectors.

4. From the feasible transaction vectors identified in the previous step, pick the
transaction vector that minimizes the reader’s loss function. The orthogonal
decomposition of consistent transaction vectors into their row space and null-
space components proves convenient in computing the reader’s posterior beliefs.
In our setting, the reader’s priors guarantee that the two components are inde-
pendent. This, and the fact that all information in the nullspace is lost during
aggregation, implies that the reader’s posterior belief of the nullspace compo-
nent is the same as her or his prior — no updating occurs in the nullspace. On
the other hand, crisp updating occurs in the row space. Given a particular set
of account balances, there is one and only one possible row space component.
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The sum of the two components yields the reader’s posterior mean. Assuming
a quadratic loss function, the posterior mean is the reader’s best guess.

The linear algebra characterization is extended briefly to explore a classifica-
tion problem in which the reader’s task is to classify the firm as one of two firm
types based on the observed financial statements. This problem is a bit delicate in
that double entry accounting induces interdependence in accounts even when
transactions are independent. Accounting platforms are compared based on their
ability to discriminate. A platform’s classification power can be measured by com-
puting the 
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 from a regression of the difference in transactions means for the firm
types on the rows of the accounting platform. The platform with a larger 

 

R

 

2

 

 has
greater classification power for the specific problem at hand. Further, if the
nullspace of one platform is a subspace of the nullspace of the other platform, the
former platform is (weakly) preferred to the latter platform in all settings where
more information is desired.

There is a long tradition in accounting of formally modeling the accounting
system (e.g., Butterworth 1972; Mattessich 1964; Williams and Griffin 1964a, b;
Ijiri 1971). Such analysis is inherently abstract and parsimonious, and we believe,
as have other authors before us, has far-reaching impact. For example, in discussing
the application of “matrix theory” to cost allocation, Williams and Griffin (1964a,
678) remark, “To the extent that matrix formulations of accounting analysis con-
tribute to more rigorous and logical models of accounting theory, additional support
is adduced for such methods. Surely this use provides an appropriate complement to
the more practical benefits immediately available to the accounting practitioner.”

Ijiri (1971, 780) makes a broader connection between the study of aggregation
and scientific investigation: “The significance of aggregation theory lies not just in
its formal theorems but in its implicit capacity to help theories evolve.” While the
estimation problem is not explicitly dealt with in Ijiri 1967, 1968, 1971, the lan-
guage (and tools) developed in these papers help in the estimation exercise. Repre-
senting the accounting system as an incidence matrix, the use of pseudoinverses,
and the use of a linear aggregation coefficient as a measure of information retained
(lost) are ideas present in Ijiri’s work that we employ.

The remainder of the paper is organized as follows. Section 2 presents the esti-
mation problem. Section 3 presents the solution. Characterizing the invertibility
solution in terms of the fundamental subspaces of the double entry matrix is the
critical aid in deriving the reader’s best guess for transactions. Section 4 extends
the discussion to a classification problem. Section 5 concludes the paper.

 

2. The question

 

The problem we study in this paper is as follows. Presented with a set of financial
statements, 

 

x

 

, what is the reader’s “best guess” of the underlying (unknown) trans-
actions, 

 

y

 

? We assume the reader’s best guess is one that satisfies the following two
criteria. First, it must be consistent with the observed financial statements. Second,
from all consistent transaction vectors, it minimizes the expected loss (assuming
the loss function is quadratic).
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We assume the reader’s priors (before observing 

 

x

 

) are that 

 

y

 

 is normally dis-
tributed with mean  and identity variance–covariance matrix.
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The solution to the problem is determined in four steps.

1. Construct a linear algebraic representation of the accounting process: 

 

Ay

 

 

 

=

 

 

 

x

 

.

2. Identify the fundamental subspaces of the double entry matrix 

 

A

 

.

3. Given 

 

x

 

, solve for all consistent 

 

y

 

 vectors — that is, 

 

y

 

 vectors satisfying 

 

Ay

 

 = 

 

x

 

.

4. Given the reader’s priors over 

 

y

 

, derive the conditional mean of the consistent

 

y

 

 vectors identified in the previous step.

The first step is possible because accounting aggregates using a linear trans-
formation: several transactions are summarized by a few account balances using a
double entry rule. The double entry rule also eases the second step. It allows for a
directed graph representation of the accounting system from which the fundamen-
tal subspaces can be easily derived. The fundamental subspaces, in turn, prove cru-
cial in step 3. Information about the transactions residing in one of the fundamental
subspaces of 

 

A

 

, the nullspace, is lost during aggregation. In contrast, transaction
information residing in the row space of 

 

A

 

 is retained. The conditional (posterior)
mean in step 4 then reflects (1) that the nullspace component of transactions is lost
during aggregation and (2) that the nullspace and the row space components are
statistically independent. For any quadratic loss function, the conditional mean is
the reader’s best guess (i.e., the reader’s Bayesian point estimate).
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We will derive a general proof and use the following numerical example for
illustration purposes. A firm undertakes the following seven transactions:

1. purchase inventory for cash
2. plant acquisition for cash
3. cash expenses
4. cash sales
5. cost of goods sold
6. depreciation (product cost)
7. depreciation (period cost)

Assume the reader’s priors (before financial statements are presented) are that
the expected value of the seven transaction amounts are 7, 9, 1, 10, 5, 1, and 2,
respectively. At the end of the period, the reader is presented with the firm’s
account balances as follows:

 

Balance sheet

 

Ending balance Beginning balance
Cash 2 10
Inventory 4 0
Plant 6 0
Owners’ equity 12 10

y
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Income statement

 

Sales 10
Cost of goods sold 5
Gen’l and admin. 3
Income 2

 

The question we ask is the following: What is the reader’s best guess regard-
ing the transaction amounts that created these financial statements?

Clearly, the reader’s priors are not consistent with the observed financial state-
ments. For example, the priors would imply that the ending cash balance should be
3.
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 However, the ending cash balance is 2. Hence, the reader’s aim is to determine
all 

 

y

 

 vectors that are consistent with the given financial statement and, from among
all such feasible 

 

y

 

’s, to pick the 

 

y

 

 vector that minimizes her or his expected loss.

 

3. The answer

 

Step 1: Linear algebraic representation of the double entry process

 

The core of a linear representation of a double entry system is a transformation
matrix denoted by 

 

A

 

. The matrix 

 

A

 

 has 

 

m

 

 rows and 

 

n

 

 columns, where 

 

m

 

 is the num-
ber of accounts and 

 

n

 

 is the number of transactions. Accounting aggregates so that

 

m

 

 

 

<

 

 

 

n

 

. There are two non-zero entries in each column; the non-zero entries denote
the accounts that are “connected” by the transaction journal entry.We adopt the fol-
lowing sign convention for the non-zero entries: debits to an account are denoted
by 

 

+

 

1, and credits are denoted by 

 

−

 

1. The 

 

A

 

 matrix for our example is

Denote by 

 

x

 

 

 

=

 

 (

 

x

 

1

 

, 

 

x

 

2

 

, ... , 

 

x

 

m

 

), the vector of changes in account balances. The
convention we use is to multiply accounts that have a credit balance by 

 

−

 

1 and
those with a debit balance by 

 

+

 

1. (This is the same convention used when record-
ing the 

 

A

 

 matrix.) For our example, 

 

x

 

 is (

 

−

 

8, 4, 6, 

 

−

 

10, 5, 3). That is, during the
period, cash declined (net credit) by 8, inventory increased (net debit) by 4, and so
forth. The elements in 

 

x

 

 sum to zero. This represents the basic accounting identity
that assets equals liabilities plus owners’ equity.

Denote by 

 

y

 

 

 

=

 

 (

 

y

 

1

 

, 

 

y

 

2

 

, ... , 

 

y

 

n

 

), the vector of transaction amounts. Vector 

 

x

 

 is
prepared by aggregating 

 

y

 

 using the transformation 

 

A

 

: 

 

Ay

 

 

 

=

 

 

 

x

 

. For example, if 

 

y

 

 

 

=

 

(8, 9, 1, 10, 5, 1, 2), then 

 

Ay

 

 

 

=

 

 (

 

−

 

8, 4, 6, 

 

−

 

10, 5, 3) 

 

=

 

 

 

x

 

. The matrix representation is
possible because bookkeeping is a linear process.

Cash
Inventory

Plant
Sales

Cost of goods sold
Gen’l and admin.

1– 1– 1– 1 0 0 0
1 0 0 0 1– 1 0
0 1 0 0 0 1– 1–
0 0 0 1– 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 1
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The double entry matrix, as is true of any matrix, is associated with four fun-
damental subspaces: the row space, the left nullspace, the column space, and the
nullspace. What is special about the double entry matrix is that each column con-
sists of 

 

+

 

1 and 

 

−

 

1. This incidence property allows for a directed graph representa-
tion of the double entry process. The graph makes the task of identifying the
fundamental subspaces of the matrix straightforward.

 

Step 2: The fundamental subspaces of A

 

The double entry matrix can be represented by a graph of edges connecting nodes.
The nodes correspond to accounts, and edges between two nodes correspond to
transactions. The graph is “directed” when we assign an arrow to each edge. We
adopt the convention that if an edge goes from node 

 

j

 

 to node 

 

k

 

, then the column
has 

 

−

 

1 in row 

 

j

 

 and 

 

+

 

1 in row 

 

k

 

. In other words, the arrow goes away from the
account credited and points toward the account debited. For our example the
directed graph is as shown in Figure 1.

 

Left nullspace

 

The left nullspace of a matrix 

 

A

 

 consists of all vectors 

 

w

 

 orthogonal to each col-
umn in 

 

A

 

. This means that

 

 

 

w

 

T

 

 appears on the left of A: wTA = 0. For an incidence
matrix, adding all the rows in A (i.e., weighting each row by 1) yields the zero vector.
Hence, the vector of all 1’s resides in the left nullspace. The vector of all 1s repre-
sents balancing in accounting: assets equal liabilities plus owners’ equity. Further-
more, if the graph is connected, there is one and only one independent vector in the
left nullspace. A graph is connected when starting from any node (account) there is a
path (sequence of transactions) to any other node. Hence, in our example, the dimen-
sion of the left nullspace is 1 and the vector of 1s (the balancing vector) is a basis.

Row space
In the language of accountants, knowing the balances in any m − 1 accounts and
using the accounting identity allows calculation of the balance in the remaining
account. In the language of linear algebra, any m − 1 rows of the matrix A are inde-
pendent, but all m rows sum to the zero row. Hence, the dimension of the row
space is m − 1, and any m − 1 rows of A form a basis.

To create the T account for account i, one can simply multiply the ith row of
the A matrix with the vector of transaction amounts. Hence, we refer to the space
spanned by the rows as the T account space.

Nullspace
To solve the equation Ay = x for y, we will need to know all the solutions to Ay = 0.
The nullspace of A consists of vectors, y, that solve the equation Ay = 0. That is, the
nullspace consists of transaction vectors that produce zero changes in the account
balances. The loops of the directed graph form a basis for the nullspace.

In the example there are two independent loops. One loop is to start from the
cash node, move along transaction 2 to Plant, then move along transaction 6 to
Inventory and then proceed along (minus) transaction 1 back to the starting node.
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The seven-element vector representing this loop has 1 in the second position, 1 in
the sixth position, −1 in the first position, and zero elsewhere: (−1, 1, 0, 0, 0, 1, 0).
Similarly, a second loop connecting Cash − Plant − G & A can be expressed as (0,
1, −1, 0, 0, 0, 1). Note that A times these vectors (or any linear combination of
these vectors) is zero. Denote the nullspace matrix as N, where the rows of N are a
basis of the nullspace. Hence, ANT = 0.

The dimension of the nullspace (the number of loops) is n − m + 1, where 1 is
the dimension of the left nullspace (recall, the vector of 1s is the basis for the left
nullspace). The dimension of the nullspace follows from the fundamental theorem
of linear algebra or, alternatively, it can be viewed as an application of Euler’s the-
orem (see, for example, Strang 1998, 363).7

Column space
The column space of A consists of all valid journal entries. Each column of A is
itself a simple journal entry. Compound entries also lie in this space, since they can
be created as a linear combination of the simple journal entries in the columns.

From the fundamental theorem of linear algebra, the dimension of the column
space is the same as the dimension of the row space. The only question is to iden-
tify m − 1 independent columns of A that form a basis. There are many possible
choices, and all of them correspond to a “spanning tree” of the directed graph.
Edges (columns) that do not contain any loops are termed “trees”, and trees that
touch all the nodes are termed “spanning”. A spanning tree consists of columns 4

Figure 1 A directed graph for the 6 by 7 double entry matrix

Sales

Cash

Cost of
goods sold

Inventory

Plant Gen’l and
admin. expenses

y1

y5

y2

y6

y4

y7

y3
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and 5 along with any three columns chosen from 1, 2, 3, 6, 7 such that neither of
the two loops (loop 1, 2, 6 or loop 2, 3, 7) is retained. The five columns 1, 2, 3, 5, 6
would not be a basis because the loop (1, 2, 6) is included. Columns 1, 2, 3, 4, 5
give a basis for the column space because the five edges touch all the nodes but do
not contain any loops.

The following observation summarizes the above discussion.

OBSERVATION 1. The composition and dimensions of the four fundamental
spaces of the double entry matrix are

Left nullspace: Dimension 1, the balancing vector.
Column space: Dimension m − 1, the space of valid journal entries.
Nullspace: Dimension n − m + 1, the space of looping transactions.
Row space: Dimension m − 1, the space of T accounts.

Step 3: The invertibility solution
The question addressed in this section deals with the inverse transformation from
financial statements back to transactions. In particular, given financial statements,
to what extent can we disaggregate to find the primitive transaction data? Equiva-
lently, if two distinct sets of transactions yield identical financial statements, is
there a systematic relationship linking the two transaction vectors?

The degree to which we can (or cannot) invert uniquely to y is determined by
the dimension of the nullspace. If the dimension of the nullspace is zero (it con-
tains only the zero vector), then we can determine y uniquely. In accounting, the
dimension of the nullspace exceeds zero, since the number of transactions typi-
cally exceeds the number of accounts. Hence, an infinite number of y vectors can
produce the same x vector. However, all such y vectors differ only in the weights
they place on the loops of the directed graph (the nullspace vectors).

Given an x vector, the first step is to compute any vector of transactions, y,
such that Ay = x. Call this particular solution yp. All ys that produce the same x can
be written as the sum of yp and any linear combination of the loops. Recall that A
times yp is x, and A times the loops (nullspace vectors) is 0.

One easy choice for y p makes use of the spanning tree as follows. Set the
transaction amounts for edges not included in the spanning tree equal to 0. For our
example, recall that columns 1–5 form a spanning tree. Hence, set y6 = y7 = 0.
Given x = (−8, 4, 6, −10, 5, 3), the first five elements of the y vector, y1 through y5,
are found by solving the set of equations

.

1– 1– 1– 1 0
1 0 0 0 1–
0 1 0 0 0
0 0 0 1– 0
0 0 0 0 1
0 0 1 0 0

y1

y2

y3

y4

y5

8–
4
6

10–
5
3

=
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We are assured that a solution exists to the above problem, since x resides in the
column space of A and the first five columns of A are a basis for that space. In this
case, yp is (9, 6, 3, 10, 5, 0, 0). Hence, all y vectors consistent with the x vector are
of the form

, where k1 and k2 are arbitrary constants.

Another common choice for yp is to pick a y vector that resides entirely in the
row space of A. This choice is unique and is denoted by y R. y R can be found by
multiplying the accounts x by the pseudoinverse of A, denoted A+.8 For the exam-
ple, yR = (7.5, 6, 4.5, 10, 5, 1.5, −1.5). Hence, the invertibility solution can also be
written as

, where k1 and k2 are arbitrary constants.

It is easy to verify that yR resides entirely in the row space of A: yR is orthogo-
nal to the two nullspace vectors. Figure 2 summarizes the interrelationships among
the four subspaces, as well as the operation of A and A+. Any y vector can be pro-
jected into the row space of A by the compound matrix operation A+A and into the
nullspace of A by N+N. The two projections are denoted by yR and yN, respectively.
Since the sum of y R and y N is y, N+N = I − A+A, where I is the n × n identity
matrix.

Observation 2 presents the invertibility solution.

OBSERVATION 2. The invertibility solution is A+x + NTk, where k is a vector of
arbitrary weights.

Any weighted combination (where the weights sum to 1) of two consistent
transaction vectors is itself consistent. The invertibility solution set is convex. This

y

9
6
3

10
5
0
0

k1

1–
1
0
0
0
1
0

k2

0
1
1–
0
0
0
1

+ +=

y

7.5
6
4.5

10
5
1.5
1.5–

k1

1–
1
0
0
0
1
0

k2

0
1
1–
0
0
0
1

+ +=
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is because consistent vectors have the same row component A+x (the row compo-
nent is unique for each x) and differ only on the weights they place on the
nullspace vectors. A weighted combination of two such vectors is A+x plus a
weighted average of the two nullspace vectors. This weighted combination is con-
sistent with x, since A times the row component yields x and A times the weighted
nullspace component yields zero.

Recall that the invertibility solution can generally be written as yp + NTk. The
choice of yp = A+x is made to ensure that the two components of y that make up the
invertibility solution are orthogonal; the first piece lies in the row space and the
second in the nullspace of A. The orthogonal component representation proves
convenient when the reader of financial statements uses the information to update
her or his beliefs regarding the transactions vector.9

Step 4: Updating priors
The final step is to derive the conditional mean of the consistent y vectors identi-
fied in the previous step. As argued earlier, for a Bayesian reader with a quadratic
loss function, the best guess is simply the conditional mean. Proposition 1 presents
the reader’s best guess of the transactions after she or he has had a chance to exam-
ine the financial statements.

PROPOSITION 1. Given financial statements x, the reader’s best guess of the
unknown transactions is A+x + N+N .

PROOF OF PROPOSITION 1. We first check to see that the best guess is consistent
with x — that is, A(A+x + N+N ) = x. The transformation AA+ projects x into the

y

y

Figure 2 The four fundamental subspaces of the double entry matrix

Balancing
vector
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nullspace)

Journal
entries

(column
space)

T accounts
(row space)

0 0

Loops
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y

AyN

yN

yR AyR

Ay

x

A+x
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column space of A. But since x already resides in the column space of A, AA+x = x.
Also, AN+N = 0. To see this, substitute I − A+A for N+N and note that AA+A = A.
Hence, A(A+x + N+N ) = x + 0 — that is, the best guess is consistent.

We next check that from among all consistent y vectors, A+x + N+N  has the
least expected loss. From Observation 2 and the use of the quadratic loss function,
A+x + N+N  is the minimum expected loss estimator if E( N| R = A+x) = N+N .
Since R = A+A , N = N+N , and  ∼ N( , I), it follows that R ∼ N(A+A ,
A+A) and N ∼ N(N+N , N+N). Since the two components are normally distrib-
uted and Cov( R, N) = Cov(A+A , N+N ) = A+AIN+N = 0, the row space and
the nullspace components are statistically independent. Hence, E( N| R = A+x) =
E( N) = N+N . ■

The intuition for the result is straightforward. The unconditional mean is com-
posed of two orthogonal parts, A+A  and N+N . Since all information in the
nullspace is lost during the aggregation process of preparing financial statements
and the nullspace component is independent of the row space component, the
observability of x does not lead to any updating of the reader’s beliefs regarding
the nullspace component; the best guess of the nullspace component of the transac-
tion vector continues to be N+N . However, the observability of x does result in
belief revision of the row component of the transaction vector. This updating is
crisp. Every x vector is associated with a unique counterpart A+x in the row space.
That is, A+x is the only transaction vector residing in the row space that is consis-
tent with the financial statements. Hence, the reader’s best guess of the underlying
transaction vector is the sum of A+x and N+N .10

Return to the ongoing example with x = (−8, 4, 6, −10, 5, 3) and  = (7, 9, 1,
10, 5, 1, 2). On observing x, the reader’s best guess is

A+x + N+N  = .

We next turn to interval estimation. Corollary 1 presents the region in which
the transaction vector resides with probability 1 − α.

COROLLARY 1. Given financial statements x, the reader assigns probability
1 − α that the transaction vector resides in the region R, R = {A+x + NTk:
[k − (NNT)+N ]T (NNT) [k − (NNT)+N  < χ2(α)}, where χ2(α) denotes
the upper (100α)th percentile of the chi square distribution with degrees
of freedom n − m + 1.
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PROOF OF COROLLARY 1. As shown in Proposition 1, N ∼ N(N+N , N+N). N

can be written as NT . Hence, NNT  = N N and  = (NNT)+N N. This implies
that k is normally distributed with mean (NNT )+NN+N  = (NNT )+N  and vari-
ance–covariance matrix (NNT )+NNT(NNT )+ = (NNT )+. (This uses the pseudoin-
verse property that NN+N = N.) The corollary then follows from the fact that the
sum of n − m + 1 squared standard normal variables follows a chi square distribu-
tion with n − m + 1 degrees of freedom. ■

Not surprisingly, the posterior distribution of y has a smaller variance than the
prior distribution. Since (NNT)+ is the variance–covariance matrix associated with

, the variance–covariance matrix of A+x + NT  is N+N < I.11 Also, as x changes,
the conditional mean changes but the conditional variance does not. The condi-
tional variance changes only if information in addition to what is contained in x is
provided. Of course, the new information cannot just be a linear combination of
elements of x. In the language of linear algebra, information is “new” only if it
results in the reduction of the nullspace. When that happens, the conditional vari-
ance further declines.

With additional information, belief revision occurs in the same manner as in
Proposition 1 (and Corollary 1). Return to the example. Say, in addition to the
information in x, the reader also learns that the total depreciation charge is 4. Total
depreciation corresponds to y6 + y7. Augment the A matrix (the x vector) with an
additional row (element) that reflects this information. In particular, [0 0 0 0 0 1 1]
is the additional row in the A matrix, and 4 is the additional element in the x vector.

The additional row is independent of the other rows in A. This follows from
the fact that adding the row reduces the dimension of the nullspace from two to
one. A quick way to see this is to use some accounting and examine the impact of
the additional information on the directed graph. The Plant T account reveals that
if total depreciation is 4, plant acquisition (y2) must be 10. Reconsider the loops in
Figure 1. Since y2 is known only one loop remains, and it consists of transactions
1, 3, 6, and 7. The nullspace vector is (1, 0, −1, 0, 0, −1, 1).

Using the augmented A matrix, the augmented x vector, and the lone nullspace
vector for N results in the best estimate of (7.25, 10, 0.75, 10, 5, 1.75, 2.25).

4. Extension: A classification problem
In this section we embed the accounting conditional estimation problem in an eco-
nomic decision context. The decision problem we consider is a classification exer-
cise. In our setting, a reader attempts to categorize a firm as being one of two
“types” based on the observed financial statements. The two types differ in the
mean transactions amounts; the financial statements, of course, capture only the
row space components of the transactions. The decision maker uses the financial
statements to update her or his priors of the different types. The updating exercise
is somewhat delicate because the accounting process introduces a dependency in
the accounts even when there is no dependency in the underlying transactions. This
is because any time an account is debited, another account is credited. Double
entry introduces a negative covariance.

ỹ y ỹ
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We rank alternative accounting platforms based on an ex ante efficiency crite-
rion of minimizing the total cost of misclassification.12 The classification problem
is characterized by , the vector of differences in the mean transaction amounts
of the two types. The ranking criterion is intuitive. Platform A is preferred to plat-
form B if regressing  in the rows of A yields a higher R 2 than when  is
regressed in the rows of B.

This is analogous to what we did in the previous section. The vector  can be
decomposed into the row space and the nullspace of the aggregation matrix. The
former component is retained, while the latter is lost when y is aggregated. The R2

of our regression measures the proportion of  that lies in the rows of the aggre-
gation matrix. A higher R 2 means that more of the  vector resides in the row
space and, hence, less of the relevant transaction information is lost in the aggrega-
tion process. We note that even if one platform has a row space that is a subset of
the row space of another platform, there may be no increase in the expected cost of
misclassification if the former platform is used. For example, if  resides entirely
in the smaller row space, then R2 is 1 irrespective of which of the two platforms is
used — the discriminant power under the two platforms is the same and is equal to
the discriminant power when transaction information is available.

The above result is contextual — that is, platform choice is made for a partic-
ular vector. A corollary to this result is that platform A is preferred to platform
B for all  vectors if, and only if, the nullspace of A is a subset of the nullspace of
B. The nested nullspace condition implies that any information in By can be repro-
duced by a linear combination of the elements of the vector Ay.

The classification problem
A reader of financial statements is interested in discriminating between two types
of firms, L and H. Each firm undertakes n transactions. The transaction amount
vector for the i-type firm is denoted by yi, i = L,H.

Each type of firm is characterized by the mean value of its transactions vector,
denoted by . The difference in the two mean transaction vectors,  − , is
defined as . The actual transactions vector is a linear function of the mean trans-
actions vector, , and a random state of nature :  =  + . We assume  is
normally distributed with mean zero and identity variance–covariance matrix.13

The reader’s priors are that the firm is equally likely to be of L- or of H-type.
The decision maker’s objective is to use the firm’s financial statements, Ay, to clas-
sify the firm as an L- or H-type such that the ex ante (before x is observed) proba-
bility of misclassification is minimized.14

The solution to the classification problem
Revisiting the ongoing numerical example, suppose the two equiprobable types are
characterized by the following mean transaction vectors:  = (8, 9, 1, 10, 5, 1, 2)
and  = (7, 9, 1, 10, 5, 1, 2). Suppose a firm’s observed financial statement is x =
(−8, 4, 6, −10, 5, 3). The question is what is the reader’s best guess of the firm’s type?

Notice that the types differ, on average, only in transaction 1, the acquisition
of inventory. However, as we will shortly see, information about other transactions
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(i.e., depreciation) will prove to be helpful in discriminating between the two
types. The usefulness of other information is due to the covariance introduced by
the double entry system. This is stated in the next observation.

OBSERVATION 3. Even when transactions are independent, a dependency in
accounts is introduced because of the double entry process itself.

Since x = Ay, the variance–covariance matrix associated with x is AAT. Fur-
ther, when A is an incidence matrix (i.e., composed only of journal entries), AAT

takes on an intuitive form. The diagonal elements of the matrix, say aii, are equal to
the number of journal entries affecting account i. The off-diagonal elements, say aij,
are equal to −1 if accounts i and j are connected by a journal entry, and zero otherwise.

In making her or his classification decisions, the reader has to be cognizant of
the induced variance–covariance structure. For example, if the variance associated
with account i is high, the reader will place less weight on it. Also, an account that
on the average is the same for both types may still be valuable in the classification
exercise because of the possibility of “learning”. That is, negative covariance
allows information regarding account i to update the reader’s beliefs regarding
account j.

Given x, denote the (posterior) probability that a firm is of type i by Pr(i|x). Using
Bayes’s rule,

Pr(i | x) = 

where f(x | i) = k Exp[−0.5(x − A )T(AAT)+(x − A )]. The function f(x | i) is the
probability density function of a multivariate normal distribution, and k is the nor-
malizing constant.15

The optimal classification rule and the total probability of misclassification are
presented in the following lemma:

LEMMA. (a) Given x, a firm is classified as an L-type if Pr(L |x) > Pr(H |x);
else it is classified as an H-type.

(b) Under the above classification rule, the (ex ante) probability of mis-
classification is F( /2), where  = (A )T(AAT)+(A ) and F is the
cumulative distribution function of a standard normal distribution.

The classification rule in part (a) simply compares posterior probabilities. The
proof of part (b) can be found in any standard discussion of discriminant analysis
(e.g., Johnson and Wichern 1988). The sketch of the proof is as follows. Compar-
ing Pr(L |x) with Pr(H |x) is the same as comparing f(x |L) with f(x |H). Substituting
the probability density function of the multivariate normal distribution for f, taking
natural logarithms, and simplifying implies that f(x |L) > f(x |H) iff llll Tx < llll Tm,
where llll = (AAT)+(A ) and m = (A +A )/2. That is, a classification rule

f x L )(
f x L( ) x H( )+
--------------------------------------

yi yi
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equivalent to that presented in Lemma (a) is to convert the vector x into a scalar
using llll and then compare it with the midpoint, llll Tm, of the scalar distribution.16

The probability of misclassification is Pr(llll Tx < llll Tm |H)0.5 + Pr(llll Tx > llll Tm |L)0.5;
the first (second) number is the probability that an H-type (L-type) firm is classi-
fied as an L-type (H-type) weighted by the probability that the firm is of H-type (L-
type). Since llll Tx is normally distributed, these probabilities can easily be computed
and shown to be equal to F( /2).

Using Lemma (a) for our example implies that the firm should be classified as
an L-type, since Pr(L |x) = 0.5775 and Pr(H |x) = 0.4225. To see why the reader
needs to be cognizant of the correlation induced by double entry, suppose that, in
addition to x, the reader learns that depreciation (y6 + y7) is equal to 4. Since, on
average, the two types differ only in y1, the reader may conclude that this addi-
tional information will not affect the classification exercise. Because of the
induced correlation effect, this conclusion is incorrect. Using the augmented A
matrix (the original A with the additional row [0 0 0 0 0 1 1]) and the augmented x
vector (−8, 4, 6, −10, 5, 3, 4) yields Pr(L |x) = 0.4688. Based on x and the depreci-
ation information, the firm is now classified as an H-type.

The link between the classification problem and the nullspace thinking pre-
sented earlier is highlighted by the following exercise. For the example, compute
the R2 associated with regressing  on the rows of A and the augmented A matrix.
The R2 are 5/8 and 3/4, respectively. Also, using Lemma (b), compute the Δ2 for
the two cases.17 The Δ2 are the same as the R2. This connection between the regres-
sion problem and the classification problem is not a coincidence.

In the regression problem, the total sum of squares is || ||2. As is the case with
any n-length vector,  can be decomposed into the row space and the nullspace of
A. The squared length of these projections is the sum of squares regression and the
sum of squares error, respectively. Hence, R2 = (||A+A ||2)/(|| ||2).18

In the aggregation process we know that only the row space component is pre-
served. Intuitively, this suggests that ||A+A ||2 should be related to the discrimi-
nant power when financial statements are used. As we show next, = ||A+A ||2.
Thus, comparing two aggregation platforms, say A and B, is simply an exercise in
computing and comparing R2s.

PROPOSITION 2. (a) Platform A is (weakly) preferred to platform B for a par-
ticular  if and only if the R2 associated with regressing  in the rows
of A is greater than the R2 associated with regressing  in the rows of B.

(b) Platform A is preferred to platform B for all  if and only if the
nullspace of A is a subspace of the nullspace of B.

Proof of Proposition 2. (a) From Lemma (b), the probability of misclassification
is F(−Δ /2). For a given  vector, A is preferred to B iff F(−ΔA/2) < F(−ΔB/2).
Since F is an increasing function (it is a cumulative distribution function), this
implies that A is preferred to B iff  > .  ( ) can be written as the length
of the projection of  in the rows of A (B):
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 = (A )T(AAT)+(A ) = TAT(AAT)+A  = TAT(AT)+A+A  

= T (A+A)TA+A  = TA+A  = || A+A ||2.

The second-to-last equality is true because A+A is a projection matrix; projection
matrices are symmetric and idempotent. Since R2 = (|| A+A ||2/|| ||)2, the result
follows.

(b) If the nullspace of A is a subset of the nullspace of B, then the row space of
B is a subset of the row space of A. This implies that the length of the projection of
any vector into the row space of A is at least as large as its projection into the row
space of B. Also, if the nullspace of A is not a subset of B, then it is always possi-
ble to find a vector whose projection in the row space of A is smaller than its pro-
jection in the row space of B. The result then follows from the fact that the length
of the projection of  into the rows of the aggregating matrix is inversely propor-
tional to the probability of misclassification. ■

Proposition 2(b) is a statement of comparison in the sense of Blackwell 1951:
platform A is preferred to platform B for all decisions (not just the discriminant
problem). The information produced by the transformation By = xB can be created
by a linear combination of the information in Ay = xA, but not vice versa. That is,
xB = CxA, where C has a non-empty nullspace. (For the case where A and B have
the same dimensions, a non-empty nullspace of C implies that C is not invertible.)

Showing xB = CxA is equivalent to showing By = C(Ay) for all y. That is, B =
CA.19 Choose C = BA+. This choice (1) satisfies B = CA and (2) has a non-empty
nullspace. To see (1), note that B − CA = B − BA+A = B(I − A+A) = 0. The last
equality follows because I − A+A projects any vector into the nullspace of A, and
the nullspace of A is contained in the nullspace of B (from Proposition 2(b)). Since
A is an incidence matrix, the vector of all 1s lies in the left nullspace of A. The left
nullspace of A is the nullspace of A+. Hence, BA+ times the vector of ones is 0. C
has a non-empty nullspace. This proves (2).

5. Conclusion
We characterize the double entrydouble entry aggregation process as an incidence
matrix. An incidence matrix can be represented by a directed graph, which allows a
convenient and simple derivation of the fundamental subspaces of the matrix. The
fundamental subspaces, in turn, lead to a closed form solution to the following
inference problem: Presented with a set of financial statements (and priors), what
is the best guess of the underlying transactions that generated the statements?

In practice, a major strength of accounting is its dynamic nature. While it may
be possible to manage earnings in the short run, it is much harder to do so in the
long run. Sooner or later, accounting catches up. A limitation of this paper is that
we studied only static attributes of the accounting system. We conjecture that the
ability of linear algebra to model dynamic systems (see, e.g., Strang 1986) may
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prove beneficial in the study of accounting. Perhaps even the language developed
in linear algebra to describe dynamic systems (e.g., eigenvalues and eigenvectors)
may have accounting counterparts.

Another possible extension is to incorporate benefits into aggregation. A com-
monly cited benefit to aggregation is motivated by bounded rationality: limits on
information transmission, reception, and processing can make aggregated informa-
tion desirable. A second potential benefit to aggregation arises when individual
items are measured with errors. Aggregation may allow errors in the individual
items to cancel out (Datar and Gupta 1994). A third reason is that the aggregation
process itself may add information (Sunder 1997). Another reason a firm may wish
to disclose aggregated information is if disaggregated information includes propri-
etary information that may be exploited by competitors (Newman and Sansing
1993). Finally, agency models have studied settings in which the principal’s lim-
ited ability to commit has led to coarse (aggregated) information being optimal
(see, e.g., Cremer 1995 and Demski and Frimor 2000). These models build on the
familiar game-theoretic idea that there are games in which a player may gain by
limiting his or her own information if the opponents know he or she has done so,
because this may induce the opponents to play in a desirable fashion. An interest-
ing question arises: Could accounting structure, and perhaps even double entry, be
an optimal way of aggregating information?

Appendix
In this appendix, we discuss the construction and properties of the pseudoinverse of a
matrix. Consider any matrix A of rank r. A can be written as the product of two matri-
ces, F and G, where F has r independent columns and G has r independent rows.
The matrices FTF and GGT are r × r, symmetric, and nonsingular. Nonsingular
square matrices have regular inverses. Hence, (FTF)−1(FTF) = (GGT)(GGT)−1 = I.

Define F+ = (FTF)−1FT and let G+ = GT(GGT)−1. Note that F+ is an inverse of
F in the sense that F+F = I and, similarly, GG+ = I. Define A+ = G+F+. The pseudo-
inverse of A is A+ and has the following properties:

AA+A = A

A+AA+ = A+

AA+ = (AA+)T

A+A = (A+A)T

A matrix satisfying the above properties is also called a generalized inverse or a
Moore-Penrose inverse. It always exists and is unique (see Penrose 1955).

For the A matrix in our running example, F, G, and A+ are presented below.
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 and 

A+ = GT (GGT)−1 (FTF)−1 FT .

Endnotes
1. See, for example, Demski 1994 and Ijiri 1975 for discussions of these linear 

representations.
2. We thank a referee for suggesting that the formal representation of the accounting 

system could be used to answer the belief revision problem.
3. Other authors have expressed different views. For example, McCarthy (1982, 559) 

writes, “It is a primary contention of this paper that the semantic modeling of 
accounting object systems should not include elements of double entry bookkeeping 
such as debits, credits, and accounts.”

4. While our result is stated for the identity variance–covariance case, it can be easily 
extended to the case of a nonidentity variance–covariance matrix. The key is to 
decompose any variance–covariance matrix into a symmetric factorization ΓΓT. The 
variable Γ−1y is associated with identity variance–covariance and can be used instead 
of y in the paper. This is the same transformation of variable technique that is used to 
convert a generalized least squares problem into an ordinary least squares problem. See 
Greene 1997 (507). The transformation is particularly simple for the special case 
where the dependency in transactions is only through sales (as is assumed when the 
percentage-of-sales forecasting method is adopted). In particular, say the relationship 
between transaction i and sales is of the form ( fi + ei) sales, where fi is a proportionality 
constant and the error terms (the eis) are independently distributed. In this case, 
dividing each transaction by sales creates items that are independently distributed.

5. Denote the quadratic loss function by (w − b)TC (w − b), where w is an n-length 
random variable, C is an n × n matrix of constants, and T denotes a transpose. The 
expected value of this loss function is minimized when b = E(w). See, for example, 
Greene 1997 (316).

F

1– 1– 1– 1 0
1 0 0 0 1–
0 1 0 0 0
0 0 0 1– 0
0 0 0 0 1
0 0 1 0 0

= G

1 0 0 0 0 1 0
0 1 0 0 0 1– 1–
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0

=

1
48
------

13– 17 1– 13– 17 7–
10– 2 14 10– 2 2
9– 3– 3 9– 3– 21
8 8 8 40– 8 8
8– 8– 8– 8– 40 8–
3– 15 15– 3– 15 9–
1 5– 11– 1 5– 19

=
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6. Ending cash balance = beginning cash balance − purchase inventory − plant acquisition 
− cash expenses + cash sales = 10 − 7 − 9 − 1 + 10 = 3.

7. Euler’s theorem can be stated as follows. In a connected graph, the number of loops 
equals n − m + 1, where n is the number of edges and m is the number of nodes.

8. Readers unfamiliar with pseudoinverses can read the appendix for a derivation of A+ 
and its properties. Also, see Ijiri 1965, 1996.

9. Furthermore, since the pseudoinverse is a commonly found function in standard 
mathematical packages (e.g., Mathematica and MATLAB), this characterization is 
particularly easy to operationalize.

10. We were unable to compute the reader’s best guess of transactions using only 
traditional T accounts. The idea of breaking transactions into a minimum (length) 
component and a component that leaves the financial statements unchanged is not only 
an elegant way to represent transactions but also an idea that we found extremely 
useful in solving an accounting problem.

11. A < B if B − A is a positive semidefinite matrix.
12. Arya, Fellingham, and Schroeder (2000) compare the cost of using account balances 

rather than transaction information in the classification exercise.
13. The reasons for this choice are twofold. First, by eliminating any interdependency in 

transactions we are able to focus on the interdependencies introduced by the double 
entry matrix. Second, solving the problem when the variance–covariance matrix is not 
I is straightforward (see note 4).

14. Minimizing the probability of misclassification is equivalent to the reader minimizing 
the expected cost of misclassification, assuming that the costs of misclassifying an L-
type as an H-type firm and an H-type as an L-type firm are equal. The case of unequal 
costs of misclassification and unequal priors can be handled easily but provides no 
additional intuition.

15. If AAT is nonsingular, the normalizing constant is (2π)−n/2|AAT |−1/2. Of course, since k 
appears both in the numerator and the denominator of the expression for Pr(i |x), 
Pr(i |x) can be calculated without computing k.

16. The choice of llll = (AAT) +(A ) is intuitive. It maximizes the squared distance 
between the means of the scalar distributions, standardized by the variance. That is, llll is 
chosen so as to maximize

[llll T(A  − A )]2 / llll T(AAT)llll .

17. Not surprisingly, the ex ante probability of misclassification with depreciation 
information, F(−3/8) = 0.333, is less than when depreciation information is 
unavailable, F(−5/16) = 0.346.

18. R is the linear aggregation coefficient in Ijiri 1968.
19. This is the familiar test for comparing experiments (information systems) in Blackwell 

1951.
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