Accounting and causal effects: challenges and potential remedies

Douglas A. Schroeder

Ohio State University

August 8, 2012

Schroeder (Ohio State University)

Accounting and causal effects

August 8, 2012

æ

5900

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

outline

- accounting ingredients causal effect of strategic disclosure
- focus on treatment effects
- challenges identification
- potential remedies
 - · ignorable treatment identification strategies
 - · instrumental variable identification strategies
 - \cdot partial identification strategies
- varieties of treatment effects and data analytic approaches
- examples of effective/ineffective identification strategies

< □ ▶

∢母▶ ∢≧▶

accounting causal effects

- endogenous nature of causal effects makes assessing welfare impact of accounting choice challenging
- strategic disclosure:
 - discrete recognize/disclose or not
 - · continuous information precision

< □ > < □ >	< ≣ >	< ≣ ►	1	うへつ
---	-------	-------	---	-----

Schroeder (Ohio State University) Ac

Accounting and causal effects

August 8, 2012 3 / 41

accounting causal effects

- ingredients:
 - uncertainty
 - \cdot asymmetric information
 - $\cdot\,$ multiple sources of information
 - \cdot equilibrium behavior
 - · audited reports may result in welfare improvement

		< □	1	< ₽ >	•	∃ >	•	E	Þ	÷.	
(Ohio State University)	Accounting and causal effects					Aug	rust	. 8	201	2	

treatment effects

- special case of causal effects
- for concreteness and simplicity, we'll focus on binary treatment effects; for example, disclose or don't disclose
 - $\cdot \ TE = Y_1 Y_0$
 - Y_1 is (potential) outcome with treatment
 - \cdot Y_0 is (potential) outcome without treatment
 - $\cdot \qquad D=1$ treatment is chosen or assigned
 - \cdot D = 0 no treatment is chosen or assigned
 - observed outcome: $Y = DY_1 + (1 D) Y_0$
 - \cdot observable data: $Y_1|D=1$ and $Y_0|D=0$
 - \cdot counterfactuals: $Y_1|D=0$ and $Y_0|D=1$

common treatment effects conditional average treatment effects

• average treatment effect for individuals who selected treatment conditional on observables/regressors

$$ATT(X) = E[Y_1 - Y_0 | X = x, D = 1]$$

• average treatment effect for individuals who selected no treatment conditional on observables/regressors

$$ATUT(X) = E[Y_1 - Y_0 | X = x, D = 0]$$

◆□> <畳> <置> <置> <</p>

common treatment effects

conditional average treatment effects

• average treatment effect for individuals chosen or assigned treatment at random conditional on observables/regressors

$$\begin{array}{rcl} ATE \left(X \right) & = & E \left[Y_1 - Y_0 \mid X = x \right] \\ & = & Pr \left(D = 1 \mid X \right) ATT \left(X \right) + Pr \left(D = 0 \mid X \right) ATUT \left(X \right) \end{array}$$

Schroeder (Ohio State University)	Accounting and causal effects	August 8, 2012 7 / 41
-----------------------------------	-------------------------------	-----------------------

common treatment effects

conditional average treatment effects

• for propensity score matching, covariates X = x are replaced by P(x) = p in the conditional expectation expression

$$ATE (P(x)) = E [Y_1 - Y_0 | P(x) = p] = Pr (D = 1 | P(x) = p) ATT (P(x)) + Pr (D = 0 | P(x) = p) ATUT (P(x))$$

・ロト < 団ト < 三ト < 三ト < 三 、 のへで

Schroeder (Ohio State University)	Accounting and causal effects	August 8, 2012 8	/ 41
-----------------------------------	-------------------------------	------------------	------

common treatment effects unconditional average treatment effects

- with full common support (so-called identification at infinity), unconditional average effects are derived from conditional average effects via iterated expectations
 - · otherwise, we're only able to identify local average effects
 - · description of common support indicates range of evidence
- for example, the average treatment effect for individuals who are selected for treatment at random

$$ATE = E_X [E [Y_1 - Y_0 | X]] \\ = E [Y_1 - Y_0]$$

		< □ ▶	▲圖▶ ▲필▶ ▲필▶ _ 필	$\mathcal{O}\mathcal{Q}$
Schroeder (Ohio State University)	Accounting and causal effects		August 8, 2012	9 / 41

• Identification! Identification! Identification!

- \cdot framing the causal effect problem
 - rich variety of potential effects of interest makes this
 - step of paramount importance
- \cdot causal effect parameter identification
 - typically maps observable outcome Y to effect via probability theory

< □ ▶

< 🗗 ▶

.

- counterfactual nature
- common support (treated and untreated)
- unobservability (partial observability) of beliefs, preferences, and potential outcomes

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

- observable and unobservable heterogeneity
 - how likely is homogeneity?
- instrumental variable strategies can accommodate outcome heterogeneity but require uniform treatment adoption
- greater explanatory power may increase selection bias

< □ ▶

æ

▲□ ▶ ▲ 三 ▶ ▲ 三

DQC

• more ambitious agendas

- \cdot suspend stable unit treatment value assumption (SUTVA) allow interaction effects among individuals
- Cowles' commission fully structural analysis (including specification of preferences and incentives) of general equilibrium effects in environments with which we have no prior experience

< □ ▶

・日・・ モー・ ・ 日

DQC

- thought experiments
 - framing problem and focal parameter(s)
 - \cdot identification of quantities of interest

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ - 国 - 釣�?

Schroeder (Ohio State University)

Accounting and causal effects

August 8, 2012 14 / 41

- thought experiments
 - probability assignment
 - Jaynes' maximum entropy is one probability assignment approach
 - Ross' recovery theorem assigns probabilities and preferences from state prices
 - Leamer's specification searches with various priors and likelihoods allows the reader to judge the data summaries for themselves
 - Manski's partial identification & law of decreasing credibility

- varieties of treatment effects and questions posed
 - \cdot discrete/continuous treatment
 - conditional (on observables/regressors) and unconditional (iterated expectations) treatment effects
 - · population-level effect
 - marginal
 - average
 - quantile
 - *MTE* connects to other treatment effects via weighting functions

• identification strategies

- ignorable treatment (selection on observables or unconfoundedness)
 - treatment is mean conditionally independent
 - strong ignorability involves stochastic conditional
 - independence

- ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

Schroeder (Ohio State University)

Accounting and causal effects

August 8, 2012 17 / 41

• identification strategies

- instrumental variables (exclusion restrictions)
 - instruments are independent of outcomes
 - instruments are related to treatment adoption
 - instruments allow manipulation of treatment
 - without affecting outcomes to infer counterfactuals

< □ ▶

— treatment adoption is uniform in the instruments

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

• identification strategies

 bounding/partial identification when point-identification is not feasible or credible

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めへの

Schroeder (Ohio State University)	Accounting and causal effects	August 8, 2012 1	9 / 41
-----------------------------------	-------------------------------	------------------	--------

• common support

- · evaluate overlap in covariate distribution
- examine histograms of the estimated propensity score by treatment status
- · propensity score matching to determine sample

• □		< = > .	

Schroeder (Ohio State University) A

Accounting and causal effects

August 8, 2012 20 / 41

DQC.

limited common support

• example — nonparametric identification with limited common support

• DGP

Y_1	Y_0	ΤE	Y	D	X
11	4	7	4	0	0
2	6	-4	6	0	-1
1	5	-4	5	0	-1
11	4	7	4	0	0
11	4	7	11	1	0
11	4	7	11	1	0
9	3	6	9	1	1
10	2	8	10	1	1

- ◆ □ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

Examples limited common support

Schro

• various treatment effects

$$ATT (X = 0) = ATT (X = 1)$$

= ATT = 7
$$ATUT (X = -1) = -4, ATUT (X = 0) = 7$$

= ATUT = 1.5
$$ATE (X = -1) = -4, ATE (X = 0) = ATE (X = 1) = 7$$

= ATE = 4.25

only conditional treatment effects (at X = 0) are nonparametrically identified by the data:
 ATT (X = 0) = ATUT (X = 0) = ATE (X = 0) = 7

						うくで
oeder (Ohio State University)	Accounting and causal effects		Δ	oust 8 2	112	22 / 41

- some varieties of data analytic strategies
 - nonparametric regression
 - general matching
 - propensity score matching
 - \cdot fixed effects
 - · difference-in-differences (*DID*)
 - · linear 2SLS-IV
 - interpretation depends on instruments & covariates

< □ ▶

<□ > < ⊇ >

- · control or replacement functions
- · local *IV* (semi-nonparametric)

500

- E

- some varieties of data analytic strategies
 - regression discontinuity design
 - doubly-robust combination methods
 - regression with propensity score weighting (WLS)

< □ ▶

< 🗗 ▶

- subclassification and regression
- matching and regression
- correlated random coefficients for continuous treatment
- simulation, say, of general equilibrium effects
- McMC Bayesian data augmentation
- and more . . .

SQ P

• assessing refutability

- no direct tests due to counterfactual nature credibility is a thought experiment
- evaluate refutable partial identification bounds against the data
- highly context specific for example, check for change in means or distribution of covariates around the threshold for regression discontinuity designs

< □ ▶

<⊡ > < ⊇ >

JQ (?

• data

- better data is perhaps the most effective, albeit nontrivial, remedy
- outcomes, regressors/covariates, instruments, etc. are typically inadequate for addressing the questions we wish to probe (welfare effects)
- the efforts of empiricists toward this goal are typically undervalued — a disservice to the discipline

< □ ▶

▲□▶ ▲ 三▶ ▲ 三

JQ (?

2SLS-IV identifies LATE — treatment effect depends on instrument choice

• DGP — nonignorable, heterogeneous treatment effect

Y_1	Y_0	ΤE	Y	D	Ζ
15	10	5	15	1	1
15	10	5	15	1	0
10	10	0	10	1	1
10	10	0	10	0	0
5	10	-5	10	0	1
5	10	-5	10	0	0

- $LATE = E[Y_1 Y_0 \mid D_1 D_0 = 1] = IVE = \frac{E[Y|Z=1] E[Y|Z=0]}{E[D|Z=1] E[D|Z=0]}$
- regressors: $\{1, D\}$; instruments: $\{1, Z\}$
- *LATE* is the instrument-dependent treatment effect for an unidentified subpopulation of compliers
- compliers are rows 3 and 4

Schroeder (Uhio State University) Accounting and causal effects August 8, 2012 27 / 41	Schroeder (Ohio State University)	Accounting and causal effects	August 8, 2012 27	7 / 41
--	-----------------------------------	-------------------------------	-------------------	--------

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● のへで

examples 2SLS-IV identifies LATE — treatment effect depends on instrument choice

• various treatment effects

$$\begin{array}{ll} ATT = 3\frac{1}{3} & ATUT = -3\frac{1}{3} \\ ATE = 0 & OLS = 3\frac{1}{3} \\ LATE = 0 & IVE = 0 \end{array}$$

- the local average treatment effect is identified via 2SLS-IV as the binary instrument, Z, satisfies the exclusion restriction, Pr (Y_i | Z = 1) = Pr (Y_i | Z = 0) for i = 0, 1, and is related to selection, D, Pr (D | Z) ≠ Pr (D)
- treatment effect identified depends on instrument and applies to an unidentified subpopulation of compliers, $D_1 D_0 = 1$

			(≣)	< ≣ >	E	うへで
Schroeder (Ohio State University)	Accounting and causal effects		Augu	st 8, 2012		28 / 41

examples LATE = ATT

• DGP — nonignorable, heterogeneous treatment effect

Y_1	Y_0	ΤE	Y	D	Ζ
15	10	5	15	1	1
15	10	5	10	0	0
20	20	0	20	0	1
20	20	0	20	0	0
10	10	0	10	1	1
10	10	0	10	0	0

- $LATE = E[Y_1 Y_0 \mid D_1 D_0 = 1] = IVE = \frac{E[Y|Z=1] E[Y|Z=0]}{E[D|Z=1] E[D|Z=0]}$
- regressors: $\{1, D\}$; instruments: $\{1, Z\}$
- compliers are rows 1, 2, 5, and 6

ᆂ

590

examples LATE = ATT

• various treatment effects

$$ATT = 2.5$$
 $ATUT = 1.25$
 $ATE = 1\frac{2}{3}$ $OLS = -2.5$
 $LATE = 2.5$ $IVE = 2.5$

- the local average treatment effect is identified via 2SLS-IV as the binary instrument, Z, satisfies the exclusion restriction, Pr (Y_i | Z = 1) = Pr (Y_i | Z = 0) for i = 0, 1
- LATE equals ATT as Pr(D = 1 | Z = 0) = 0

ᆂ

《口》 《圖》 《臣》 《臣》

examples LATE = ATUT

• DGP — nonignorable, heterogeneous treatment effect

Y_1	Y_0	ΤE	Y	D	Ζ
15	10	5	15	1	1
15	10	5	10	0	0
20	10	10	20	1	1
20	10	10	20	1	0
10	10	0	10	1	1
10	10	0	10	0	0

- $LATE = E[Y_1 Y_0 \mid D_1 D_0 = 1] = IVE = \frac{E[Y|Z=1] E[Y|Z=0]}{E[D|Z=1] E[D|Z=0]}$
- regressors: $\{1, D\}$; instruments: $\{1, Z\}$
- compliers are rows 1, 2, 5, and 6

ᆂ

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

examples LATE = ATUT

• various treatment effects

$$\begin{array}{ll} ATT = 6.25 & ATUT = 2.5 \\ ATE = 5 & OLS = 6.25 \\ LATE = 2.5 & IVE = 2.5 \end{array}$$

- the local average treatment effect is identified via 2SLS-IV as the binary instrument, Z, satisfies the exclusion restriction, Pr (Y_i | Z = 1) = Pr (Y_i | Z = 0) for i = 0, 1
- LATE equals ATUT as $\Pr(D = 1 \mid Z = 1) = 1$

ᆂ

《口》 《圖》 《臣》 《臣》

examples LATE — defiers, 2SLS-IV fails

• DGP — nonignorable, heterogeneous treatment effect

Y_1	Y_0	ΤE	Y	D	Ζ
10	5	5	10	1	1
10	5	5	5	0	0
10	5	10	10	1	1
10	5	10	10	1	0
10	5	0	10	1	1
10	5	0	5	0	0
10	-5	0	-5	0	1
10	-5	0	10	1	0

- regressors: $\{1, D\}$; instruments: $\{1, Z\}$
- compliers are rows 1, 2, 5, and 6
- last two rows are defiers

Schroeder (Ohio State University)	Accounting and causal effects	
-----------------------------------	-------------------------------	--

August 8, 2012 33 / 41

ᆂ

DQC.

< □ > < □ > < □ > < □ > < □ > < □ >

• various treatment effects

$$ATT = 7 \quad ATUT = 8\frac{1}{3}$$
$$ATE = 7.5 \quad OLS = 8\frac{1}{3}$$
$$LATE = 5 \quad IVE = -5$$

- the local average treatment effect is not identified via 2SLS-IV as there are defiers in the population
- 2SLS-IV is grossly misleading sign of the estimand IVE is opposite of LATE
- failure of treatment adoption uniformity can mean *OLS* is closer to identifying *LATE* than *2SLS-IV*

2SLS-IV with covariates — treatment effect depends on covariates as well as instrument choice

- let X be a fixed design matrix of three indicator variables (a varying intercept model)
- regressors (conditional effects): {X₁, X₂, X₃, X₁D, X₂D, X₃D} or regressors (unconditional effect): {X₁, X₂, X₃, D}; instruments: {X₁, X₂, X₃, X₁Z, X₂Z, X₃Z}

▲□▶▲□▶▲□▶▲□▶ ▲□▶

Accounting and causal effects

 $\mathsf{2SLS}\text{-}\mathsf{IV}$ with covariates — treatment effect depends on covariates as well as instrument choice

• 2SLS - IV effect is a weighted average of the 2SLS - IV effects identified at each $X_k = 1$

$$\gamma = \frac{E\left[Y \cdot \left(E\left[D \mid X, Z\right] - E\left[D \mid X\right]\right)\right]}{E\left[D \cdot \left(E\left[D \mid X, Z\right] - E\left[D \mid X\right]\right)\right]}$$
$$= \frac{E_X\left[\omega\left(X_k = 1\right)\gamma\left(X_k = 1\right)\right]}{E_X\left[\omega\left(X_k = 1\right)\right]}$$

• with weights

$$\omega(X_{k} = 1) = E[E[D \mid X, Z] \cdot (E[D \mid X, Z] - E[D \mid X]) \mid X_{k} = 1]$$

• and 2SLS - IV effects at each $X_k = 1$,

$$\gamma (X_{k} = 1) = \frac{E [Y \cdot (E [D \mid X, Z] - E [D \mid X]) \mid X_{k} = 1]}{E [D \cdot (E [D \mid X, Z] - E [D \mid X]) \mid X_{k} = 1]}$$

Schroeder (Ohio State University)

Accounting and causal effects

ᆂ

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

 $\mathcal{O}\mathcal{Q}\mathcal{O}$

2SLS-IV with covariates — 2SLS-IV effect equal to LATE

• DGP — nonignorable, heterogeneous treatment effect with unobservable outcome V_i

	Y_1	Y_0	ΤE	Y	D	X_1	X_2	<i>X</i> ₃	V_1	V_0	Ζ
	6	4	2	6	1	1	0	0	1	3	1
	6	4	2	4	0	1	0	0	1	3	0
	4	-2	6	4	1	1	0	0	-1	-3	1
	4	-2	6	4	1	1	0	0	-1	-3	0
	8	4	4	8	1	0	1	0	2	2	1
	8	4	4	4	0	0	1	0	2	2	0
	4	0	4	0	0	0	1	0	-2	-2	1
	4	0	4	0	0	0	1	0	-2	-2	0
	10	4	6	10	1	0	0	1	3	1	1
	10	4	6	4	0	0	0	1	3	1	0
	4	2	2	2	0	0	0	1	-3	-1	1
	4	2	2	2	0	0	0	1	-3	-1	0
								< □ ▶			
Schroeder (Ohio S	State Ur	niversity)		Accour	nting an	d causal	effects			August 8	, 2012 37 / 41

2SLS-IV with covariates — 2SLS-IV effect equal to LATE

- compliers are rows 1, 2, 5, 6, 9, and 10
- various treatment effects

	treatment effects						
	C	conditional					
	$X_1 = 1$	$X_2 = 1$	$X_3 = 1$	unconditional			
OLS	0.6667	6.6667	7.3333	4.1143			
LATE	2	4	6	4			
2 <i>SLS — IV</i>	2	4	6	4			
$\omega\left(X_{k}=1 ight)$	0.0625	0.0625	0.0625				
ATT	4.6667	4	6	4.8			
ATUT	2	4	3.3333	3.4286			
ATE	4	4	4	4			

• the local average treatment effects are identified via 2SLS-IV as $E[V_j Z \mid X_k = 1] = E[V_j \mid X_k = 1] = 0$

Schröeger (Onio State University) Accounting and causal effects August 6, 2012 56 /	Schroeder	(Ohio State University)	Accounting and causal effects	August 8, 2012	38 / 41
---	-----------	-------------------------	-------------------------------	----------------	---------

2SLS-IV with covariates — 2SLS-IV effect unequal to LATE

• DGP — nonignorable, heterogeneous treatment effect

Y_1	Y_0	ΤE	Y	D	X_1	X_2	<i>X</i> ₃	V_1	V_0	Ζ	
6	4	2	6	1	1	0	0	1	3	1	
6	4	2	4	0	1	0	0	1	3	0	
8	0	8	8	1	1	0	0	3	-1	0	
8	0	8	8	1	1	0	0	3	-1	0	
8	4	4	8	1	0	1	0	2	2	1	
8	4	4	4	0	0	1	0	2	2	0	
6	-1	7	-1	0	0	1	0	0	-3	1	
6	-1	7	-1	0	0	1	0	0	-3	1	
4	4	0	4	1	0	0	1	-3	1	1	
4	4	0	4	0	0	0	1	-3	1	0	
4	1	3	1	0	0	0	1	-3	-2	0	
4	1	3	1	0	0	0	1	-3	-2	0	

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ▲ 国 → のへぐ

Schroeder (Ohio State University)Accounting and causal effectsAugust 8, 201239 / 41

٢

2SLS-IV with covariates — 2SLS-IV effect unequal to LATE

- compliers are rows 1, 2, 5, 6, 9, and 10
- various treatment effects

	treatment effects				
	(conditional	1		
	$X_1 = 1$	$X_2 = 1$	$X_{3} = 1$	unconditional	
OLS	3.3333	7.3333	2	5.0857	
LATE	2	4	0	2	
2SLS - IV	-2	-6	2	0.9091	
$\omega\left(X_{k}=1 ight)$	0.02083	0.02083	0.1875		
ATT	6	4	0	4.4	
ATUT	2	6	2	3.7143	
ATE	5	5.5	1.5	4	
2SLS-IV identifies a different effect than LATE as					
2SLS-IV identifies					

$E\left[V_{j}Z\mid X_{k}=1 ight] eq0$, $E\left[V_{j}\mid X_{k}=1 ight] eq0$	0 but $E[V_i Z] = E[V_i] = 0$
	・ ロ ト ・ 昼 ト ・ 星 ト ・ 星 ・ つ へ ()・

Schroeder (Ohio State University)	Accounting and causal effects
-----------------------------------	-------------------------------

conclusions

- analysis of causal effects places a greater demand on explication of the thought experiments which underlie the data analysis
- in other words, framing the problem is key to understanding, critiquing, improving the data summaries

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ● の Q @ ♪

Schroeder (Ohio State University)

Accounting and causal effects

August 8, 2012 41 / 41