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outline

accounting ingredients – causal e!ect of strategic disclosure

focus on treatment e!ects

challenges – identification

potential remedies

· ignorable treatment identification strategies
· instrumental variable identification strategies
· partial identification strategies

varieties of treatment e!ects and data analytic approaches

examples of e!ective/ine!ective identification strategies
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accounting causal e!ects

endogenous nature of causal e!ects makes assessing welfare impact of
accounting choice challenging

strategic disclosure:

· discrete – recognize/disclose or not

· continuous – information precision
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accounting causal e!ects

ingredients:

· uncertainty
· asymmetric information
· multiple sources of information
· equilibrium behavior

· audited reports may result in welfare improvement
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treatment e!ects

special case of causal e!ects

for concreteness and simplicity, we’ll focus on binary treatment
e!ects; for example, disclose or don’t disclose

· TE = Y1 ! Y0
· Y1 is (potential) outcome with treatment

· Y0 is (potential) outcome without treatment

· D = 1 treatment is chosen or assigned

· D = 0 no treatment is chosen or assigned

· observed outcome: Y = DY1 + (1!D)Y0
· observable data: Y1|D = 1 and Y0|D = 0
· counterfactuals: Y1|D = 0 and Y0|D = 1
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common treatment e!ects
conditional average treatment e!ects

average treatment e!ect for individuals who selected treatment
conditional on observables/regressors

ATT (X ) = E [Y1 ! Y0 | X = x ,D = 1]

average treatment e!ect for individuals who selected no treatment
conditional on observables/regressors

ATUT (X ) = E [Y1 ! Y0 | X = x ,D = 0]
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common treatment e!ects
conditional average treatment e!ects

average treatment e!ect for individuals chosen or assigned treatment
at random conditional on observables/regressors

ATE (X ) = E [Y1 ! Y0 | X = x ]
= Pr (D = 1 | X )ATT (X ) + Pr (D = 0 | X )ATUT (X )
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common treatment e!ects
conditional average treatment e!ects

for propensity score matching, covariates X = x are replaced by
P (x) = p in the conditional expectation expression

ATE (P (x)) = E [Y1 ! Y0 | P (x) = p]
= Pr (D = 1 | P (x) = p)ATT (P (x))

+Pr (D = 0 | P (x) = p)ATUT (P (x))
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common treatment e!ects
unconditional average treatment e!ects

with full common support (so-called identification at infinity),
unconditional average e!ects are derived from conditional average
e!ects via iterated expectations

· otherwise, we’re only able to identify local average e!ects
· description of common support indicates range of evidence

for example, the average treatment e!ect for individuals who are
selected for treatment at random

ATE = EX [E [Y1 ! Y0 | X ]]
= E [Y1 ! Y0]
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challenges

Identification! Identification! Identification!

· framing the causal e!ect problem
– rich variety of potential e!ects of interest makes this

step of paramount importance

· causal e!ect parameter identification
– typically maps observable outcome Y to e!ect via

probability theory
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challenges

counterfactual nature

common support (treated and untreated)

unobservability (partial observability) of beliefs, preferences, and
potential outcomes
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challenges

observable and unobservable heterogeneity

· how likely is homogeneity?

instrumental variable strategies can accommodate outcome
heterogeneity but require uniform treatment adoption

greater explanatory power may increase selection bias
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challenges

more ambitious agendas

· suspend stable unit treatment value assumption (SUTVA) –
allow interaction e!ects among individuals

· Cowles’ commission fully structural analysis (including
specification of preferences and incentives) of general
equilibrium e!ects in environments with which we have no
prior experience
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potential remedies

thought experiments

· framing problem and focal parameter(s)

· identification of quantities of interest
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potential remedies

thought experiments

· probability assignment
· Jaynes’ maximum entropy is one probability assignment

approach

· Ross’ recovery theorem assigns probabilities and

preferences from state prices

· Leamer’s specification searches with various priors and

likelihoods allows the reader to judge the data

summaries for themselves

· Manski’s partial identification & law of decreasing

credibility
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potential remedies

varieties of treatment e!ects and questions posed

· discrete/continuous treatment
· conditional (on observables/regressors) and unconditional
(iterated expectations) treatment e!ects

· population-level e!ect
· marginal

· average

· quantile

· MTE connects to other treatment e!ects via weighting
functions
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potential remedies

identification strategies

· ignorable treatment (selection on observables or
unconfoundedness)

– treatment is mean conditionally independent

– strong ignorability involves stochastic conditional

independence
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potential remedies

identification strategies

· instrumental variables (exclusion restrictions)
– instruments are independent of outcomes

– instruments are related to treatment adoption

– instruments allow manipulation of treatment

without a!ecting outcomes to infer counterfactuals

– treatment adoption is uniform in the instruments
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potential remedies

identification strategies

· bounding/partial identification when point-identification is
not feasible or credible
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potential remedies

common support

· evaluate overlap in covariate distribution
· examine histograms of the estimated propensity score by
treatment status

· propensity score matching to determine sample
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potential remedies
limited common support

example – nonparametric identification with limited common support

DGP
Y1 Y0 TE Y D X
11 4 7 4 0 0
2 6 !4 6 0 !1
1 5 !4 5 0 !1
11 4 7 4 0 0
11 4 7 11 1 0
11 4 7 11 1 0
9 3 6 9 1 1
10 2 8 10 1 1
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Examples
limited common support

various treatment e!ects

ATT (X = 0) = ATT (X = 1)

= ATT = 7

ATUT (X = !1) = !4, ATUT (X = 0) = 7
= ATUT = 1.5

ATE (X = !1) = !4, ATE (X = 0) = ATE (X = 1) = 7
= ATE = 4.25

only conditional treatment e!ects (at X = 0) are nonparametrically
identified by the data:
ATT (X = 0) = ATUT (X = 0) = ATE (X = 0) = 7
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potential remedies

some varieties of data analytic strategies

· nonparametric regression
· general matching
· propensity score matching
· fixed e!ects
· di!erence-in-di!erences (DID)
· linear 2SLS-IV

– interpretation depends on instruments & covariates

· control or replacement functions
· local IV (semi-nonparametric)
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potential remedies

some varieties of data analytic strategies

· regression discontinuity design
· doubly-robust combination methods

– regression with propensity score weighting (WLS)

– subclassification and regression

– matching and regression

· correlated random coe"cients for continuous treatment

· simulation, say, of general equilibrium e!ects

· McMC Bayesian data augmentation
· and more . . .
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potential remedies

assessing refutability

· no direct tests due to counterfactual nature – credibility is a
thought experiment

· evaluate refutable partial identification bounds against the
data

· highly context specific – for example, check for change in
means or distribution of covariates around the threshold for
regression discontinuity designs
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potential remedies

data

· better data is perhaps the most e!ective, albeit nontrivial,
remedy

· outcomes, regressors/covariates, instruments, etc. are
typically inadequate for addressing the questions we wish to
probe (welfare e!ects)

· the e!orts of empiricists toward this goal are typically
undervalued – a disservice to the discipline
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examples
2SLS-IV identifies LATE – treatment e!ect depends on instrument choice

DGP – nonignorable, heterogeneous treatment e!ect

Y1 Y0 TE Y D Z
15 10 5 15 1 1
15 10 5 15 1 0
10 10 0 10 1 1
10 10 0 10 0 0
5 10 !5 10 0 1
5 10 !5 10 0 0

LATE = E [Y1 ! Y0 | D1 !D0 = 1] = IVE =
E [Y |Z=1]!E [Y |Z=0]
E [D |Z=1]!E [D |Z=0]

regressors: {1,D}; instruments: {1,Z}
LATE is the instrument-dependent treatment e!ect for an
unidentified subpopulation of compliers
compliers are rows 3 and 4
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examples
2SLS-IV identifies LATE – treatment e!ect depends on instrument choice

various treatment e!ects

ATT = 313 ATUT = !313
ATE = 0 OLS = 313
LATE = 0 IVE = 0

the local average treatment e!ect is identified via 2SLS-IV as the
binary instrument, Z , satisfies the exclusion restriction,
Pr (Yi | Z = 1) = Pr (Yi | Z = 0) for i = 0, 1, and is related to
selection, D, Pr (D | Z ) "= Pr (D)
treatment e!ect identified depends on instrument and applies to an
unidentified subpopulation of compliers, D1 !D0 = 1
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examples
LATE = ATT

DGP – nonignorable, heterogeneous treatment e!ect

Y1 Y0 TE Y D Z
15 10 5 15 1 1
15 10 5 10 0 0
20 20 0 20 0 1
20 20 0 20 0 0
10 10 0 10 1 1
10 10 0 10 0 0

LATE = E [Y1 ! Y0 | D1 !D0 = 1] = IVE =
E [Y |Z=1]!E [Y |Z=0]
E [D |Z=1]!E [D |Z=0]

regressors: {1,D}; instruments: {1,Z}
compliers are rows 1, 2, 5, and 6
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examples
LATE = ATT

various treatment e!ects

ATT = 2.5 ATUT = 1.25
ATE = 123 OLS = !2.5
LATE = 2.5 IVE = 2.5

the local average treatment e!ect is identified via 2SLS-IV as the
binary instrument, Z , satisfies the exclusion restriction,
Pr (Yi | Z = 1) = Pr (Yi | Z = 0) for i = 0, 1
LATE equals ATT as Pr (D = 1 | Z = 0) = 0
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examples
LATE = ATUT

DGP – nonignorable, heterogeneous treatment e!ect

Y1 Y0 TE Y D Z
15 10 5 15 1 1
15 10 5 10 0 0
20 10 10 20 1 1
20 10 10 20 1 0
10 10 0 10 1 1
10 10 0 10 0 0

LATE = E [Y1 ! Y0 | D1 !D0 = 1] = IVE =
E [Y |Z=1]!E [Y |Z=0]
E [D |Z=1]!E [D |Z=0]

regressors: {1,D}; instruments: {1,Z}
compliers are rows 1, 2, 5, and 6
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examples
LATE = ATUT

various treatment e!ects

ATT = 6.25 ATUT = 2.5
ATE = 5 OLS = 6.25
LATE = 2.5 IVE = 2.5

the local average treatment e!ect is identified via 2SLS-IV as the
binary instrument, Z , satisfies the exclusion restriction,
Pr (Yi | Z = 1) = Pr (Yi | Z = 0) for i = 0, 1
LATE equals ATUT as Pr (D = 1 | Z = 1) = 1
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examples
LATE – defiers, 2SLS-IV fails

DGP – nonignorable, heterogeneous treatment e!ect

Y1 Y0 TE Y D Z
10 5 5 10 1 1
10 5 5 5 0 0
10 5 10 10 1 1
10 5 10 10 1 0
10 5 0 10 1 1
10 5 0 5 0 0
10 !5 0 !5 0 1
10 !5 0 10 1 0

regressors: {1,D}; instruments: {1,Z}
compliers are rows 1, 2, 5, and 6

last two rows are defiers
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examples
LATE – defiers, 2SLS-IV fails

various treatment e!ects

ATT = 7 ATUT = 813
ATE = 7.5 OLS = 813
LATE = 5 IVE = !5

the local average treatment e!ect is not identified via 2SLS-IV as
there are defiers in the population

2SLS-IV is grossly misleading – sign of the estimand IVE is opposite
of LATE

failure of treatment adoption uniformity can mean OLS is closer to
identifying LATE than 2SLS-IV
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examples
2SLS-IV with covariates – treatment e!ect depends on covariates as well as instrument
choice

let X be a fixed design matrix of three indicator variables (a varying
intercept model)

regressors (conditional e!ects): {X1,X2,X3,X1D,X2D,X3D} or
regressors (unconditional e!ect): {X1,X2,X3,D}; instruments:
{X1,X2,X3,X1Z ,X2Z ,X3Z}
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examples
2SLS-IV with covariates – treatment e!ect depends on covariates as well as instrument
choice

2SLS ! IV e!ect is a weighted average of the 2SLS ! IV e!ects
identified at each Xk = 1

γ =
E [Y · (E [D | X ,Z ]! E [D | X ])]
E [D · (E [D | X ,Z ]! E [D | X ])]

=
EX [ω (Xk = 1) γ (Xk = 1)]

EX [ω (Xk = 1)]

with weights

ω (Xk = 1) = E [E [D | X ,Z ] · (E [D | X ,Z ]! E [D | X ]) | Xk = 1]

and 2SLS ! IV e!ects at each Xk = 1,

γ (Xk = 1) =
E [Y · (E [D | X ,Z ]! E [D | X ]) | Xk = 1]
E [D · (E [D | X ,Z ]! E [D | X ]) | Xk = 1]
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examples
2SLS-IV with covariates – 2SLS-IV e!ect equal to LATE

DGP – nonignorable, heterogeneous treatment e!ect with
unobservable outcome Vi

Y1 Y0 TE Y D X1 X2 X3 V1 V0 Z
6 4 2 6 1 1 0 0 1 3 1
6 4 2 4 0 1 0 0 1 3 0
4 !2 6 4 1 1 0 0 !1 !3 1
4 !2 6 4 1 1 0 0 !1 !3 0
8 4 4 8 1 0 1 0 2 2 1
8 4 4 4 0 0 1 0 2 2 0
4 0 4 0 0 0 1 0 !2 !2 1
4 0 4 0 0 0 1 0 !2 !2 0
10 4 6 10 1 0 0 1 3 1 1
10 4 6 4 0 0 0 1 3 1 0
4 2 2 2 0 0 0 1 !3 !1 1
4 2 2 2 0 0 0 1 !3 !1 0
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examples
2SLS-IV with covariates – 2SLS-IV e!ect equal to LATE

compliers are rows 1, 2, 5, 6, 9, and 10
various treatment e!ects

treatment e!ects
conditional

X1 = 1 X2 = 1 X3 = 1 unconditional
OLS 0.6667 6.6667 7.3333 4.1143
LATE 2 4 6 4

2SLS ! IV 2 4 6 4
ω (Xk = 1) 0.0625 0.0625 0.0625
ATT 4.6667 4 6 4.8
ATUT 2 4 3.3333 3.4286
ATE 4 4 4 4

the local average treatment e!ects are identified via 2SLS-IV as
E [VjZ | Xk = 1] = E [Vj | Xk = 1] = 0
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examples
2SLS-IV with covariates – 2SLS-IV e!ect unequal to LATE

DGP – nonignorable, heterogeneous treatment e!ect

Y1 Y0 TE Y D X1 X2 X3 V1 V0 Z
6 4 2 6 1 1 0 0 1 3 1
6 4 2 4 0 1 0 0 1 3 0
8 0 8 8 1 1 0 0 3 !1 0
8 0 8 8 1 1 0 0 3 !1 0
8 4 4 8 1 0 1 0 2 2 1
8 4 4 4 0 0 1 0 2 2 0
6 !1 7 !1 0 0 1 0 0 !3 1
6 !1 7 !1 0 0 1 0 0 !3 1
4 4 0 4 1 0 0 1 !3 1 1
4 4 0 4 0 0 0 1 !3 1 0
4 1 3 1 0 0 0 1 !3 !2 0
4 1 3 1 0 0 0 1 !3 !2 0
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examples
2SLS-IV with covariates – 2SLS-IV e!ect unequal to LATE

compliers are rows 1, 2, 5, 6, 9, and 10
various treatment e!ects

treatment e!ects
conditional

X1 = 1 X2 = 1 X3 = 1 unconditional
OLS 3.3333 7.3333 2 5.0857
LATE 2 4 0 2

2SLS ! IV !2 !6 2 0.9091
ω (Xk = 1) 0.02083 0.02083 0.1875
ATT 6 4 0 4.4
ATUT 2 6 2 3.7143
ATE 5 5.5 1.5 4

2SLS-IV identifies a di!erent e!ect than LATE as
E [VjZ | Xk = 1] "= 0,E [Vj | Xk = 1] "= 0 but E [VjZ ] = E [Vj ] = 0
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conclusions

analysis of causal e!ects places a greater demand on explication of
the thought experiments which underlie the data analysis

in other words, framing the problem is key to understanding,
critiquing, improving the data summaries
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