
On the Role of Accruals

Joel S. Demski
University of Florida

John C. Fellingham
Ohio State University

Haijin H. Lin
University of Florida

Douglas A. Schroeder
Ohio State University

January 2007

Introduction

Accruals are pervasive in accounting practice. Further, accrual accounting
competes with other information providers for resources. Yet much of account-
ing research criticizes their role or at least people�s perceptions of accruals (for
example, Sloan [1996], Ali, Hwang, and Trombley [2000], Collins and Hribar
[2000], Bradshaw, Richardson, and Sloan [2001], Dechow and Dichev [2002],
Hribar and Collins [2002], McNichols [2002], Thomas and Zhang [2002], Fair-
�eld, Whisenant, and Yohn [2003], Barth and Hutton [2004], Desai, Rajgopal,
and Venkatachalam [2004], and Zhang [2005]). In contrast, this paper explores
positive valuation and evaluation roles of accruals in a simple, yet dynamic
setting.
We show that accruals can summarize the information content regarding

expected cash �ows from the past cash �ow history. This is similar in spirit
to Arya, Fellingham, Glover, and Schroeder [2002]. In addition, we show in a
moral hazard setting that the foregoing accrual statistic can be combined with
current cash �ows and non-accounting contractible information to e¢ ciently
(subject to LEN model restrictions1) supply incentives to agents. The LEN
(linear exponential normal) model application is similar to Arya, Fellingham,
and Schroeder [2004]. It is not surprising that accruals can serve as statistics for
valuation or evaluation, rather the striking contribution here is that the same
accrual statistic can serve both purposes without loss of e¢ ciency.
An implication of the accruals to be described in more detail later is that

they provide the same statistical information as fair value accounting but under
weaker conditions. Suppose fair value accounting is applied to operating assets
so that economic value Vt is readily at hand. From a statistical su¢ ciency
perspective for the mean of cash �ows, users are indi¤erent between the data

1See Holmstrom and Milgrom [1987], for details on the strengths and limitations of the
LEN (linear exponential normal) model.
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pair current cash �ow combined with previous period�s value, and current cash
�ow combined with previous period�s accruals.
The remainder of the paper is organized as follows. Section two develops

the model, section three provides the results of the paper (two propositions
and three corollaries; all proofs are in the appendix). Section four discusses
connections with the extant empirical literature on accruals, and section �ve
concludes the paper.

Model

The data generating process (DGP ) is as follows. Period t cash �ows (ex-
cluding the agent�s compensation s) includes a permanent component mt that
derives from productive capital, the agent�s contribution at, and a stochastic
error et.

cft = mt + at + et

The permanent component (mean) is subject to stochastic shocks.

mt = g mt�1 + �t

where m0 is common knowledge, g is a deterministic growth factor, and stochas-
tic shock �t. In addition, there exists contractible, non-accounting information
that is informative of the agent�s action at with noise �t.

yt = at + �t

The errors, e, �, and � are jointly normally distributed with mean zero and
variance-covariance matrix �.
The agent has reservation wage RW and is evaluated subject to moral haz-

ard. The agent�s action is binary a 2 {aH ; aL}, aH > aL, with personal cost
c(a); c(aH) > c(aL), and the agent�s preferences for payments s and actions
are CARA U(s; a) = �expf�r[s � c(a)]g. Payments are linear in performance
measures w (with weights t) plus �at wage �t; st = �t + 

T
t w.

The valuation role of accruals is to summarize next period�s unknown ex-
pected cash �ow mt+1 based on the history of cash �ows through time t. The
incentive-induced equilibrium agent action a�t is e¤ectively known for valuation
purposes. Hence, the observable cash �ow history at time t is fcf1 � a�1; cf2 �
a�2; : : : ; cft � a�t g.
For the case � = D where D is a diagonal matrix comprised of �2e; �

2
� , and �

2
�

(appropriately aligned), the following OLS regression identi�es the most e¢ cient
usage of the past cash �ow history. The current accrual equals the estimate of
the current mean of cash �ows scaled by gt�1 �the last element of the vector
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accrualst =
1

gt�1 bmt where

bmt = (H
TH)�1HT z,

H =

26666666664

�� 0 0 0 0
1 0 0 0 0
�g �� 0 0 0
0 1 0 0 0
...

...
. . .

...
...

0 0 � � � �g ��
0 0 � � � 0 1

37777777775
; z =

26666666664

��g m0

cf1 � a�1
0

cf2 � a�2
...
0

cft � a�t

37777777775
; and � =

�e
�"
:

On the other hand, the evaluation role of accruals must regard at as un-
observable while previous actions of this or other agents are at the incentive-
induced equilibrium action a�, and all observables are potentially (conditionally)
informative: fcf1 � a�1; cf2 � a�2; : : : ; cftg, and fy1 � a�1; y2 � a�2; : : : ; ytg.2
For the case � = D, the most e¢ cient linear contract can be found by

determining the incentive portion of compensation via OLS and then plugging
a constant � to satisfy individual rationality.3 The (linear) incentive payments
are equal to the OLS estimator, the �nal element of bat, multiplied by � =
c(aH)�c(aL)
aH�aL , t= � bat4 where

bat = (HT
a Ha)

�1HT
a w,

Ha =

2666666666664

�� 0 0 0 0 0
1 0 0 0 0 0
�g �� 0 0 0 0
0 1 0 0 0 0
...

...
. . .

...
...

...
0 0 � � � �g �� 0
0 0 � � � 0 1 1
0 0 � � � 0 0 �

3777777777775
; w =

2666666666664

��g m0

cf1 � a�1
0

cf2 � a�2
...
0
cft
�yt

3777777777775
; and � =

�e
�"
:

Further, the variance of the incentive payments equals the last row, column
element of �2(HT

a Ha)
�1�2e.

2For the case � = D, past y�s are uninformative of the current period�s act.
3 Individual rationality is satis�ed if
� = RW � fE[incentivepaymentsja]� 1

2
rV ar[s]� c(a)g.

4The nuisance parameters (the initial 2t elements of bat) could be avoided if one employs
GLS in place of OLS.
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Results

The valuation role of accruals is synthesized in proposition 1. Accruals can
supply a su¢ cient summary of the cash �ow history for the cash �ow mean.5

Next, we analyze accruals where the DGP involves unequal error variances and
deterministic (as well as stochastic) growth in cash �ows.

Growth with unequal variances

Consider a data generating process with � = D involving unequal variances
between e; �, and �, and a deterministic (as well as stochastic) growth element
g. Let

mt = g mt�1 + �t; � =
�e
�� , and � =

�e
�� . Also, B =

�
1 + �2 �2

g2 g2�2

�
=

S�S�1 where

� =

24 1+�2+g2�2�
p
(1+�2+g2�2)2�4g2�4
2 0

0
1+�2+g2�2+

p
(1+�2+g2�2)2�4g2�4
2

35
and

S =

"
1+�2�g2�2�

p
(1+�2+g2�2)2�4g2�4
2g2

1+�2�g2�2+
p
(1+�2+g2�2)2�4g2�4
2g2

1 1

#
:

Now, de�ne the di¤erence equations by�
dent
numt

�
= Bt

�
den0
num0

�
= S�tS�1

�
1
0

�
:

Accruals as a valuation statistic

The primary result involving accruals as a valuation statistic is presented in
proposition 1.

Proposition 1 Let mt = g mt�1+ et, � = D, and � = �e
��
. Then, accrualst�1

and cft are, collectively, su¢ cient statistics for the mean of cash �ows mt based
on the history of cash �ows and gt�1accrualst is an e¢ cient statistic for mt

[bmtjcf1; :::; cft] = gt�1accrualst

=
1

dent

�
numt

g2
(cft � a�t ) + gt�1�2dent�1accrualst�1

�

where accruals0 = m0, and
�
dent
numt

�
= Bt

�
den0
num0

�
= S�tS

�
1
0

�
. The

variance of accruals is equal to the variance of the estimate of the mean of cash
5As the agent�s equilibrium contribution a� is known, expected cash �ow for the current

period is estimated by bmt+a�t and next period�s expected cash �ow is predicted by g bmt+a�t+1.
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�ows multiplied by g2(t�1); the variance of the estimate of the mean of cash �ows
equals the coe¢ cient on current cash �ow multiplied by �2e, V ar [bmt] =

numt

dentg2
�2e.

To appreciate the tidiness property of accruals in this setting it is instructive
to consider the weight placed on the most recent cash �ow as the number of
periods becomes large. This limiting result is expressed in corollary 1.

Corollary 1 As t becomes large, the weight on current cash �ows for the e¢ -
cient estimator of the mean of cash �ows approaches

2

1 + (1� g2) �2 +
q
(1 + (1 + g2) �2)

2
+ 4g2�4

and the variance of the estimate approaches

2

1 + (1� g2) �2 +
q
(1 + (1 + g2) �2)

2
+ 4g2�4

�2e.

Tidy accruals

Accruals, as identi�ed above, are tidy in the sense that each period�s cash
�ow is ultimately recognized in accounting income or remains as a "permanent"
amount on the balance sheet.6 This permanent balance is approximately

k�1X
t=1

cft

"
1� numt

numk
� numt

k�1X
n=t

gn�t�2�2(n�1)

gn�1denn

#

where k is the �rst period where numt

g2dent
is well approximated by the asymptotic

rate identi�ed in corollary 1 and the estimate of expected cash �ow bmt is iden-
ti�ed from tidy accruals as gt�1accrualst.7 In the benchmark case, this balance
reduces to

k�1X
t=1

cft

"
1� F2t

F2k
� F2t

k�1X
n=t

1

F2n+1

#
where the estimate of expected cash �ow bmt is equal to tidy accrualst.

Performance evaluation

In a moral hazard setting, the incentive portion of the LEN contract based on
cash �ow and other monitoring information history is identi�ed in proposition
2. Incentive payments depend only on two realizations: unexpected cash �ow

6The permanent balance is of course settled up on dissolution of the �rm.
7Cash �ows beginning with period k and after are fully accrued as the asymptotic rate

e¤ectively applies each period. Hence, a convergent geometric series is formed that sums to
one. On the other hand, the permanent balance arises as a result of the in�uence of the
common knowledge initial expected cash �ow m0.
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and other monitoring information for period t. Unexpected cash �ow at time t
is

cft � E[cftjcf1; : : : ; cft�1] = cft � gt�1accrualst�1
= cft � bmt�1

= cft � [bmtjcf1; : : : ; cft�1]:

As a result, sequential spot contracting with replacement agents has a particu-
larly streamlined form. Accounting accruals supply a convenient and su¢ cient
summary of the cash �ow history for the cash �ow mean. Hence, the combina-
tion of last period�s accruals with current cash �ow yields the pivotal unexpected
cash �ow variable.

Proposition 2 Let mt = g mt�1 + et, � = D, � = �e
��
, and � = �e

��
. Then,

accrualst�1, cft, and yt, collectively, are su¢ cient statistics for evaluating the
agent with incentive payments given by

t = �
1

�2dent�1 + �
2dent

�
�2dentyt + �

2dent�1
�
cft � gt�1accrualst�1

��
and variance of payments equal to

V ar[Tt w] = �
2 dent

�2dent�1 + �
2dent

�2e

where accrualst�1 and dent are as de�ned in proposition 1, and � =
c(aH)�c(aL)
aH�aL :

Benchmark case

Suppose � = �2eI (� = � = 1) and g = 1. This benchmark case high-
lights the key informational structure in the data. Corollary 2 identi�es the
linear combination of current cash �ows and last period�s accruals employed to
estimate the current cash �ow mean conditional on cash �ow history for this
benchmark case.

Corollary 2 For the benchmark case � = �2eI (� = � = 1) and g = 1, accruals
at time t are an e¢ cient summary of past cash �ow history for the cash �ow
mean if

[bmtjcf1; :::; cft] = accrualst

=
F2t
F2t+1

(cft � a�t ) +
F2t�1
F2t+1

accrualst�1

where Fn = Fn�1 + Fn�2, F0 = 0, F1 = 1 (the Fibonacci series), and the
sequence is initialized with accruals0 = m0 (common knowledge mean beliefs).
Then,variance of accruals equals V ar [bmt] =

F2t
F2t+1

�2e.

6



For the benchmark case, the evaluation role of accruals is synthesized in
corollary 3.

Corollary 3 For the benchmark case � = �2eI (� = � = 1) and g = 1,
accrualst�1, cft, and yt are, collectively, su¢ cient statistics for evaluating the
agent with incentive payments given by

t = �

�
F2t+1
L2t

yt +
F2t�1
L2t

(cft � accrualst�1)
�

and variance of payments equals �2 F2t+1L2t
�2e where accrualst�1 is as de�ned

in corollary 2, Ln = Ln�1 + Ln�2, L0 = 2, L1 = 1 (the Lucas series), and
� = c(aH)�c(aL)

aH�aL .8

Discussion

The extant empirical literature employs variations on reduced form models of
accruals based on the initiatives of Jones [1991] and Dechow and Dichev [2002].
As is well known, reduced form models can be quite useful for exploring corre-
lation in the data but provide limited help for identifying structural relations
in the data generating process (DGP ).9 As Dechow and Dichev�s approach as
well as the DGP employed here are based on a �rm�s cash �ow history, the
remainder of this section develops connections between the two approaches.
Dechow and Dichev�s empirical model of accruals is

accrualst = $ + !�1cft�1 + !0cft + !+1cft+1 + �

The DGP employed in this paper yields accruals as a su¢ cient statistic for
expected cash �ows

accrualst = �0 + �1cf1 + �2cf2 + � � �+ �tcft + #

where cft is assumed to be adjusted for the equilibrium contribution of the agent
a�t everywhere (and the common knowledge mean m0 at time 0 is subsumed in
the intercept).
For the DGP employed throughout this paper, correlation inferred from the

data is likely to produce an empirically-identi�ed one-period lead-lag cash �ow
structure of accruals (developed below). Further, current cash �ow is likely
to have the most prominent correlation with accruals followed by one-period
lead/lag cash �ow. This, of course, is precisely the empirical structure initially
identi�ed by Dechow and Dichev and subsequently a¢ rmed by numerous others.
Now, consider the correspondence between the accruals produced by the

8The Lucas and Fibonacci series are related by Ln = Fn�1 + Fn+1, for n = 1, 2, ... .
9See Heckman [2001] and Heckman and Vytlacil [2005] for broad-based discussions of the

bene�ts and limitations of reduced form models for policy evaluation.

7



DGP to the lead-lag structure identi�ed empirically by Dechow and Dichev.

�0 + �1cf1 + �2cf2 + � � �+ �tcft + #
= $ + !�1cft�1 + !0cft + !+1cft+1 + �

The focus is on the plim of !0, !�1, !+1. The plim of ! does not equal its
� counterpart for two reasons. First, accruals are designed to be contractible
performance measures and accordingly include no lead terms (this is relaxed
below). Second, there is an omitted, correlated variable problem with the simple
one-period lag structure. Recall the BLU estimator (for expected cash �ow)
employs the entire history of cash �ows while the empirical models are typically
truncated at one lag. This produces a discrepancy between the plim of ! and
its corresponding �.
For the benchmark case (� = 1), the plim of ! and its corresponding � are

tabulated below for t = 3 or 4.

t = 3 t = 4
!�1

68
273

45018
169099

�t�1
3
13

8
34

!�1 � �t�1 0:0183 0:0309
!0

170
273

213071
338198

�t
8
13

21
34

!0 � �t 0:0073 0:0124
!+1

1
273

1046
169099

�t+1 0 0
!+1 � �t+1 0:0037 0:0062

Discrepancies between the plim of ! and �
based on cash �ow history through period t

Now, suppose one ignores the performance evaluation role of accruals10 and
includes period t+ 1 cash �ows in the period t accrual statistic for mt.11 This
eliminates the �rst problem discussed above and only the omitted variable prob-
lem arising from the missing past history produces a discrepancy between the
plim of ! and its corresponding �. For the benchmark case (g = � = 1), the plim
of ! and its corresponding � are tabulated below for t = 3 or 4. As expected,
the discrepancy between the plim of ! and its corresponding � is mitigated
when the �rst source is eliminated.
10Another interpretation is that the principal wishes to employ subjective as well as ob-

jective performance measures (see Rajan and Reichelstein [2006]). Then, perhaps, the cash
�ow history utilized by accruals includes future as well as past realizations to summarize
expectations of future cash �ows.
11There is potential for confusion regarding which mean is the one of interest, mt or mt+1?

We examine the updating of mt based on the cash �ow history {cf1; cf2; : : : ; cft+1} to focus
on period t.
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t = 3 t = 4
!�1

4
21

6
29

�t�1
3
17

16
89

!�1 � �t�1 0:0140 0:0271
!0

4
21

14
29

�t
3
17

42
89

!0 � �t 0:0056 0:0108
!+1

4
21

7
29

�t+1
3
17

21
89

!+1 � �t+1 0:0028 0:0054
Discrepancies between the plim of ! and �

based on cash �ow history through period t+ 1

Continuing the theme that accruals are a su¢ cient statistic for expected
cash �ows given a �rm�s cash �ow history, the above discrepancies are model
speci�cation errors. Such speci�cation errors confound attempts to identify
accrual attributes such as discretionary, non-discretionary, etc.12

Conclusions

A positive view of accruals is outlined in this paper. Accruals combined
with current cash �ow can serve as su¢ cient statistics of the cash �ow history
for the mean of cash �ows. Further, in a moral hazard setting accruals can be
combined with current cash �ow and other monitoring information to e¢ ciently
evaluate replacement agents via sequential spot contracts. Notably, the same
accrual statistic serves both valuation and evaluation purposes.
An implication of the accruals described above is that they provide the same

statistical information as fair value accounting but under weaker conditions than
required for fair value accounting. Suppose fair value accounting is applied to
operating assets so that economic value Vt and economic income are readily at
hand. From a statistical su¢ ciency perspective, users are indi¤erent between
fcft � a�t ; Vt�1g and fcft � a�t ; accrualst�1g. Each pair of data is a su¢ cient
summary of the cash �ow history for expected cash �ows.
While the accruals measure discussed here does not directly serve as a model

for empirical work, it does serve as a reminder that reduced-form models likely
contain speci�cation errors that limit their ability to help identify structural
attributes of accruals.
12 It should be noted that these attributes are not well-de�ned in the context of this paper.
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Appendix

Proposition 1. Let mt = g mt�1 + et, � = D, and � = �e
��
. Then,

accrualst�1 and cft are, collectively, su¢ cient statistics for the mean of cash
�ows mt based on the history of cash �ows and gt�1accrualst is an e¢ cient
statistic for mt

[bmtjcf1; :::; cft] = gt�1accrualst

=
1

dent

�
numt

g2
(cft � a�t ) + gt�1�2dent�1accrualst�1

�

where accruals0 = m0, and
�
dent
numt

�
= Bt

�
den0
num0

�
= S�tS

�
1
0

�
. The

variance of accruals is equal to the variance of the estimate of the mean of cash
�ows multiplied by g2(t�1); the variance of the estimate of the mean of cash �ows
equals the coe¢ cient on current cash �ow multiplied by �2e, V ar [bmt] =

numt

dentg2
�2e.

Proof. Outline of the proof:
1. Since the data are multivariate normally distributed, BLU estimation is

e¢ cient (achieves the Cramer-Rao lower bound amongst consistent estimators;
see Greene [1997], p. 300-302).
2. BLU estimation is written as a recursive least squares exercise (see Strang

[1986], p. 146-148).
3. The proof is completed by induction. That is, the di¤erence equation

solution is shown, by induction, to be equivalent to the recursive least squares
estimator. A key step is showing that the information matrix = and its inverse
can be derived in recursive fashion via LDLT factorization (i.e., D�1L�1= =
LT ).

Recursive least squares. Let H1 =

�
��
1

�
(a 2 by 1 matrix), H2 =�

g� ��
0 1

�
(a 2 by 2 matrix), Ht =

�
0 � � � 0 g� ��
0 � � � 0 0 1

�
(a 2 by t matrix

with t � 2 leading columns of zeroes), z1 =
�
�g�m0

cf1 � a�1

�
, z2 =

�
0

cf2 � a�2

�
,

and zt =
�

0
cft � a�t

�
. The information matrix for a t-period cash �ow history

is

=t = =at�1 +HT
t Ht

=

266666664

1 + �2 + g2�2 �g�2 0 � � � 0

�g�2 1 + �2 + g2�2 �g�2 . . .
...

0 �g�2 . . . �g�2 0
...

. . . �g�2 1 + �2 + g2�2 �g�2
0 � � � 0 �g�2 1 + �2

377777775
;

10



a symmetric tri-diagonal matrix, where =at�1 is =t�1 augmented with a row and
column of zeroes to conform with =t. For instance, =1 =

�
1 + �2

�
and =a1 =�

1 + �2 0
0 0

�
. The estimate of the mean of cash �ows is derived recursively as

bt = b
a
t�1 + kt

�
zt �Htbat�1

�
for t > 1 where kt = =�1t HT

t , the gain matrix, and b
a
t�1 is bt�1 augmented with

a zero to conform with bt. The best linear unbiased estimate of the current
mean is the last element in the vector bt and its variance is the last row-column
element of =�1t multiplied by �2e.
Di¤erence equations. The di¤erence equations are�

dent
numt

�
=

�
1 + �2 �2

g2 g2�2

� �
dent�1
numt�1

�

with
�
den0
num0

�
=

�
1
0

�
. The di¤erence equations estimator for the current

mean of cash �ows and its variance are

bmt =
1

dent

�
numt

g2
(cft � a�t ) + g�2dent�1 bmt�1

�
= gt�1 accrualst =

1

dent

�
numt

g2
(cft � a�t ) + gt�1�2dent�1accrualst�1

�
where accruals0 = m0, and

V ar [bmt] = g
2(t�1)V ar [accrualst] = �

2
e

numt

g2dent
:

Induction steps. Assume

bmt =
1

dent

�
numt

g2
(cft � a�t ) + g�2dent�1 bmt�1

�
= gt�1 accrualst =

1

dent

�
numt

g2
(cft � a�t ) + gt�1�2dent�1accrualst�1

�
=

�
bat�1 + kt

�
zt �Htbat�1

��
[t]

and
V ar [bmt] = g

2(t�1)V ar [accrualst] = V ar [bt] [t; t]

where [t] ([t; t]) refers to element t (t; t) in the vector (matrix). The above is
clearly true for the base case, t = 1 and t = 2. Now, show

bmt+1 =
1

dent+1

�
numt+1

g2
�
cft+1 � a�t+1

�
+ gt�2dentaccrualst

�
= [bat + kt+1 (zt+1 �Ht+1bat )] [t+ 1] :
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Recall zt+1 =
�

0
ct+1 � a�t+1

�
and Ht+1 =

�
0 � � � 0 g� ��
0 � � � 0 0 1

�
. From

LDLT factorization of =t+1 (recall LT = D�1L�1= where L�1 is simply prod-
ucts of matrices re�ecting successive row eliminations - no row exchanges are
involved due to the tri-diagonal structure and D�1 is the reciprocal of the di-
agonal elements remaining following eliminations) the last row of =�1t+1 ish

gt�1�2(t�1)num1

g2dent+1
� � � g2�4numt�1

g2dent+1

g�2numt

g2dent+1

numt+1

g2dent+1

i
:

This immediately identi�es the variance associated with the estimator as the
last term in =�1t+1 multiplied by the variance of cash �ows,

numt+1

g2dent+1
�2e. Hence,

the di¤erence equation and the recursive least squares variance estimators are
equivalent.

Since HT
t+1zt+1 =

26664
0
...
0

cft+1 � a�t+1

37775, the lead term on the RHS of the [t+ 1]
mean estimator is numt+1

g2dent+1

�
cft+1 � a�t+1

�
which is identical to the lead term

on the left hand side (LHS). Similarly, the second term on the RHS (recall the
focus is on element t, the last element of bat is 0) is

[(I � kt+1Ht+1) bat ] [t+ 1]

=

26666664

0BBBBBB@I �=
�1
t+1

26666664

0 0 � � � 0 0

0
...

. . .
...

...
... 0

. . . 0 0
0 � � � 0 g2�2 �g�2
0 � � � 0 �g�2 1 + �2

37777775

1CCCCCCA b
a
t

37777775 [t+ 1]

=

�
�g3�4numt

g2dent+1
+
g�2numt+1

g2dent+1

� bmt

=

�
�g3�4numt + g�

2numt+1

g2dent+1

�
gt�1 accrualst:

The last couple of steps involves substitution of bmt for bat [t+ 1] and g
t�1accrualst

for bmt on the right hand side (RHS). The di¤erence equation relation, numt+1 =
g2dent + g

2�2numt, implies

�g3�4numt + g�
2numt+1

g2dent+1
bmt =

1

dent+1
g�2dent bmt =

=
1

dent+1
gt�2dent accrualst

the second term on the LHS. This completes the induction steps.
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Corollary 1. As t becomes large, the weight on current cash �ows for the
e¢ cient estimator of the mean of cash �ows approaches

2

1 + (1� g2) �2 +
q
(1 + (1 + g2) �2)

2
+ 4g2�4

and the variance of the estimate approaches

2

1 + (1� g2) �2 +
q
(1 + (1 + g2) �2)

2
+ 4g2�4

�2e.

Proof. The di¤erence equations

�
dent
numt

�
= S�tS�1

�
den0
num0

�
= S�tS�1

�
1
0

�
= S�tc

imply

c = S�1
�
den0
num0

�
=

24 �g2

1+(1+g2)�2+
p
(1+(1+g2)�2)2�4g2�4
g2

1+(1+g2)�2+
p
(1+(1+g2)�2)2�4g2�4

35 :

Thus, �
dent
numt

�
= S

�
�t1 0
0 �t2

�
c

=

264 �t2

�
1+(1�g2)�2+

p
(1+(1+g2)�2)2�4g2�4

�
��t1

�
1+(1�g2)�2�

p
(1+(1+g2)�2)2�4g2�4

�
2
p
(1+(1+g2)�2)2�4g2�4

g2(�t2��
t
1)p

(1+(1+g2)�2)2�4g2�4

375 :
Since �2 is larger than �1, �

t
1 contributes negligibly to

�
dent
numt

�
for arbitrarily

large t. Hence,

lim
t!1

numt

g2dent
=

2

1 + (1� g2) �2 +
q
(1 + (1 + g2) �2)

2 � 4g2�4
:

From proposition 1, the variance of the estimator for expected cash �ow is

13



numt

g2dent
�2e. Since

lim
t!1

numt

g2dent
=

2

1 + (1� g2) �2 +
q
(1 + (1 + g2) �2)

2 � 4g2�4
:

the asymptotic variance is

2

1 + (1� g2) �2 +
q
(1 + (1 + g2) �2)

2 � 4g2�4
�2e:

This completes the asymptotic case.
Proposition 2. Let mt = g mt�1 + et, � = D, � = �e

��
, and � = �e

��
. Then,

accrualst�1, cft, and yt, collectively, are su¢ cient statistics for evaluating the
agent with incentive payments given by

t = �
1

�2dent�1 + �
2dent

�
�2dentyt + �

2dent�1
�
cft � gt�1accrualst�1

��
and variance of payments equal to

V ar[Tt w] = �
2 dent

�2dent�1 + �
2dent

�2e

where accrualst�1 and dent are as de�ned in proposition 1, and � =
c(aH)�c(aL)
aH�aL :

Proof. Outline of the proof:
1. Show that the "best" linear contract is equivalent to the BLU estimator

of the agent�s current act rescaled by the agent�s marginal cost of the act.
2. The BLU estimator is written as a recursive least squares exercise (see

Strang [1986], p. 146-148).
3. The proof is completed by induction. That is, the di¤erence equation

solution is shown, by induction, to be equivalent to the recursive least squares
estimator. Again, a key step involves showing that the information matrix =a
and its inverse can be derived in recursive fashion via LDLT factorization (i.e.,
D�1L�1=a = LT ).
"Best" linear contracts. The program associated with the optimal aH -

inducing LEN contract written in certainty equivalent form is

Min
�;

� + E
�
TwjaH

�
subject to

� + E
�
TwjaH

�
� r

2
V ar

�
Tw

�
� c (aH) � RW (IR)

14



� + E
�
TwjaH

�
� r

2
V ar

�
Tw

�
� c (aH)

� � + E
�
TwjaL

�
� r

2
V ar

�
Tw

�
� c (aL) (IC)

As demonstrated in Arya, Fellingham, and Schroeder [2004], both IR and IC
are binding and  equals the BLU estimator of a based on the history w (the
history of cash �ows cf and other contractible information y) rescaled by the
agent�s marginal cost of the act � = c(aH)�c(aL)

aH�aL . Since IC is binding,

� + E
�
TwjaH

�
� r

2
V ar

�
Tw

�
�
�
� + E

�
TwjaL

�
� r

2
V ar

�
Tw

��
= c (aH)� c (aL)

E
�
TwjaH

�
� E

�
TwjaL

�
= c (aH)� c (aL)

T fE [wjaH ]� E [wjaL]g = c (aH)� c (aL)

(aH � aL) T � = c (aH)� c (aL)

where

w =

2666664
cf1 �m0 � a�1
cf2 �m0 � a�2

...
cft �m0

yt

3777775
and � is a vector of zeroes except the last two elements are equal to one, and

T � =
c (aH)� c (aL)
aH � aL

:

Notice, the sum of the last two elements of  equals one, T � = 1, is simply the
unbiasedness condition associated with the variance minimizing estimator of a
based on design matrix Ha. Hence,  equals the BLU estimator of a rescaled
by �, t = �bat. As � is a free variable, IR can always be exactly satis�ed by
setting

� = RW �
n
E
�
TwjaH

�
� r

2
V ar

�
Tw

�
� c (aH)

o
:

Recursive least squares. Ht remains as de�ned in the proof of proposition

1. Let Ha1 =

24 �� 0
1 1
0 �

35 (a 3 by 2 matrix), Ha2 =
24 g� �� 0
0 1 1
0 0 �

35 (a 3 by 3
matrix), Hat =

24 0 � � � 0 g� �� 0
0 � � � 0 0 1 1
0 � � � 0 0 0 �

35 (a 3 by t+ 1 matrix with leading
zeroes), ew1 =

24 �g�m0

cf1
y1

35, ew2 =
24 0
cf2
y2

35, and ewt =
24 0
cft
yt

35. The information
15



matrix for a t-period cash �ow and other monitoring information history is

=at = =aat�1 +HT
atHat

=

266666666664

1 + �2 + g2�2 �g�2 0 0 � � � 0

�g�2 1 + �2 + g2�2 �g�2 . . . � � � 0

0 �g�2 . . .
. . . 0

...

0
. . .

. . . 1 + �2 + g2�2 �g�2 0
... � � � 0 �g�2 1 + �2 1

0 0 � � � 0 1 1 + �2

377777777775
a symmetric tri-diagonal matrix where =aat�1 is =at�1 (the augmented information
matrix employed to estimate the cash �ow mean in proposition 1) augmented
with an additional row and column of zeroes (i.e., the information matrix from
proposition 1, =t�1, is augmented with two columns of zeroes on the right and
two rows of zeroes on the bottom). The recursive least squares estimator is

bat =
�
baat�1 + kat

� ewt �Hatbaat�1��
for t > 1 where baat�1 is bt�1 (the accruals estimator of mt�1 from proposition
1) augmented with two zeroes and kat = =�1at HT

at. The best linear unbiased
estimate of the current act is the last element in the vector bat and its variance
is the last row-column element of =�1at multiplied by �2e. Notice, recursive least
squares applied to the performance evaluation exercise utilizes the information
matrix =aat�1 (the information matrix employed in proposition 1 augmented with
two trailing rows-columns of zeroes) and estimator baat�1 (the accruals estimator
of mt�1 from proposition 1 augmented with the two trailing zeroes). This
accounts for the restriction on the parameters due to past actions already having
been motivated in the past (i.e., past acts are at their equilibrium level a�). Only
the current portion of the design matrix Hat and the current observations wt
(in place of zt) di¤er from the setup for accruals (in proposition 1).
Di¤erence equations. The di¤erence equations are�

dent
numt

�
=

�
1 + �2 �2

g2 g2�2

� �
dent�1
numt�1

�

with
�
den0
num0

�
=

�
1
0

�
. The di¤erence equations estimator for the linear

incentive payments  is

t = �
1

�2dent�1 + �
2dent

�
�2dentyt + �

2dent�1 (cft � g bmt�1)
�

= �
1

�2dent�1 + �
2dent

�
�2dentyt + �

2dent�1
�
cft � gt�1 accrualst�1

��

16



and the variance of payments is

V ar
�
Tw

�
= �2

dent

�2dent�1 + �
2dent

�2e:

Induction steps. Assume

tw = �
1

�2dent�1 + �
2dent

�
�2dentyt + �

2dent�1 (cft � g bmt�1)
�

= �
1

�2dent�1 + �
2dent

�
�2dentyt + �

2dent�1
�
cft � gt�1 accrualst�1

��
= �

�
bat�1 + kat

�
wt �Hatbat�1

��
[t+ 1]

and
V ar

�
Tw

�
= �2V ar [bat] [t+ 1; t+ 1]

where [t+ 1] ([t+ 1; t+ 1]) refers to element t + 1 (t+ 1; t+ 1) in the vector
(matrix). The above is clearly true for the base case, t = 1 and t = 2. Now,
show

�
1

�2dent + �
2dent+1

�
�2dent+1yt+1 + �

2dent (cft+1 � g bmt)
�

= �
1

�2dent + �
2dent+1

�
�2dent+1yt+1 + �

2dent
�
cft+1 � gt accrualst

��
= � [bat + kat+1 ( ewt+1 �Hat+1bat )] [t+ 2] :

Recall ewt+1 =
24 0
cft+1
�yt+1

35 and Hat+1 =

24 0 � � � 0 g� � 0
0 � � � 0 0 1 1
0 � � � 0 0 0 �

35. From

LDLT factorization of =at+1 (recall LT = D�1L�1=a where L�1 is simply
products of matrices re�ecting successive row eliminations - no row exchanges
are involved due to the tri-diagonal structure and D�1 is the reciprocal of the
remaining elements remaining after eliminations) the last row of =�1at+1 is

1

�2dent + �
2dent+1

2666664
�gt�1�2(t�1)den1

...
�g�2

�
dent�1 + �

2numt�1
�

�
�
dent + �

2numt

�
dent+1

3777775
T

:13

This immediately identi�es the variance associated with the estimator as the
last term in =�1at+1 multiplied by the product of the agent�s marginal cost of
the act squared and the variance of cash �ows, �2 dent+1

�2dent+�2dent+1
�2e. Hence,

the di¤erence equation and the recursive least squares variance of payments

13Transposed due to space limitations.
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estimators are equivalent.

Since HT
at+1 ewt+1 =

2666664
0
...
0

cft+1
cft+1 + yt+1

3777775 and the di¤erence equation implies
dent+1 =

�
1 + �2

�
dent + �

2numt, the lead term on the RHS is

dent+1

�2dent + �
2dent+1

(yt+1 + cft+1)�
dent + �

2numt

�2dent + �
2dent+1

cft+1

=
dent+1

�2dent + �
2dent+1

yt+1 �
�2dent

�2dent + �
2dent+1

cft+1

which equals the initial expression on the LHS of the [t+ 2] incentive payments.
Similarly, the bmt = gt�1 accrualst term on the RHS (recall the focus is on
element t+ 2) is

[(I � kat+1Hat+1) bat ] [t+ 2]

=

2666666664

0BBBBBBBB@
I �=�1at+1

2666666664

0 0 � � � 0 0 0

0
...

. . .
...

...
...

... 0 � � � 0 0 0
0 � � � 0 g2�2 �g�2 0
0 � � � 0 �g�2 1 + �2 1

0 � � � 0 0 1 1 + �2

3777777775

1CCCCCCCCA
bat

3777777775
[t+ 2]

= � g�2dent

�2dent + �
2dent+1

bmt

= � gt�2dent

�2dent + �
2dent+1

accrualst:

Combining terms and simplifying produces the result

1

�2dent + �
2dent+1

�
�2dent+1yt+1 + �

2dent (cft+1 � g bmt)
�

=
1

�2dent + �
2dent+1

�
�2dent+1yt+1 + �

2dent
�
cft+1 � gt accrualst

��
:

Finally, recall the estimator bat (the last element of bat) rescaled by the agent�s
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marginal cost of the act identi�es the "best" linear incentive payments

tw = �bat
= �

1

�2dent�1 + �
2dent

�
�2dentyt + �

2dent�1 (cft � g bmt�1)
�

= �
1

�2dent�1 + �
2dent

�
�2dentyt + �

2dent�1
�
cft � gt�1 accrualst�1

��
:

This completes the induction steps.

Corollary 2. For the benchmark case � = �2eI (� = � = 1) and g = 1,
accruals at time t are an e¢ cient summary of past cash �ow history for the
cash �ow mean if

[bmtjcf1; :::; cft] = accrualst

=
F2t
F2t+1

(cft � a�t ) +
F2t�1
F2t+1

accrualst�1

where Fn = Fn�1 + Fn�2, F0 = 0, F1 = 1 (the Fibonacci series), and the
sequence is initialized with accruals0 = m0 (common knowledge mean beliefs).
Then,variance of accruals equals V ar [bmt] =

F2t
F2t+1

�2e.
Proof. Replace g = � = 1 in proposition 1. Hence,

�
dent
numt

�
= B

�
dent�1
numt�1

�
reduces to �

dent
numt

�
=

�
2 1
1 1

� �
dent�1
numt�1

�
:

Since �
Fn+1
Fn

�
=

�
1 1
1 0

� �
Fn
Fn�1

�
and �

Fn+2
Fn+1

�
=

�
1 1
1 0

� �
1 1
1 0

� �
Fn
Fn�1

�
=

�
2 1
1 1

� �
Fn
Fn�1

�
;

dent = F2t+1; numt = F2t; dent�1 = F2t�1; and numt�1 = F2t�2:

For g = � = 1, the above implies

bmt = g
t�1accrualst =

1

dent

�
numt

g2
(cft � a�t ) + gt�1�2dent�1accrualst�1

�
reduces to

F2t
F2t+1

(cft � a�t ) +
F2t�1
F2t+1

accrualst�1
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and variance of accruals equals F2t
F2t+1

�2e.

Corollary 3. For the benchmark case � = �2eI (� = � = 1) and g =
1,accrualst�1, cft, and yt are, collectively, su¢ cient statistics for evaluating
the agent with incentive payments given by

t = �

�
F2t+1
L2t

yt +
F2t�1
L2t

(cft � accrualst�1)
�

and variance of payments equals �2 F2t+1L2t
�2e where accrualst�1 is as de�ned in

corollary 2 and Ln = Ln�1+Ln�2, L0 = 2, and L1 = 1 (the Lucas series), and
� = c(aH)�c(aL)

aH�aL .

Proof. Replace g = � = � = 1 in proposition 2. Hence,�
dent
numt

�
= B

�
dent�1
numt�1

�
reduces to �

dent
numt

�
=

�
2 1
1 1

� �
dent�1
numt�1

�
:

Since �
Fn+1
Fn

�
=

�
1 1
1 0

� �
Fn
Fn�1

�
and �

Fn+2
Fn+1

�
=

�
1 1
1 0

� �
1 1
1 0

� �
Fn
Fn�1

�
=

�
2 1
1 1

� �
Fn
Fn�1

�
dent = F2t+1, numt = F2t, dent�1 = F2t�1, numt�1 = F2t�2, and Lt =
Ft+1 + Ft�1. For g = � = � = 1, the above implies

tw = �
1

�2dent�1�
2dent

�
�2dentyt + �

2dent�1
�
cft � gt�1accrualst�1

��
reduces to

�

�
F2t�1
L2t

(cft � accrualst�1) +
F2t+1
L2t

yt

�
and variance of payments equals �2 F2t+1L2t

�2e.
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