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This article presents a joint modeling framework of ordinal responses and response times (RTs)
for the measurement of latent traits. We integrate cognitive theories of decision-making and confidence
judgments with psychometric theories to model individual-level measurement processes. Themodel devel-
opment starts with the sequential sampling framework which assumes that when an item is presented, a
respondent accumulates noisy evidence over time to respond to the item. Several cognitive and psychome-
tric theories are reviewed and integrated, leading us to three psychometric process models with different
representations of the cognitive processes underlying the measurement. We provide simulation studies that
examine parameter recovery and show the relationships between latent variables and data distributions.
We further test the proposed models with empirical data measuring three traits related to motivation. The
results show that all three models provide reasonably good descriptions of observed response proportions
and RT distributions. Also, different traits favor different process models, which implies that psychological
measurement processes may have heterogeneous structures across traits. Our process of model building
and examination illustrates how cognitive theories can be incorporated into psychometric model develop-
ment to shed light on the measurement process, which has had little attention in traditional psychometric
models.

Key words: response time, psychological process, measurement, psychometric process modeling,
decision-making, confidence judgments.

With the advent of computerized measurement methods, it has become possible to collect
response times (RTs) alongwith responses with relatively little additional effort. At the same time,
joint modeling of responses and RTs has been gaining popularity in the field of psychometrics
(see De Boeck & Jeon, 2019, for a review). A major benefit of the additional RT measures is
an improvement in the measurement of latent abilities/traits in psychometrics (De Boeck &
Jeon, 2019; Bolsinova & Tijmstra, 2018) . First, latent variables can be better estimated simply
by the collateral information from RTs compared to when only item responses are available.
Second, joint modeling of responses and RTs can help us account for the speed-accuracy trade-off
(SAT; Wickelgren, 1977; Luce, 1986) by allowing the decomposition of ability and speed factors.
Response-only models may produce the same ability estimates for respondents with the same
data accuracy values but with different RT values. Incorporating RTs in modeling can disentangle
the confounding effect of the latent ability and speed factors and produce more accurate ability
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estimates. Furthermore, modeling RTs can also help detect anomalous responses such as fast
guessing and cheating (Ratcliff & Kang, 2021; Schnipke & Scrams, 1997; Wang & Xu, 2015;
Wang et al., 2018) and identify latent response classes (e.g., fast vs slow; DiTrapani, Jeon, De
Boeck, & Partchev, 2016; Molenaar, Oberski, Vermunt, & Boeck, 2016; Partchev & De Boeck,
2012).

Another advantage of joint modeling of responses and RTs that we particularly emphasize
in this article is that it opens a path to a theory-based modeling approach (namely, psychomet-
ric process modeling). Earlier psychometric models of responses and RTs have been developed
mainly based on extensions of traditional psychometric models (e.g., the hierarchical framework
by van der Linden, 2007) such as factor analysis (FA) and item response theory (IRT) models.
Although these models perform well in describing behavioral patterns of data, they do not shed
light on the individual-level psychological processes underlying the measurement. In contrast,
process modeling in perceptual and cognitive decision-making starts from a psychological theory
of cognitive processes (e.g., sequential sampling framework, Ratcliff & Smith, 2004; Forstmann,
Ratcliff, & Wagenmakers, 2016) and builds a mathematical model based on it. This approach
provides a theoretical conceptualization of what latent variables refer to and how they generate
responses and RTs. Psychometrics can also benefit from this modeling approach, and this can
lead us to a theory-based study of the intra-individual processes of the measurement that explic-
itly describe latent variables as cognitive process components and their causal relationship with
outcome variables. Also, variations in intra-individual processes provide primary sources of indi-
vidual differences. In this regard, psychometric process modeling can furnish a new perspective
on validity and measurement issues, in light of earlier discussions from Borsboom and colleagues
(2003,2004).

To our knowledge, the first process model of responses and RTs in psychometrics is the
diffusion IRTmodel (Molenaar et al., 2015b; Ranger et al., 2017; Tuerlinckx &De Boeck, 2005;
Tuerlinckx et al., 2016; van der Maas et al., 2011). The model is based on the sequential sampling
framework: when an item is presented, a respondent accumulates evidence for decision-making
over time and eventually makes a response when sufficient information is accumulated. For binary
responses (e.g., correct and incorrect responses), it is assumed that evidence accumulates toward
one of the two decision boundaries, each of which corresponds to each of the binary response
options. The accumulation process terminates when it hits a boundary and the corresponding
response is predicted. RT is predicted as the sum of decision time and nondecision time where
decision time refers to the time that the decision process (evidence accumulation) takes before
the termination and nondecision time refers to the time for all the other cognitive processes not
directly related to decision-making.

Two crucial components of the diffusion IRT model (and some other process models) are
the mean rate of evidence accumulation (drift rate) and the amount of information required for
decision-making (boundary separation). The diffusion IRTmodel assumes that these components
can be decomposed into person and item parameters. This decomposition allows the model to
account for the person and itemeffects confounded inmeasurement data. Furthermore,we interpret
person parameters of cognitive components as process-based definitions of latent variables. Note
that they span the same two-dimensional space as latent ability/trait and speed factors used in
early psychometric models of responses and RTs. Importantly, with the definitions given by the
cognitive components, it becomes clear what latent variables refer to (i.e., quality and quantity of
information processing).

Also, the diffusion IRT model provides a process-based description of how within- and
between-person variations are generated. The model (as most sequential sampling models do)
assumes internal noisewithin a response process of a single person responding to a single item (i.e.,
evidence is noisywithin the accumulation process). This internal process variability corresponds to
intra-individual variation in response processes and it is one of the primary sources of the variations
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of outcome variables, generating response andRTdistributions for a single respondent and a single
condition. Furthermore, individual differences in the mean rate of evidence accumulation and
the necessary amount of information across respondents are other primary sources of variation,
producing inter-individual differences in outcome variables. In this sense, the model provides
us with an explanatory modeling approach in which we concretely define latent ability/trait and
examine theoretical causality between psychological constructs and response outcomes,motivated
by perceptual/cognitive decision-making theories.

However, there are only a few empirical applications of the diffusion IRTmodel, and process-
based approaches have not yet been widely studied in the field. Also, the diffusion IRT model is
only for binary responses and RTs. Latent abilities have been measured and modeled with binary
item responses in the traditional IRT approach and so the diffusion IRT model can also be used
to examine abilities. For latent traits (e.g., personality traits, attitude traits), it is more typical to
use other types of responses such as ordinal responses (e.g., M-point Likert scale) rather than
binary responses (but see Molenaar et al., 2015b; Kang, De Boeck, & Ratcliff, 2022b; Kang, De
Boeck, & Partchev, 2022a; Tuerlinckx & De Boeck, 2005) and so the development of process
models for other response types is required. For nonordinal multiple-choice items, van der Maas
et al. (2011) proposed a version of the diffusion IRT model and Rouder et al. (2015) proposed
the log-normal race model. However, these models are interested in modeling response accuracy
and RTs and they are not applicable to ordinal response items to measure latent traits. For ordinal
responses, Ranger and Kuhn (2018) proposed the first innovative psychometric process model.
They successfully integrated the linear ballistic accumulator (LBA) model (Brown and Heathcote
2008) and the balance-of-evidence hypothesis (Vickers 1979) with person-wise and item-wise
parameterization for psychometric data, which motivated our modeling approach presented in
this article. However, unlike the diffusion model and many other sequential sampling models,
the LBA model assumes no within-trial noise in the evidence accumulation and the fundamental
source of probabilistic features of the model is from across-trial variability components (i.e.,
variability in model parameters across multiple trials in psychological experiments). Thus, given
trial-wise parameters, this model predicts response and RT deterministically. In contrast, we
argue that internal noise (corresponding to within-trial noise) is a fundamental source of noise in
the measurement process and responses and RTs cannot be deterministically explained. We will
discuss this difference further in Sect. 5.

In this article, we aim to build a framework of psychometric process modeling to study psy-
chological processes underlying the measurement of latent personality/attitude traits that uses the
Likert scale. To this end, we review early theories of confidence judgments in perceptual and
cognitive decision-making fields and measurement with ordinal scales in psychometrics. Then,
we integrate different theories and models to develop psychometric models that (1) decompose
ordinal responses andRTs frompersonality/attitudemeasurement into person-wise cognitive com-
ponents (i.e., ‘cognitive’ latent variables) and item parameters and (2) have their own theoretical
representations of intra-individual processes of a respondent in a measurement procedure.

Amodel developed based on our framework should be capable of capturing important behav-
ioral patterns in data response proportions and RT distributions. Thus, we test the model by
contrasting data statistics and distributions against the corresponding model predictions, as done
for mathematical models for perceptual and cognitive decision-making. A severe discrepancy
between data and model prediction could signify that the model representation of measurement
processes might be flawed. In this case, the model can be modified or rejected. Although a good
absolute model fit cannot be a sufficient condition for a model representation to be the ground
truth of measurement processes, it is certainly an important necessary condition. We do not claim
that the best model out of our proposed models shows the ground truth of the cognitive processes
underlying the personality/attitude measurement. However, our modeling approach can demon-
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strate a theory-based way to model unobservable measurement processes through which latent
variables generate outcome responses.

After discussing various early theories and models, we propose three psychometric process
models. We start with a fundamental assumption that noisy evidence accumulation can provide an
appropriate representation of the measurement processes, as in perceptual and cognitive decision-
making models and the diffusion IRT model. Then, different cognitive theories of decision-
making and confidence judgments and psychometric theories of measurement are introduced and
integrated for the development of different models. As a result, each of our proposed models has
a different representation and formulation of cognitive processes underlying the measurement
of latent personality/attitude traits. We examine multiple models rather than just a single one
(although a single model could be sufficient to describe our modeling approach) because there is
no dominant theory on the intra-individual temporal dynamics of a respondent in a psychometric
measurement scene. Also, even if one process model provides a good account of ordinal responses
and RTs, there can be a model with a better account of data and a better theoretical explanation of
cognitive processes of measurement. In this sense, comparing multiple models (and their relevant
theories) is a strategicway to find a better representation of the psychological processes underlying
personality/attitude measurement.

The article is organized as follows: In Sect. 1, we describe theories in cognitive psychol-
ogy and psychometrics on which we base our modeling. This includes evidence accumulation,
the latent response formulation, and some cognitive models of responses, RTs, and confidence
judgments. In Sect. 2, we propose three psychometric process models that are based on cognitive
and psychometric theories introduced in Sect. 1. The models differ in the number of evidence
accumulators and how they represent cognitive processes underlying psychometric measurement.
In Sect. 3, we conduct simulation studies to examine parameter recovery and cross recovery of the
models. In Sect. 4, we fit the three models to empirical data to investigate which model provides
the best illustration of behavioral patterns of the data. We will examine absolute model fits, and
reject a model and its representation of the measurement processes if the model prediction shows
a large discrepancy from the data pattern. Finally, we conclude this article with a theoretical dis-
cussion of our process models and potential future extensions. Throughout this article, we mainly
consider ordinal responses with M = 5 response options (e.g., 5-point Likert scale). For the
measurement of latent traits, the response options would be, for example, 1 = strongly disagree,
2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly agree to a presented statement.

1. Cornerstone Theories

1.1. Single-boundary Wiener Process

A fundamental assumption in our model development is that the measurement processes of
latent traits can be described by evidence accumulation. In the sequential sampling framework for
perceptual and cognitive decision-making, a respondent accumulates evidence over time to make
a decision when a task stimulus is presented. During the measurement processes of latent traits,
for example, when responding to an item sentence in a personality questionnaire, respondents
should find how much the presented sentence matches their personalities. This process requires
the respondents to navigate through their individual experiences, growth history, or any other
memories related to what is being asked. The respondents collect information from these, for-
mulate their perceived personalities, and finally respond to the presented item based on it. If the
perceived personality matches the item sentence, a response is likely to be positive, and if not, a
negative response is more likely. Also, the degree of the match determines the response strength
(e.g., agree vs strongly agree). This process is relatively simpler than the measurement processes
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of latent abilities with complicated and difficult items (e.g., solving a calculus problem), and
it can be adequately described by evidence accumulation as simple cognitive decision-making
processes (see Sect. 5 for a further discussion of this assumption and cognitive modeling studies
related to psychological processes of reading and inference).

For ourmodeling,we consider evidence accumulationwith a single (upper) decision boundary
(illustrated in, e.g., Panel B of Fig. 1 in Sect. 2.1). Evidence E(t) accumulates over time t in the
mean rate of ν (i.e., drift rate), starting at E(0) = 0. The drift rate represents the quality of
evidence and the efficiency of information processing. Evidence accumulated at each time point
is noisy, and the noise is assumed to be normally distributed. Thus, the accumulation process can
be expressed as dE(t) = νdt + σ B(t)

√
dt where dE(t) is the infinitesimal stochastic change

in the accumulation process E(t) during a small time interval dt , σ 2 is the diffusion coefficient
that represents the variance of the noise within the accumulation process, and B(t) is a Gaussian
process with zero mean and unit variance (Cox & Miller, 1965; Smith, 2000) . The diffusion
coefficient is a scaling factor and is typically fixed to some constant for identifiability (e.g., σ 2 = 1
as we do hereafter in this article).

The accumulation process terminates when the accumulated evidence reaches the decision
boundary α > 0. The boundary represents the (positive) amount or quantity of information
required to make a decision. In perceptual and cognitive decision-making and psychometric
testing, the decision boundary is related to the speed–accuracy trade-off (SAT) of a respondent
in that a larger boundary is associated with more emphasis on response accuracy, while a smaller
boundary is associated with more emphasis on speed. In the measurement of latent traits, a larger
boundary would be associated with being more cautious in making a response to a presented item.
During the response behavior, there are other cognitive processes that are not directly related to
the decision-making, such as encoding item sentences and producing responses. The times taken
for these nondecision processes are collectively modeled by the nondecision time parameter t0.
Then, RT is predicted as the sum of the decision time (the time taken by the accumulation process
before termination) and the nondecision time.

The accumulation process we described is known as the single-boundaryWiener process, and
it has been shown that its first passage time distribution (the distribution of the time at which the
evidence accumulation process crosses the decision boundary, i.e., RT distribution) is the Wald
or inverse Gaussian distribution (Cox & Miller, 1965; Luce, 1986; Ratcliff, 1978; Wald, 1947).
With drift rate ν > 0, decision boundary α, and nondecision time t0, the first passage time density
is given as:

fT (t) = α

σ
√
2π(t − t0)3

exp

(
− (α − v(t − t0))2

2σ 2(t − t0)

)
(1)

It is worth noting again that a fundamental assumption in our modeling is that evidence accu-
mulation of the cognitive processes underlying the measurement of latent traits includes within-
process noise (i.e., evidence is noisy within the response process of a single person responding
to a single item). The choice of the single-boundary Wiener process is also consistent with this
assumption in that this process and its first passage time density in Eq. 1 include the diffusion
coefficient σ 2. The noise in evidence accumulation is the primary source of the probabilistic char-
acteristics of our process models, capturing within-person (and also within-item) variability and
producing a response and RT distribution for each person-by-item pair. Throughout our model
development, we integrate this evidence accumulation process with cognitive and psychometric
theories for ordinal responses. In doing so, our models can jointly account for ordinal responses
andRTswith different representations of the psychological processes of themeasurement of latent
traits.
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1.2. Latent Response Formulation

A traditional way ofmodeling ordinal responses in psychometrics is to use a continuous latent
response. This approach, called latent response formulation (Skrondal & Rabe-Hesketh, 2004),
views an ordinal response as a thresholded realization of the underlying continuous response
(illustrated in, e.g., Panel A of Fig. 1 in Sect. 2.1). The idea was first introduced by Pearson
(1901) for dichotomous responses and later extended for ordinal responses with multiple response
options (Bollen & Barb, 1981; Muthén, 1983, 1984; Olsson, 1979). Thurstone (1927a,b, 1928)
also presented a similar idea to model one-dimensional discrimination of stimuli (e.g., signal vs
noise) based on a normally distributed magnitude on a psychological continuum. This idea later
contributed to the development of signal detection theory (Green & Swets, 1966; Macmillan &
Creelman, 1966). and Thurstonian scaling (Bock & Jones, 1968; Torgenson, 1958)

Let y be an ordinal outcome variable and y∗ be its underlying continuous latent response
variable. For M response options, the outcome y is determined as follows:

y =

⎧
⎪⎨

⎪⎩

1 if y∗ ≤ τ1

k if τ(k−1) < y∗ ≤ τk, k = 2, · · · , M − 1

M if τ(M−1) < y∗
(2)

where τk (k = 1, · · · , M − 1) is a response threshold that maps continuous latent responses onto
the ordinal scale. In factor analysis literature, y∗ is assumed to follow a normal distribution as in a
normal ogive model, which is equivalent to the graded response model from item response theory
(Takane & De Leeuw, 1987). The measurement relation is described as y∗ = ν + λ1ξ1 + · · · +
λLξL + ε where ν is an intercept, ε is a residual, 
l and ξl are factor loading and factor score
corresponding to the lth factor (l = 1, . . . , L), respectively, assuming L underlying factors.

1.3. Balance-of-Evidence Hypothesis

Along with response accuracy and RT, confidence judgments have been used to constrain
mathematical models of perceptual and cognitive decision-making and to study the underlying
psychological processes (Festinger, 1943a,b; Merkle & Van Zandt, 2006; Pleskac & Busemeyer,
2010; Ratcliff & Starns, 2009, 2013; Smith & Vickers, 1988; Van Zandt, 2000; Van Zandt &
Maldonado-Molina, 2004; Vickers, 1979; Volkmann, 1934). Confidence is of particular impor-
tance for our modeling purpose because it is inherently an ordinal scale (from low confidence to
high confidence). Thus, earlier process models of confidence judgments can be modified to fit
ordinal responses for psychometric measurement of latent traits.

Confidencemodels built on the balance-of-evidence hypothesis (Merkle &Van Zandt, 2006;
Smith&Vickers, 1988; Van Zandt&Maldonado-Molina, 2004; Vickers, 1979) have been applied
to data from psychophysical discrimination tasks in which a subject is presented with a stimulus
and is asked to compare it with an internal criterion value (e.g., greater or less inmagnitude). These
models conceive two competing evidence accumulators each of which represents one of the binary
response options (e.g., one for ’greater’ and the other for ’less’). The accumulators race toward
a decision boundary, and the decision process terminates when one of the accumulators reaches
the boundary (i.e., wins the race). Response is predicted as the response option corresponding to
the winning accumulator, and RT is predicted as the sum of the termination time of the winning
accumulator and nondecision time. The confidence level is predicted based on the difference in
evidence between the two accumulators at the decision time. The amount of evidence from the
winning accumulator is equal to the amount set by the decision boundary. When one response
option is compelling, the evidence difference would be large and the model predicts a high



I. KANG ET AL.

confidence level. Otherwise, the evidence difference would be small and the model predicts a low
confidence level (This process is illustrated in, e.g., Panels B and C of Fig.2 in Sect. 2.2).

The balance-of-evidence hypothesis implicitly assumes that the amounts of evidence for
both accumulators are directly accessible to calculate the difference at the time of the decision
(Ratcliff & Starns, 2009). Also, there is a scaling issue in the difference in evidence in that its
value can largely differ by the scale on which a subject is asked to make confidence judgments
(e.g., confidence judgments with a decision boundary set on a 1–5 scale vs a 1–100 scale). To
circumvent this issue, (Merkle and Van Zandt 2006) proposed to use a relative balance of evidence
defined as the ratio of the winning accumulator’s evidence to the sum of the two accumulators’
evidence.

1.4. Response and Time Models of Confidence Judgments (RTCON)

Ratcliff and Starns (2009, 2013) developed Response and Time Models of Confidence Judg-
ments, namely RTCON and RTCON2 models (hereafter denoted as RTCONmodels) based on an
extension of the diffusion decision process for simple two-choice tasks (Ratcliff, 1978; Ratcliff
& McKoon, 2008) to confidence judgments in perceptual and cognitive decision-making tasks.
They based their model development on the observation that a subject in a confidence judgment
task requires a separate response (e.g., a separate key on a keyboard) for each confidence cate-
gory (Ratcliff & Starns, 2009). This led them to the assumption that the decision process for
confidence judgments involves multiple evidence accumulators each of which corresponds to one
of the confidence categories.

There are three key assumptions in the RTCON models (Fig. 3 in Sect. 2.3 illustrates a psy-
chometric version of these models). First, for each stimulus, the model represents the information
for decision-making from memory as a distribution (memory strength distribution) rather than
a single value. Second, internal confidence criteria divide the memory strength distribution into
several regions, each of which corresponds to one of the confidence levels on the scale. Also, the
area of each region on the distribution is mapped onto the drift rate of the corresponding evidence
accumulator. Lastly, evidence accumulators have their own decision boundaries and thus different
confidence categories require more or less information for their accumulators to terminate.

The RTCON2 model (unlike the RTCONmodel) implements the constant summed evidence
algorithm. This algorithm puts a constraint on evidence that different accumulators collect at each
time point so that the sumof the evidence over confidence categories is fixed to zero. Specifically, at
each time point, evidence for only one selected accumulator increases in its drift rate, and the other
accumulators get equal amounts of decrements in evidence whose sum is equal to the increment
of the selected accumulator. The race between multiple accumulators terminates when one of the
accumulators reaches its decision boundary. Response is predicted as the confidence response
corresponding to the winning accumulator and RT is predicted as the sum of the termination time
of the winning accumulator and nondecision time.

The RTCON models were originally proposed for perceptual and cognitive multiple-choice
tasks such as recognition memory tasks and motion discrimination tasks with confidence judg-
ments. Therefore, they can also fit ordinal responses for the measurement of latent traits with
slight modifications.

2. Models

In this section,wedescribe our psychometric processmodels of ordinal responses andRTs.We
develop these models by integrating the theories described in Sect. 1. Table 1 provides a summary
of the models. All three models assume evidence accumulation as an adequate representation
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Table 1.
Summary of the Three ProposedModels. Section 2 provides the detail of the proposedmodels. The ‘Source’ column shows
the primary motivations (early theories and models) of the proposed models, but note that other theories and models are
also integrated to develop them.

K Source n.par Drift Boundary

Model 1 1 LRF 3P + 2I + (M − 1) νpi = |θp − bi | s · γp/ai
(Sect. 1.2)

Model 2 2 BoE 3P + 2I + (M − 1) ν1.pi = (θp − bi ) γp/ai
(Sect. 1.3) ν2.pi = 1 − ν1.pi

Model 3 M RTCON 3P + 2I + 2M − 2 νk.pi = (τk − (θp − bi )) sk · γp/ai
(Sect. 1.4) −(τk−1 − (θp − bi ))

k = 1, . . . , M k = 1, . . . , M

EA: Evidence Accumulation, n.par: The number of parameters, P: The number of persons, I : The number
of items, K : The number of accumulators, M : The number of response options.

of psychological processes underlying the measurement of latent traits. Also, as psychometric
models, all three models should be able to decompose person and item effects that are entangled
in the measurement data. To this end, we assume that decision boundary αpi and drift rate νpi for
person p and item i are functions of the person and item parameters as follows:

αpi = w(γp, ai , ...)

νpi = u(θp, bi , ...)
(3)

where γp and θp represent person-wise decision boundary and person-wise drift rate, respectively,
and ai and bi represent item time-pressure (which can also be interpreted as the inverse of item
discrimination in the IRT models) and item strength1 parameters, respectively. In our models, a
respondentwith a larger person-wise decision boundary ismore likely to produce longer RTs.Also
by spending more time, response is likely to be the one predicted by the other model parameters
(a ‘dominant’ response). A large positive (negative) person-wise drift rate is likely to produce
positive (negative) responses to the item with short RTs, while a small (close to zero) value is
likely to produce intermediate and neutral responseswith longerRTs. Itemparameters are assumed
to have the opposite relationship with responses and RTs; a smaller item time pressure parameter
is associated with longer RTs and more dominant responses and a large negative (positive) item
strength parameter is associated with shorter RTs and more positive (negative) responses. This
association will be further elaborated with model equations in Section 2.1–Section 2.3 and a
simulated result in Section 2.5. A similar decomposition was used in earlier psychometric process
models for binary responses and RTs such as the diffusion IRTmodel and its extensions (Kang et
al., 2022a,b;Molenaar et al., 2015b;Ranger et al., 2017; Tuerlinckx&DeBoeck, 2005; Tuerlinckx
et al., 2016; van derMaas et al., 2011). For nondecision time, we include person-wise nondecision
time parameter t0p to capture individual differences in how much time each respondent spends
on nondecision processes.2 We also denote the random variables of response and RT for person

1We used the term ‘item strength’, in a similar sense as item difficulty in IRT analysis of test data in that a respon-
dent with a higher value of latent trait than item strength has a higher probability of endorsing the personality/attitude
measurement item. This can also be called ‘item attractiveness’ in that it represents the attractiveness of the item.

2An alternative to this choice could be item-wise nondecision time. However, modeling both person-wise and item-
wise nondecision times is not feasible because their effects on outcome variables are confounded. In other words, person-
wise (item-wise) nondecision time parameters can also account for inter-item (inter-person) differences. We consider
person-wise nondecision time in this article because typically measurement data have more respondents (than items) and
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Figure 1.
Illustration of Model 1: Single-accumulator model. The model is a combination of the latent response formulation and
the single-boundary Wiener process.

p and item i by X pi and Tpi , their realizations by xpi and tpi , and the matrices of all responses
and of all RTs by X and T , respectively. In addition, we use P for the number of persons and I
for the number of items.

2.1. Model 1: Single-accumulator Model

The first model we propose is the single-accumulator model in which a single evidence accu-
mulation process represents a continuous psychological construct. The model, as shown in Fig. 1,
is a combination of the latent response formulation (Sect. 1.2) and the single-boundary Wiener
process (Sect. 1.1). The latent response formulation determines the response probabilities of dif-
ferent response options and the single-boundaryWiener process determines the RT. Themodel has
only a single accumulator, but different responses on an ordinal scale can be predicted. The model
representation of the cognitive processes underlying the measurement says that evidence accu-
mulates only for the predicted response option. Winning probabilities of different accumulators
are assumed to be determined by the latent response formulation, as will be described below.

The model assumes a continuous latent response X∗
pi that underlies measurement outcomes.

It is assumed that X∗
pi is normally distributed as X∗

pi = γp
ai

(θp − bi ) + εpi where εpi ∼ N (0, 1).

The combinations of person and item parameters, γp
ai

and θp − bi , will also be related to the
decision boundary αpi and the drift rate νpi for RT predictions, producing dependency between
responses and RTs. Compared to the latent response formulation in the factor analysis literature,
the factor score is assumed to be the person drift rate θp with item threshold parameter bi as
its mean and the factor loading is assumed to be a function of person boundary and item time-
pressure (or the inverse of item discrimination). This choice for the factor loading is motivated by
the parameterization of the diffusion IRT model introduced in Tuerlinckx and De Boeck (2005),
which showed that the discrimination parameter in the two-parameter logistic IRT model (which
is corresponding to the factor loading in the linear factor analysis model) can be interpreted as
the distance between the two decision boundaries in the diffusion model.

For M response options, the model applies M − 1 response thresholds τ1, · · · , τM to predict
ordinal responses X pi as X pi = k if τ(k−1) < X∗

pi ≤ τk where τ(k−1) < τk (k = 1, . . . , M)
and τ0 = −∞ and τM = ∞. Note that the response thresholds are fixed across items as in the
modified graded response model (Muraki, 1990) and the rating scale model (Andrich, 1978a,b)
which are appropriate for attitude questionnaires with the same response anchors (Embretson &
Reise, 2000). However, they can be allowed to vary by item (i.e., τi,k) given a sufficiently large
number of respondents as in Muthén (1984) and Samejima (1969), Samejima (1997).

thus models with person-wise nondecision time parameters can better decompose RTs into decision and nondecision
times.
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For RTs, the model employs the single-boundary Wiener process (Eq. 1) with the decompo-
sitions νpi = |θp − bi | and αpi = s · γp

ai
. These are similar to the decompositions used for the

diffusion IRT model but with two differences. First, we take for the drift rate the absolute dis-
tance between person drift rate and item strength to ensure the termination of the single-boundary
process. This also allows the model to account for the distance-difficulty hypothesis for traits
which postulates that a person takes more time to respond to an item when the absolute distance
between latent ability and item threshold is small and less time when the absolute distance is large
(Ferrando & Lorenzo-Seva, 2007a,b; Kuiper, 1981; Kuncel, 1973; Molenaar et al., 2015a) . The
second one is the parameter s in the decision boundary decomposition. Without this parameter,
the model assumes that the decision boundary is equal to the factor loading in the latent response
formulation. This assumption is too restrictive because it is unlikely that the decision boundary
(which scales RTs) can be measured on the same scale as the factor loading (which scales con-
tinuous latent responses). The scaling parameter fills the gap in scale between the continuous
latent responses and the RTs while keeping the parsimony of the model (compared to a model
with separate parameters for boundaries and loadings). Introducing this scaling parameter pro-
duces an interaction between person-wise decision boundary, item time-pressure, and the scaling
parameter per se. Thus, for identifiability, we fixed one of the item-time pressure parameters to 1
(e.g., a1 = 1). In total, the current model has 3P + 2I + (M − 1) + 1 − 1 parameters (-1 for a
constraint).

Given the parameterization above, the log-likelihood of Model 1 can be obtained as follows.
For RTs, it is simply the log of the density in Eq. 1 summed over persons and items. For responses,
the log-likelihood can be obtained by summing the log of the probability of observing a response
xpi over all persons and items, as in the graded response model (Samejima, 1969, 1997),
but with a different formula for response probabilities. From the formula for X pi given above,
the response probability is P(X pi = xpi |γp, ai , θp, bi , τ ) = �(τxpi − γp

ai
· (θp − bi )) =

(τxpi − γp
ai

· (θp −bi ))−(τ(xpi−1) − γp
ai

· (θp −bi ))where τ is the vector of response thresholds
and (·) is the cumulative distribution function of the standard normal distribution. Hence, the
full log-likelihood of Model 1 is:

l1(θ , γ , t0, a, b, τ , s|X, T ) =
P∑

p=1

I∑

i=1

[
log fTpi (tpi ; αpi , νpi , t0p) + log�(τxpi − γp

ai
· (θp − bi ))

]

νpi = |θp − bi |, αpi = s · γp

ai

(4)

2.2. Model 2: Dual-accumulator Model

Our second model, which we call the dual-accumulator model, has a similar structure as
the balance-of-evidence models (Sect. 1.3): two competing accumulators and their balance in
evidence mapped to confidence or strength of response (Fig. 2). The fundamental assumption of
thismodel is that a psychological construct is represented by a continuum rather than a single value,
as in the latent response formulation (e.g., continuum of extraversion–introversion, continuum
of motivated–demotivated, etc.). The two competing accumulators assumed in the balance-of-
evidence hypothesis represent the two extremes on the psychological continuum. Without loss of
generality, we assume that the first accumulator represents the positive extreme (agree side) and
the second accumulator represents the negative extreme (disagree side).

To determine the drift rates of the two accumulators, themodel implements some key assump-
tions in the RTCON models (Sect. 1.4). First, we represent the item strength as a distribution,
rather than a single value. We further assume that item strength is normally distributed with item
strength parameter bi as itsmean and unit standard deviation for identifiability. Second,we assume
that the person-wise drift rate θp plays a role as a confidence criterion in the RTCON models.
For person p and item i , θp splits the item strength distribution into two regions and the area of
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Figure 2.
Illustration of Model 2: Dual-accumulator Model. The model implements balance-of-evidence hypothesis to predict
ordinal responses from the race between two evidence accumulators.

each region determines the drift rate of evidence accumulation as ν1.pi = (θp − bi ) for the first
accumulator and ν2.pi = 1 − ν1.pi for the second accumulator. Thus, a higher value of θp and a
smaller value of bi would be associated with a higher proportion of positive responses, which is
similar to the relationship between person-wise latent ability, item difficulty parameter, and cor-
rect response proportion in the IRT models for binary responses in ability tests. For the decision
boundary, we assume that the two accumulators race toward the same boundary determined as
αp,i = γp

ai
.

As in the balance-of-evidence models, response and RT are predicted from the race of the two
competing accumulators. Let E j (t) be the amount of evidence accumulated until time t by the j-th
accumulator ( j = 1, 2). For example, suppose that the first accumulator represents introversion,
while the second accumulator represents extraversion. If the first accumulator wins the race, an
introversion-oriented response is made. If the difference in accumulated information is large,
an extreme response such as strongly agree to an introversion-oriented item is predicted. If the
difference is small, a relatively weak response such as agree or neutral is predicted. For person p
and item i , suppose that the j th accumulator terminates at time DTj,pi = inf{t : E j (t) = αpi }.
Then, the model predicts the decision time (DTpi ) and RT (Tpi ) as:

DT pi = min{DT1,pi , DT2,pi }
Tpi = t0p + DT pi

(5)

Also, we define d(t) = E1(t) − E2(t), the difference in accumulated evidence between the
two accumulators at time t . The difference at the decision time d(DTpi ) is positive (negative)
if the first (second) accumulator wins the race. We apply response thresholds τk to d(DTpi ) to
determine the ordinal response as X pi = k if τ ∗

(k−1) < d(DT pi ) ≤ τ ∗
k . Here τ ∗

k = γp
ai

· τk

(k = 1, · · · , M), that is, the response threshold scaled by the decision boundary αpi = γp
ai
. We
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used this scaling because the accumulated evidence can be larger and smaller as a function of αpi .
We also impose an additional constraint, τ2 < 0 < τ3 (for M = 5) on the response threshold.
Without such a constraint, for example if 0 < τ2 < τ3, a response can be 2 (e.g., disagree) even
if the first accumulator (that represents positive responses) wins the race. Thus, the constraint
makes the two accumulators correctly represent the two extremes of the ordinal response scale.
In total, Model 2 has 3P + 2I + (M − 1) parameters.

The first passage time distribution of each accumulator is obtained as a shifted Wald dis-
tribution, but with a different drift rate ν1,pi or ν2,pi . For accumulators j = 1, 2, let fT1 and
fT2 be their first passage time densities and FT1 and FT2 be their first passage time distri-
bution functions, respectively. Then, the defective density of the first accumulator is obtained
as g1(t; ∗) = fT1(t; ∗)(1 − FT2(t; ∗)) and that of the second accumulator as g2(t; ∗) =
fT2(t; ∗)(1 − FT1(t; ∗)) where ‘∗’ represents the set of all model parameters related to the func-
tion. By ’defective’, it means that these density functions do not integrate to 1; instead, the
sum of two integrals over t is 1 and each integral produces the probability of the corresponding
accumulator winning the race. We can also obtain the defective cumulative distribution func-
tions G j (t; ∗) = ∫ t

0 g1(u; ∗)du, j = 1, 2 and the winning probability of accumulator j can
be expressed as P(j wins) = G j (∞;∗) = ∫ ∞

0 g1(u; ∗)du. The RT density hT of Model 2 is
obtained as the sum of the two defective densities:

hT (t; ∗) = hT (t, 1 wins; ∗) + hT (t, 2 wins; ∗) = g1(t; ∗) + g2(t; ∗)

= fT1(t; ∗)(1 − FT2(t; ∗)) + fT2(t; ∗)(1 − FT1(t; ∗))

The likelihood of the responses can be obtained using the formula for X pi explained above
and the cumulative distribution function2 of d(DTpi ) derived in Section S1 in the supplementary
material:

2(δ) =GT1(∞;−) ·
(

1 − T R

(
(αpi − δ) − ν2.pi · DTpi√

(DTpi )

∣∣∣∣ − ∞,
αpi − ν2.pi · DTpi√

(DTpi )

))

+ GT2(∞;−) · T R

(
(αpi + δ) − ν1.pi · DTpi√

(DTpi )

∣∣∣∣ − ∞,
αpi − ν1.pi · DTpi√

(DTpi )

)

where T R(·∣∣a, b) is the cumulative distribution function of the truncated standard normal dis-
tribution with a and b as its lower and upper bounds. Hence, the full log-likelihood of Model 2
can be obtained as:

l2(θ , γ , t0, a, b, τ |X, T ) =
P∑

p=1

I∑

i=1

[
log hTpi (tpi ;αpi , νpi , t0p) + log�2(αpi · τxpi )

]

�2(αpi · τxpi ) = 2(αpi · τxpi ) − 2(αpi · τ(xpi−1))

(6)

The idea of implementing the balance-of-evidence hypothesis into a psychometric model is
not new and was already used in Ranger and Kuhn (2018)’s joint model of ordinal responses and
RTs based on the LBA model (Brown & Heathcote, 2008). The biggest difference between this
model and our Model 2 is in the assumption of noise in evidence within the accumulation process;
Model 2 (as the other proposed models in this article) assumes noisy evidence accumulation,
while Ranger and Kuhn’s model assumes that evidence accumulation is linear without noise (i.e.,
no diffusion coefficient σ 2 is defined). Despite some similarities in their structures, these two
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Figure 3.
Illustration of Model 3: Multi-accumulator Model. The model is a psychometric modification of the RTCON models.

models have different primary sources of their probabilistic characteristics due to this difference in
assumption, which has an important implication for process models. This will be more thoroughly
discussed in Sect. 5.

2.3. Model 3: Multi-accumulator Model

Model 3 (Fig. 3), which we call the multi-accumulator model or the M-accumulator model,
is a psychometric modification of the RTCON models (Sect. 1.4). We modify the three key
assumptions of the RTCONmodels to account for ordinal responses and RTs for the measurement
of latent traits. For the first two key assumptions, the modifications are similar to those for Model
2, but with important differences to determine drift rates for M evidence accumulators. First, we
assume that the item strength is normally distributedwithmean θp−bi and unit standard deviation
for identifiability. Second, we assume that M − 1 response thresholds τ1 < · · · < τ(M−1) work
as confidence criteria in the RTCON models. They divide the item strength distribution into M
separate regions. Each of these regions corresponds to one of the ordinal response options and its
area determines the drift rate vk.pi (k = 1, . . . , M) of the corresponding accumulator. For M = 5,
we have:

⎧
⎪⎨

⎪⎩

v1.pi = (τ1 − (θp − bi ))

vk.pi = (τk − (θp − bi )) − (τk−1 − (θp − bi )), k = 2, . . . , M − 1

v5.pi = 1 − (τ4 − (θp − bi ))

With the modifications stated above, Model 3 can determine M drift rates and M-point
ordinal responses without additional parameters while it keeps some favorable psychometric
properties. For example, a higher proportion of positive responses is positively correlated with
the person-wise drift rate θp and is negatively correlated with the item strength parameter bi as in
Model 2 despite their differences in parameterizations. The mean of θp − bi of the item strength
distribution implies that the information that persons with different levels of cognitive processing
(i.e., drift rate) extract from the same item i can differ in strength. An alternative interpretation
for the item strength distribution in Model 3 is that we use the latent response formulation for
the item strength distribution. In this view, a continuous latent response X∗

pi represents the item
strength, but this does not directly determine the ordinal responses. Instead, it determines the
processing efficiency of the evidence accumulators, which, in turn, predicts response proportions.
The continuous latent response can be expressed as X∗

pi = (θp −bi )+ εpi , εpi ∼ N (0, 1), which
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is similar to the expression used for Model 1. However, the factor loading is fixed to 1 in Model
3 for identifiability (instead of setting it to γp

ai
as done in Model 1).

The third key assumption of the RTCON models states that each evidence accumulator has
its own decision boundary so that accumulators for extreme response options may require more or
less information to terminate than accumulators for relatively intermediate options. The RTCON
models are able to estimate all decision boundaries independently for each subject using data
with multiple trials from the same subject. This is not plausible for psychometric data as each
person responds to each item only once. Thus, we use αpi = γp

ai
as a general decision boundary

but introduce the boundary scaling parameters sk (k = 1, · · · , M) to allow accumulators to have
different boundaries. The decision boundary for the k-th accumulator is determined as sk · αpi .
One of the scaling parameters should be fixed to 1 for identifiability. In our simulation study and
empirical applications, we have M = 5, and thus, we fix s3 = 1 so that the accumulator for
the intermediate option has the decision boundary of αpi and the other accumulators have their
boundaries relative to this. In total, Model 3 has 3P + 2I + (M − 1) + M − 1 parameters (-1 for
a constraint).

With the M accumulators for M response options, Model 3 predicts RT as the sum of the
termination time of the winning accumulator and the nondecision time. Also, the model predicts
that the response option corresponding to thewinning accumulator is chosen. Themodel likelihood
is obtained from the defective densities of the accumulators. For accumulator k (k = 1, . . . , M),
its defective density is gk(t; ∗) = fTk (t; ∗)

∏
j �=k

(
1 − FTj (t; ∗)

)
where ‘∗’ represents the set of

all model parameters related to the function. Then, the full log-likelihood is:

l3(θ , γ , t0, a, b, τ , s|X, T ) =
P∑

p=1

I∑

i=1

[
log gxpi (tpi ; ∗)

]
(7)

If one wants to evaluate the likelihood of responses and that of RTs separately, the probability
of choosing response option k can be obtained as the integral of the defective density gk for the
k-th accumulator from 0 to∞, or equivalently, as the value of the defective cumulative distribution
function Gk evaluated at t → ∞. The RT density hT of this model can be obtained as the sum of
all defective densities:

P(X = k; ∗) = Gk(∞;∗) =
∫ ∞

0
gk(u; ∗)du

hT (t; ∗) =
M∑

k=1

log gk(t; ∗)

(8)

2.4. An Overarching Population Distribution

All three models that we proposed above have person-wise decision boundary γp and drift
rate θp. As done in earlier psychometric models of responses and RTs (e.g., Bolsinova et al.,
2017; van der Linden, 2007), we assume a hierarchical population (prior) distribution for these
person-wise parameters so that we can account for a potential across-person correlation between
them. Specifically, we use a multivariate normal distribution as follows:

(θp, log(γp)) ∼ MV N

([
0
0

]
,

[
ω2

θ ρθγ ωθωγ

ρθγ ωθωγ ω2
γ

])
(9)
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Note that because person-wise boundary separation is positive-valued, it is log-transformed in
Eq. 9 to match the support (real-valued) of the distribution. It is similar to the choice of log-normal
prior on γp used for the diffusion IRT model in van der Maas et al. (2011) although they did not
assume a prior covariance/correlation between person-wise drift rate and boundary separation.
The prior specification in Eq. 9 adds three more parameters (variances and covariance) to all three
models. It is also possible to consider an item-domain distribution and describe the correlational
structure of the item parameters. Although we do not follow this approach, we refer readers to
van der Linden (2007) and Bolsinova et al. (2017) for examples of item-domain distributions.

2.5. Relations Between Latent Variables, Response Proportions, and RT Distributions

The models we proposed have different theories and structures of cognitive processes under-
lying personality/attitudemeasurement. It would be informative to illustrate how parameter values
of the different models are related to outcome variables. From the model structures presented in
Figs. 1, 2, and 3, it can be expected that:

• A larger person-wise decision boundary γp (a smaller item time-pressure parameter ai )
is associated with longer RTs and more dominant responses predicted by the other model
parameters (e.g., in Model 3, if the drift rate for the fourth accumulator is the largest, the
fourth response option would be the dominant response predicted by the model).

• A positively (negatively) large person-wise drift rate θp and a negatively (positively) large
item strength parameter bi are associated with short RTs and strong positive (negative)
responses on an ordinal scale (e.g., strongly agree and strongly disagree). In fact, the
distance between θp and bi determines these effects.

• A large person-wise nondecision time t0p increases RTs (equally for the entire RT ranges)
as it is a shift parameter while it does not affect response proportions.

• Distributions of response thresholds τk produce large effects on response proportions. For
example, more extreme responses (e.g., strongly disagree and strongly agree) are predicted
when response thresholds are closer to the zero point and to each other. For Model 3,
response thresholds also affect RTs as they determine the drift rates for accumulators; an
accumulator with a large area determined by response thresholds would have a larger drift
rate, and thus, more responses corresponding to this accumulator would be expected.

• A larger scaling parameter (s in Model 1 and sk in Model 3) produces larger decision
boundaries for accumulators and so it has a similar effect as a larger person-wise decision
boundary and a larger item time-pressure parameter).

In Fig. 4, we generated response proportions and RT quantiles from all three proposedmodels
as a function of log-transformed person-wise decision boundary log(γp) (Fig. 4A, the first two
columns) and person-wise drift rate θp (Fig. 4B, the last two columns), which are parameters of
our main interests. Effects of the other parameters can be similarly predicted, as described in the
bulleted list above. For each panel in Fig. 4, each of the model parameters, except for the one on
the x-axis, (log(γp) in Fig. 4A and θp in Fig. 4B) was fixed to a constant. For example, bi = 0
for all three models but ai and τk were given different values across the three models. In Panel
A, θp was given positive and sufficiently large values for all three models so that the dominant
response option is Response 5. Similarly in Panel B, log(γp) was given a different value for each
of the three models. This choice was to generate similar data distributions despite the structural
differences of the models.

In each of Fig. 4A and B, the panels in the first columns show the changes of RT quantiles
and those in the second columns show the changes of response proportions, as a function of the
parameter on the x-axis. The legend for each column is shown at the top panel in the same column.
The figure confirms what is expected based on the model equations. As the (log-transformed)
person-wise decision boundary log (γp) increases (Fig. 4A), RTs get longer and the proportion
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A B

Figure 4.
Illustration of the Relations between Cognitive Latent Variables (Person-wise Drift Rate and Decision Boundary),
Response Proportions, and RT Distributions. Each of the model parameters, except for the one on the x-axis, was fixed to
a constant (Different constant values were used across models due to their structural differences). In Panel A, person-wise
drift rate θp was given positive and sufficiently large values for all three models so that the dominant response option is
Response 5.

of the dominant response option (Response 5 in this figure, for all models) increases. Which
response option is dominant is determined by the other model parameters such as person-wise
drift rates, item strength parameters, and response thresholds. For Fig. 4, we made Response 5
dominant to show that all three models can make similar predictions, but other response options
can be dominant as well. The figure also shows that Models 2 and 3 show more gradual changes
in both the RT quantiles and the response proportions than Model 1. This is because the models
have differences in how they define drift rates for different accumulators and for Models 2 and 3,
these drift rates are always smaller than 1.

When the person-wise drift rate θp is manipulated (Fig. 4B), changes in RT quantiles and
response proportions are also consistent with what we expect from the model equations (the
bulleted list above). When θp increases and diverges from bi = 0, RTs tend to decrease. If θp
moves toward the positive (negative) direction, more positively (negatively) stronger responses
are predicted. These changes are more gradual in Models 2 and 3 because their drift rates for
accumulators are smaller than 1. Also, a change in 90% RT quantile is rather drastic in Model 1
because there is only one accumulator for Model 1, whereas there are multiple accumulators and
the minimum decision time over accumulators is used to determine RT in the other models.

Note that, although the result illustrated in Fig. 4 is based on our choice of model parameter
values, similar patterns canbepredictedby themodel equations and structureswhen theparameters
are given other values. For example, if person-wise drift rate θp is given negatively large values
in all three models in Panel A, the dominant response option would be Response 1 (instead of 5)
but RT would show similar patterns.
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3. Simulation: Parameter Recovery

3.1. Data Generation and Model Estimation

This section provides simulation studies with which we aimed to show that the models can
recover their parameters reasonably well. We conducted the simulations as follows. First, we
generated true values of data-generating parameters. Given the parameter values, we simulated
responses and RTs with P = 200 persons and I = 10 items. The data size was meant to be a
minimum requirement for reasonable recovery of the model parameters. Each of the three models
produced two P × I matrices, one for ordinal responses with M = 5 possible options and the
other for RTs. For each model, we generated 50 synthetic datasets. Then, we fitted each model to
the synthetic data generated from that model.

For the data-generating parameters, person-wise drift rates (θp) were sampled from the stan-
dard normal distribution and log-transformed person-wise boundary separations (log (γp)) were
sampled from a uniform distribution with mean 0 and standard deviation of 1/2. Item strength
(bi ) parameters were sampled from a uniform distribution with the range of [−1, 1] for all three
models. Item time-pressure (ai ) parameters were sampled from uniform distributions with differ-
ent ranges for the three models due to their structural differences. Specifically, the ranges were
[0.5, 1.5], [0.3, 1.0], and [0.2, 1.0], for Models 1, 2, and 3, respectively. Similarly, we used dif-
ferent values for response threshold parameters and boundary scaling parameters by model, as
shown in Table 3. Our choice for true parameter values and their distributions was motivated to
produce synthetic data with reasonably distributed response proportions and RTs that generally
vary in the range of 2-12 seconds with median RTs of 4–6 seconds, which are similar to those in
our target data with ordinal responses and RTs (Sect. 4).

Then, we fitted the models to the synthetic data using Stan (Stan Development Team,
2021) . The repository of Stan codes to fit the proposed models are provided in the Code Avail-
ability section in the article. As we used a Bayesian sampling method, prior distributions of the
model parameters should be specified. For person-wise drift rates and decision boundaries, we
implemented a hierarchical distribution as stated in Sect. 2.4. For person-wise nondecision time,
we used a uniform distribution t0p ∼ U (0,min

i
(Tpi )). The range was a natural choice because

the RT measure cannot be negative, and it is the sum of decision and nondecision times and
thus nondecision time of person p should be smaller than the minimum RT of the same per-
son. For item parameters, we used weakly informative priors with wide ranges and dispersions:
log(ai ) ∼ N (0, 5) and bi ∼ N (0, 5) where N (μ, σ ) is a normal distribution with mean μ and
standard deviation σ . Response threshold parameters were also given a uniform prior, but they are
constrained to bemonotonically increasing. ForM = 5,we used τ1 ∼ U (−5, τ2), τ2 ∼ U (τ1, τ3),
τ3 ∼ U (τ2, τ4), and τ4 ∼ U (τ3, 5) where U (a, b) is a uniform distribution with range (a, b), so
that τ1 < τ2 < τ3 < τ4. The range of (−5, 5) was wide enough to cover various possibilities.
Models 1 and 3 have the boundary scaling parameters andwe gave them a noninformative uniform
prior with range (0, 10).

With the prior specifications above and the model likelihoods in Eqs. 4, 6, and 7, we obtained
2,500 posterior samples of the model parameters with 3 chains. We discarded the first 1,000
samples for each chain for burn-in. The remaining samples were used to approximate the joint
posterior distributions of the model parameters. We assessed the convergence of Bayesian chains
with the Gelman–Rubin convergence diagnostic (R̂) by checking whether its values were smaller
than 1.1 for all model parameters (Gelman, 1996; Gelman et al., 2013). We also obtained a
posterior density from each chain and inspected if densities were consistent across chains.
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Table 2.
Parameter recovery of the single-accumulator model (Top; Model 1), the dual-accumulator model (Middle; Model 2), and
multi-accumulator model (Bottom; Model 3).

Model 1
MSE Bias SE BSE Cor

θp 0.110 0.111 0.270 0.280 0.955 (0.008)
γp 0.069 0.101 0.208 0.246 0.872 (0.014)
t0p 0.104 0.154 0.186 0.215 0.905 (0.020)
ai 0.003 0.009 0.052 0.054 0.988 (0.005)
bi 0.012 0.090 0.064 0.097 0.996 (0.002)
τk 0.003 0.006 0.055 0.054
s or sk 0.011 0.075 0.076 0.085
ωγ 0.001 0.023 0.022 0.032
ωθ 0.003 0.049 0.033 0.065
ργ θ 0.013 0.105 0.042 0.085

Model 2
MSE Bias SE BSE Cor

θp 0.409 0.252 0.491 0.671 0.777 (0.030)
γp 0.057 0.071 0.204 0.239 0.891 (0.020)
t0p 0.100 0.138 0.187 0.233 0.891 (0.027)
ai 0.004 0.051 0.030 0.037 0.994 (0.003)
bi 0.042 0.034 0.198 0.223 0.974 (0.015)
τk 0.002 0.013 0.040 0.043
s or sk
ωγ 0.000 0.004 0.014 0.030
ωθ 0.022 0.101 0.110 0.143
ργ θ 0.015 0.080 0.092 0.104

Model 3
MSE Bias SE BSE Cor

θp 0.527 0.266 0.628 0.725 0.716 (0.035)
γp 0.050 0.069 0.158 0.178 0.935 (0.014)
t0p 0.116 0.118 0.160 0.183 0.882 (0.050)
ai 0.001 0.010 0.028 0.034 0.998 (0.001)
bi 0.057 0.041 0.230 0.675 0.931 (0.044)
τk 0.047 0.079 0.192 0.657
s or sk 0.002 0.005 0.034 0.030
ωγ 0.000 0.015 0.014 0.028
ωθ 0.030 0.124 0.122 0.133
ργ θ 0.016 0.088 0.091 0.111

MSE: Mean-squared error, SE: Standard Error of Point Estimates (Maximum A Posteriori), BSE: Bayesian
Standard Error (posterior standard deviations averaged over repetitions). Cor: The Pearson correlation (first
computed across items for ai and bi , or across persons for τp , γp , and θp , and then averaged over repetitions)
with its standard deviation across repetitions in the following parentheses. For person and item parameters,
MSE, bias, SE, and BSE were calculated for each parameter and then averaged over persons or over items,
respectively. Statistics for decision thresholds and boundary scaling parameters were also first calculated for
each parameter and then averaged.
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Figure 5.
Parameter Recovery of the Models (Person and Item Parameters). In each row, the five panels show the scatter plots of the
Maximum A Posteriori (MAP) estimates of the parameters on the x-axis against the true parameter values on the y-axis.
The parameter plotted in each panel is shown on the top: person-wise drift rate (θp), person-wise decision boundary (γp ;
log-transformed), person-wise nondecision time (τp), item time-pressure (ai ; log-transformed), and item strength (bi ),
respectively, from left to right. Each row shows the recovery result of one of the three models as shown on the left. In each
panel, gray squares indicate estimates and true parameter values for all 50 repetitions, while colored dots indicate their
averages across repetitions (i.e., mean estimates). At the top-left side of each panel, the Pearson correlation (r ) between
the MAP estimates and true parameter values averaged across repetitions is shown, followed by its standard deviation
across repetitions.

3.2. Recovery Results

With the posterior samples, we obtained the maximum A posterior (MAP) estimates of
the parameters and compared them with the true parameter values to evaluate the parameter
recovery. Table 2 presents the recovery results of Models 1–3 with statistics such as mean squared
error (MSE), bias, standard error (SE) of the MAP estimates, Bayesian standard errors (BSE;
posterior standard deviation) averaged over repetitions, and the Pearson correlation coefficients
averaged over repetitions (with its standard error in the following parentheses). For person and
item parameters, MSE, bias, SE, and BSE were calculated for each parameter and then averaged
over persons or over items, respectively. Statistics for decision thresholds and boundary scaling
parameters were also first calculated for each parameter and then averaged.

Figure 5 shows the recovery results of the three person-wise and two item-wise parameters.
In each row of the figure, the five panels show the scatter plots of the MAP estimates of the
parameters on the x-axis against the true parameter values on the y-axis. The parameter plotted in
each panel is shown on the top: person-wise drift rate (θp), person-wise decision boundary (γp;
log-transformed), person-wise nondecision time (τp), item time-pressure (ai ; log-transformed),
and item strength (bi ), respectively, from left to right. Each row shows the recovery results of one
of the three models as shown on the left. In each panel, gray squares indicate estimates and true
parameter values for all 50 repetitions, while colored dots indicate their averages across repetitions
(i.e., mean estimates). At the top-left side of each panel, the Pearson correlation (r ) between the
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MAP estimates and true parameter values averaged across repetitions is shown, followed by its
standard deviation across repetitions (the same values as in Table 2).

Generally speaking, the results show the consistency between the estimates and the true
values. Mostly, there was no noticeable bias in the estimation as scatter plots did not show large
deviations from the diagonal line. Some exceptions include that person-wise drift rate estimates
for Models 2 and 3 and (log-transformed) person-wise decision boundary estimates showed small
shrinkage effects when their values were large. Also, although person-wise nondecision times
were generally well estimated, they were overestimated in a couple of repetitions and for some
specific simulated respondents (e.g., one respondent in Model 3 with t0p = 2.154). Conceptually,
the person-wise min RT is the upper bound of the corresponding person-wise nondecision time
parameter.When a respondent has a very large boundary separation and there are only a few items,
it is possible that RTs of this respondent could be much longer than the nondecision time. In this
case, it could be hard to obtain a precise min RT value to sufficiently constrain the nondecision
time parameter.3

The average Pearson correlations were high for most of the parameters for all three models.
One exception was for the person-wise drift rate estimates inModel 3, which showed some spread
with r = 0.716 on average across repetitions. Our interpretation is that the lower consistency
in the person-wise drift rates occurs because the model has to determine M = 5 drift rates for
accumulatorswith three sets of parameters (the person-wise drift rates θp, item strength parameters
bi , and response thresholds τk) and θp to be estimated with I = 10 item responses for each person.
In contrast to θp, the estimation of bi was accurate with little bias and fairly precise, which would
be due to the larger number of persons P = 200 compared to the number of items assumed in the
simulation study.

Table 3 shows the recovery results of the decision thresholds and boundary scaling parameters
in the three models. The estimates of the response threshold parameters τ1, ..., τ4 were reasonably
close to the true values for all three models. Boundary scaling parameters for Models 1 and 3 were
all estimated well, close to their true values. Taken together, the results show that all three models
can recover their parameters reasonably well even when a relatively small sample (P = 200 and
I = 10) was used.

3.3. Cross Recovery

For amore thorough investigation of themodels, we further conducted a cross recovery study.
The main idea is to generate data from one model and fit all three models. In this way, we can
obtain parameter estimates of all three models from the same data set and study the relationship
among the parameters. Despite the structural differences among the models, it can be expected
that the parameter estimates (e.g., estimates of the parameter bi ) would show some associations
across the models because they play similar roles in all three models (e.g., item strength to define
drift rates related to item i). Also, by comparing the model fits, we can check whether we can
distinguish the models and whether any of the models tends to overfit data. If the best-fitting
model is the data-generating model, it would be safe to claim that there is no overfitting model
and all three models can be distinguished in terms of their fits to data. In contrast, if one model
fits the data better than the data-generating model, it says the model with a better fit is likely to
overfit data.

3The simulated respondent in theModel 3 result, mentioned in the text, has log(γp) = 1.520,which is the largest in the
simulation study. The mean and SD of data-generating log(γp) values for Model 3 were −0.002 and 0.498, respectively,
and the second largest value was 1.162. Having more items can better constrain nondecision time parameters (Kang et
al., 2022b). In particular, including an item with a highly strong inclination (i.e., the one with a positively or negatively
highly large bi ) could be helpful as an RT for this item could be closer to the minimum RT of the respondent mostly spent
for nondecision processes only.
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Table 3.
Parameter recovery of the models (response threshold parameters and boundary scaling parameters).

Parameters τ1 τ2 τ3 τ4 s s1 s2 s3 s4 s5

Model 1 True −1.500 −0.500 0.500 1.500 1.500
Estimate −1.498 −0.493 0.502 1.514 1.425

SE (0.063) (0.047) (0.050) (0.061) (0.076)
BSE (0.059) (0.049) (0.049) (0.060) (0.085)
MSE 0.004 0.002 0.002 0.004 0.011

Model 2 True −1.200 −0.500 0.500 1.200
Estimate −1.220 −0.521 0.493 1.197

SE (0.029) (0.046) (0.052) (0.032)
BSE (0.035) (0.051) (0.052) (0.035)
MSE 0.001 0.003 0.003 0.001

Model 3 True −1.500 −0.500 0.500 1.500 0.900 1.250 1∗ 1.250 0.900
Estimate −1.546 −0.503 0.601 1.667 0.908 1.248 1∗ 1.258 0.908

SE (0.186) (0.176) (0.161) (0.244) (0.036) (0.054) − (0.048) (0.031)
BSE (0.660) (0.654) (0.654) (0.652) (0.029) (0.044) − (0.045) (0.029)
MSE 0.036 0.030 0.036 0.086 0.051 0.065 − 0.067 0.050

τ1, ..., τ4: response threshold parameters, s: boundary scaling parameter for Model 1, s1, ..., s5: boundary
scaling parameters for Model 3. The third boundary scaling parameter s3 in Model 3 was fixed to 1 to
establish identifiability. Standard error of estimates is shown in the parentheses. SE: Standard error of point
estimates (Maximum A Posteriori), BSE: Bayesian standard error (posterior standard deviations averaged
over repetitions), MSE: Mean squared error.

To examine the cross recovery of themodels, we fitted all threemodels to the first 25 synthetic
datasets that were generated from each model and used in the parameter recovery simulations.
The model fitting procedure was the same as that in the recovery study. Then, we obtained the
MAP estimates for all model parameters and all models. For model evaluation, we used the
modified Akaike information criterion (mAIC) and the modified Bayesian information criterion
(mBIC) that Bolsinova and colleagues proposed (Bolsinova et al., 2017a; Bolsinova&Molenaar,
2018, 2019). This choice was motivated by earlier findings that some measures such as deviation
information criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002) can perform
suboptimally (i.e., favoring other models over the data-generating model)4 for highly nonlinear
models and mixture models (Molenaar & De Boeck, 2018), which led Bolsinova and colleagues
to use the modified information criteria for joint models of responses and RTs estimated with
a Bayesian method. These criteria are modified versions of the conventional AIC (Akaike,
1974) and BIC (Schwarz, 1978) in the sense that they are calculated with the -2 log-likelihood
(-2LL) evaluated at the posterior means of the model parameters. In our model evaluation, we
used the MAP estimates instead of the posterior means because some model parameters have
skewed posterior distributions (e.g., person-wise nondecision time t0p), and thus, the posterior
means may not be the best summary statistics for them.

4This was also the case in our simulation study. For example, when Model 2 was the data-generating model, Model
3 beat Model 2 in 3 out of 25 repetitions when we judged based on DIC. Also, there are at least two ways to compute the
effective number of parameters and DIC (Gelman et al., 2013) , which can produce different results. For example, when
Model 3 was the data-generating model, one way of calculating the effective number of parameters and DIC (Equation
7.10 in Gelman et al.) predicted that Model 3 was the best-fitting model for all repetitions but another way (Equation 7.8
in Gelman et al.) predicted that Model 1 was the best-fitting model for all repetitions. Thus, we were not able to obtain
consistent conclusions for the proposed models with DIC.
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Table 4.
Cross recovery results.

Model 1 Model 2 Model 3
−2LL mAIC mBIC −2LL mAIC mBIC −2LL mAIC mBIC

Model 1 9067.3 10321.4 12389.4 9977.3 11231.3 13299.3 10688.8 11942.8 14010.9
Model 2 10612.6 11866.6 13934.6 9556.1 10810.1 12878.2 9392.1 10646.1 12714.1
Model 3 10692.0 11954.1 14035.3 9770.0 11032.0 13113.3 8776.4 10038.4 12119.7

The three sections of the table present the model comparison results with the models denoted in the leading
row of the table as the data-generating models. In each section, the three columns correspond to the model fit
indices (−2LL, mAIC, and mBIC) as denoted in the second row and the three rows correspond to the model
fitted to the synthetic data as denoted in the leading column of the table. Each cell shows the averaged fit
index values across 25 repetitions. In all 25 repetitions, the data-generating model was the best-fitting model.
−2LL: Log-likelihood multiplied by −2. mAIC: modified Akaike information criterion. mBIC: modified
Bayesian information criterion.
Bold values indicate represents the best values.

Because wrong models (i.e., models not used in data generation) were intentionally fitted to
data generated from a different model in a cross recovery simulation, there were more difficulties
in model fitting such as convergence issues. In most cases, these were resolved by simply re-fitting
the models with different initial values or adjusting some tuning parameters.5 However, Model 2
was not able to achieve convergence when it was fitted to the synthetic datasets generated from
Model 3. This could be attributed to the structural difference between the two models, implying
that they could be distinguished (which is the purpose of the cross recovery study). To further
validate the discriminability between the models for this case, we picked up one chain from the
fitting result of Model 2 that produced the best -2LL value and used its MAP estimates in the
model comparison. This approach favorsModel 2 and challengesmore the data-generatingmodel,
which is Model 3.

Table 4 shows the model fit comparison. The three sections of the table present the model
comparison results with the models denoted in the leading row of the table as the data-generating
models. In each section, the three columns correspond to the model fit indices (-2LL, mAIC,
and mBIC) as denoted in the second row and the three rows correspond to the model fitted to
the synthetic data as denoted in the leading column of the table. Each cell shows the averaged
fit index values across 25 repetitions. Although not shown, all three criteria predicted that the
data-generating model was the best-fitting model in all 25 repetitions. This shows that the models
can be distinguished in terms of model fits and there is no overfitting model.

Figures S1–S3 in the supplementary material show the scatter plots of the person-wise and
item-wise parameter estimates from the cross recovery study, across different models. These
estimates were obtained from the model fits to the same (synthetic) data. In general, the figures
show that the parameter estimates are positively associated across the three models as expected,
although the strength of the association canbeweaker or stronger dependingon the data-generating
models and parameters. A more detailed description of the results can be found in Section S2 in
the supplementary material.

4. Empirical Applications

Provided the reasonable parameter recovery results, we examined and compared the proposed
psychometric process models with empirical data. For this purpose, we fitted the three models

5For example, adapt_delta and max_treedepth in Stan.
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to the response and RT data from the performance motivation questionnaire (Hermans, 1968;
Hermans et al., 1972; Modick, 1977) adapted for chess players (van der Maas &Wagenmakers,
2005) .Thedataset is a part of a larger dataset,which includesmore itemson the chess performance,
knowledge test,memory test, etc. Themotivation questionnaire aims tomeasure three traits related
to the performance motivation of the chess players, namely desire to win (DTW; the motive to
achieve better performance), negative fear of failure (NFF; anxiety due to fear of failing a task
that has a debilitating effect on performance), and positive fear of failure (PFF; anxiety due to
fear of failing a task that has a facilitating effect on performance). The questionnaire consists of
30 items, and each trait is measured by 10 items. Items are short sentences about the trait being
measured, for example, “Overpowering my opponent makes me feel good” (DTW), “In a difficult
game against a very strong player, I often feel discouraged” (NFF), and “When I notice that I
am worried about my game, I stimulate myself to concentrate better” (PFF). Each item response
was measured by a 5-point Likert scale and the response options were fully disagree, disagree,
neutral, agree, and fully agree. Each person was presented with each item at a time and responded
to the item by choosing one of the five response options, within the item-wise time limit of 10
seconds. The full dataset and item sentences are available online at van der Maas’ webpage.

The dataset includes 259 respondents, but eight respondents do not have responses to the
motivation items. In addition, one respondent has RTs shorter than 0.5 s for half of the 30 items
and RTs shorter than 1.0 s for 70% of the items, implying that the respondents made fast random
responses for most of the items. Thus, we excluded these 9 respondents in our main analysis,
leaving P = 250 persons. Considering the length of the item sentences, we also assumed that
RTs shorter than 2s would be too short to reasonably process item sentences. Accordingly, we
excluded responses with such short RTs, removing about 0.4% of data responses and RTs.

We fitted the models with the same sampling methods and prior specifications used in our
simulation study.Whenfitting themodels,we treated itemsetsmeasuring different traits separately
so that we can examine the three models on the basis of three datasets. Thus, for each trait (DTW,
NFF, or PFF), we fitted the three models to the dataset with P = 250 persons and I = 10
items and we repeated this for three item sets. We assessed convergence using the Gelman–Rubin
convergence diagnostic and consistency of posterior densities across chains, and found no issue
in convergence (Section S3 in the supplementary material).

We evaluated the models with relative model fit indices such as mAIC andmBIC to see which
model provides a better account for the data. However, we put more emphasis on the absolute
model fit (whether the model predictions match the data well) in the study of the psychological
measurement processes. The central idea is to falsify a model with a severe misfit because a theory
of the measurement processes assumed in such a model cannot be an adequate account for the true
processes. This has been a conventional way to test mathematical models and compare different
theories of cognitive processes in perceptual and cognitive decision-making andwe apply the same
strategy to psychometrics data. For binary choice data, the absolute model fit can be evaluated by
contrasting the data-based response proportions and RT distributions (usually summarized by RT
quantiles) to the model predictions (Brown & Heathcote, 2008; Kang & Ratcliff, 2020; Ratcliff,
2002; Ratcliff et al., 2003; Ratcliff & McKoon, 2008).

We conducted a similar absolute fit analysis using posterior predictive samples (Gelman et
al., 2013). For each of the model fits to each item set, we first randomly selected 5000 samples of
model parameters from the joint posterior samples (i.e., Bayesian samples obtained with Stan).
Then, with each of the parameter samples, we generated a single sample of response and RT,
resulting in 5,000 posterior predictive samples of responses and RTs. To account for the effect
of the item-wise time limit of 10 seconds, posterior predictive samples with RTs longer than this
time limit were not accepted and resampled. We repeated this procedure for all three models and
for all three item sets and obtained the model predictions of overall response proportions (the
proportion of each response option across all persons and items), overall RT distributions, item-
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Table 5.
Relative model fits.

Desire to Win Negative Fear of Failure Positive Fear of Failure
−2LL mAIC mBIC −2LL mAIC mBIC −2LL mAIC mBIC

Model 1 14858.3 16410.3 19143.0 13784.7 15336.7 18069.4 14300.5 15852.5 18585.2
Model 2 14668.7 16220.7 18953.4 14256.3 15808.3 18541.0 14512.7 16064.7 18797.4
Model 3 14687.9 16245.9 18989.1 13820.9 15378.9 18122.1 14253.6 15811.6 18554.8

−2LL: Log-likelihood multiplied by −2. mAIC: modified Akaike information criterion. mBIC: modified
Bayesian information criterion.
Bold values indicate represents the best values.

wise response proportions (the proportion of each response option across all persons, but obtained
separately for each item), and item-wise RT distributions. We contrasted these predictions with
the data counterpart and checked whether the model predictions well cover behavioral patterns in
the data.

In addition, the empirical fitting results can be used to study how the main model parameters
relate to the descriptive measures such as (person-wise or item-wise) median RTs and mean
responses. This analysis could show the nature of individual differences in responses and RTs, for
example, whether the observed individual differences in responses and RTs are due to information
processing rates (person-wise drift rates), amount of evidence required for response (person-wise
decision boundaries), or differences in nondecision processes (nondecision time parameters).
Also, it can be studied how similar sets of parameters (e.g., person-wise drift rates) are related
across the three models, as done in the cross recovery simulation in Sect. 3.3 and Section S2 in
the supplementary material. A related analysis was conducted and is presented in Section S4 in
our supplementary material.

4.1. Relative Model Fits

Table 5 presents -2LL (evaluated with the MAP estimates of the model parameters), mAIC,
and mBIC values of the three models for model comparison. The results show that different item
sets prefer different models. The best-fitting model was Model 2 for the DTW item set, Model 1
for the NFF item set, and Model 3 for the PFF item set. Therefore, the relative model fits did not
provide decisive evidence for a single best-fittingmodel and theory of themeasurement processes.

The model comparison results may be interpreted as that different latent traits are associ-
ated with different measurement processes that are represented by their corresponding best-fitting
models. An alternative possibility is that, because the three latent traits have something in com-
mon in that they are associated with motivation, it could be that their differences in underlying
psychological processes are not sufficient to distinguish the proposed models in terms of relative
model fits. This would correspond to the similar absolute fit results of the three models, which
we present in the next subsection.

4.2. Absolute Model Fits: Posterior Predictive Checking

For the next step of our model evaluation, we examined the absolute model fits of the three
process models with their posterior predictive samples. Table 6 shows the overall response propor-
tions obtained by aggregating responses from all person-item pairs. The table presents the results
for all three item sets in the order of DTW, NFF, and PFF. For each item set, the top row (bolded)
shows the data response proportions (for the five response options shown in the second row of
the table), while the last three rows present the differences between the data response proportions
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Table 6.
Response proportions over all persons and items

Desire to Win
Response options 1 2 3 4 5

Data 0.092 0.241 0.142 0.351 0.174
Model 1 0.001 −0.001 −0.002 0.000 0.002
Model 2 −0.003 0.006 0.005 0.001 −0.009
Model 3 −0.012 0.013 0.013 −0.001 −0.013

Negative Fear of Failure
1 2 3 4 5

Data 0.030 0.141 0.190 0.482 0.157
Model 1 0.000 0.000 0.000 −0.001 0.001
Model 2 −0.001 0.001 0.008 −0.003 −0.005
Model 3 −0.006 0.008 0.010 −0.001 −0.011

Positive Fear of Failure
Response Options 1 2 3 4 5
Data 0.035 0.229 0.255 0.383 0.097
Model 1 −0.001 0.001 −0.001 −0.001 0.002
Model 2 −0.002 −0.003 0.008 0.000 −0.003
Model 3 −0.009 0.010 0.008 0.004 −0.013

For each of the three item sets examined, the top row (bolded) shows the data response proportions (for the
five response options shown in the second row of the table) while the last three rows present the differences
between the data response proportions and the corresponding model predictions from the three proposed
models. Predictions were produced based on posterior predictive samples of responses from all persons and
items.

and the corresponding model predictions from the three proposed models. The response option
(1, . . . , 5) is shown in the leading row of the table.

For the first item set measuring DTW, predictions fromModel 2 showed the best consistency
with the data-based response proportions. However, for the other two item sets,Model 1 performed
the best in reproducing the overall response proportions. Model 3 did not perform better than the
other models in terms of the overall response proportions, but the differences were not that large.

Figure 6 shows the overall RT distributions obtained by aggregating RTs from all person-
item pairs. The leftmost, middle, and rightmost panels show the RT distributions for the three
item sets measuring DTW, NFF, and PFF, respectively. In each panel, the gray histogram shows
the data-based distribution while green solid, yellow dashed, and red dotted curves show the
predicted densities from Models 1–3, respectively. Overall, model predictions match the data RT
distributions well without a large misfit. An interesting finding is that Models 2 and 3 produced
very similar (but not perfectly the same) predictions for the overall RT distributions. Model 1 also
produced similar density predictions, but with slight differences.

For a more thorough investigation of the model performance, Figs. 7 and 8 present item-
wise data summary statistics and the corresponding model predictions. These were obtained by
aggregating responses over persons but separately by item.Thus, these figures showdata variations
across persons in response proportions and RT distributions per item and how well the models
can account for these. Figure 7 shows item-wise response proportions. Because we have M × I
values, i.e., 5× 10 = 50 values for each item set, we present these proportions as scatter plots in
Fig. 7 instead of listing their values. The three panels in Fig. 7 show the results for DTW, NFF,
and PFF, respectively. In each panel, the data-based item-wise response proportions are plotted
on the x-axis against the model predictions on the y-axis. The integers, 1, . . . , 5, represent item-
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Figure 6.
RTDistributions over All Persons and Items. In each panel corresponding to one of the three item sets examined (as shown
on top of each panel), the histogram shows the data RT distribution while the green-solid, yellow-dashed, and red-dotted
lines the predicted RT distributions from Models 1, 2, and 3, respectively. Predictions were produced based on posterior
predictive samples of RTs from all persons and items (Color figure online).

Figure 7.
Scatter Plots of Item-wise Response Proportions. In each panel corresponding to one of the three item sets examined (as
shown on top of each panel), data item-wise response proportions (i.e., response proportions for the five response options
computed separately for each item) are plotted on the x-axis against their corresponding predicted item-wise response
proportions on the y-axis. The numbers, 1, ..., 5, indicate the response proportions of the corresponding response options,
for all items. The green, yellow, and red numbers indicate results from Models 1, 2, and 3, as shown by the legend on
the top-left side of the left panel. Predictions were produced based on posterior predictive samples of responses from all
persons, but separately for each item (Color figure online).

wise response proportions of the response options 1, . . . , 5. Each panel shows the predictions
from all three models simultaneously: green, yellow, and red numbers correspond to Models 1, 2,
and 3, respectively. For all three item sets and all three models, model predictions are generally
consistent with the data. The Pearson correlations between data-based and predicted item-wise
response proportions are shown at the bottom-right side of each panel, r1, r2, and r3 for Models
1, 2, and 3, respectively. Careful attention should be paid to the correlations for the NFF item
sets because only response option 4 (agree) has high item-wise response proportions while the
other response options have low proportions, making the correlation value inappropriately higher.
However, there is no systematic bias for all model predictions for all item sets, assuring us that
the models perform well in capturing item-wise proportions of the ordinal responses.

Figure 8 shows the item-wise RT distributions (i.e., RT distributions over respondents for
each of the items). There are three column-like panels for three models as denoted on the top of
the figure. Each panel presents data-based and predicted item-wise RT distributions of all 30 items
in the three item sets vertically. Item numbers are shown on the left, and the item sets are shown
on the right. The x-axis of each panel represents RTs in quantiles and for each item, there are five
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x’s indicating 10% (black), 30% (red), 50% (green), 70% (blue), and 90% (skyblue) RT quantiles
from left to right. The gray circles indicate the model-predicted RT quantiles. Each circle has
a colored vertical bar at its center and circles with different colors indicate different (predicted)
RT quantiles. Match/mismatch between x’s and their corresponding circles (i.e., those with the
same color bar as x’s) show the absolute fit of the models in terms of item-wise RT quantiles. For
example, a gray circlewith a black vertical bar is amodel-predicted 10%quantile and so, if amodel
performs well, it should be close to the black ‘x’ for the same item. Item-wise RT distributions are
presented by these item-wise RT quantiles from which the whole distributions can be reproduced.
For example, the gray histogram at the top-left side of the figure shows the data RT distribution for
the first item in the item set measuring DTW. Thus, the figure shows RT distributions and model
predictions for all items in our consideration. In addition to this figure, scatter plots of item-wise
RT quantiles (similar to Fig. 7 but generated with item-wise RT quantiles) are provided in Section
S5 in the supplementary material (Figure S8). Also, the Pearson correlation between data-based
item-wise RT quantiles and the corresponding model predictions were higher than 0.99 for all
models and item sets.

Visual inspection of Fig. 8 led us to conclude that all three models are capable of accounting
for item-level RT distributions. For most of the items, predictions (circles) match the correspond-
ing data points (x’s) well without a large discrepancy. There was no big difference across the three
models. Instead, the performance showed some differences across item sets in that consistency
between data and prediction was the best in the NFF item set for all three models. Not all predicted
RT quantiles perfectly overlap the data. For example, predicted 90% RT quantiles are generally
slightly shorter than their data-based counterparts. This can be attributed to our resampling proto-
col used in posterior predictive checking to account for the item-wise time limit of 10 s. It seems
that resampling a posterior sample of response and RTwhen a sampled RT is larger than 10s is too
restrictive to accurately describe implicit (respondents attempt to finish each item more quickly
than when no time limit is imposed) and explicit (all RTs are recorded as less than 10s) effects of
the time limit. However, posterior predictive samples without any handling of the imposed time
limit produced 90% RT quantiles much longer than 10 seconds due to sampling variability and
the right-skewness of predicted RT distributions. Despite this limitation, the misfits at the RT tails
are not that large. For some items such as items 1 and 3 for PFF, predictions from all three mod-
els show large misfits as predicted RTs are generally shorter than their data-based counterparts.
However, this is not a dominant pattern over all items and the generally good consistency between
data and predictions provides sufficient evidence to conclude that all three models produce good
descriptions of the observed RT trends.

5. Discussion

In this article, we proposed a modeling framework to build psychometric process models for
themeasurement of latent personality/attitude traits.We considered ordinal responses on theLikert
scale, as practically done in the field, but jointly with RTs, which has not been widely done yet
(particularly for ordinal responses). We showed how substantive cognitive theories on decision-
making processes can be integrated with psychometric modeling and we produced three process
models based on different theories of decision-making. The resulting models were equipped with
different theoretical representations of measurement processes and different empirical predictions
of responses andRTs.We examined thesemodelswith three different (but all related tomotivation)
latent traits and were to reject a model with a severe discrepancy between the data and the model
prediction. However, the results showed that all three models performed similarly well in our
absolute fit test. Therefore, we tentatively conclude that all three models have the potential to be
a reasonable account of the cognitive measurement processes underlying ordinal responses and
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Figure 8.
Item-Quantile Plot. Each column shows data-prediction comparison of item-wise RT quantiles for all items investigated,
for the model denoted on top of the column. Item numbers are shown on the left and the item sets are shown on the
right. The x-axis of each panel represents RTs in quantile and for each item and there are five x’s indicating 10% (black),
30% (red), 50% (green), 70% (blue), and 90% (skyblue) RT quantiles from left to right. The gray circles indicate the
model-predicted RT quantiles. Each circle has a colored vertical bar at its center and circles with different colors indicate
different (predicted) RT quantiles. Match/mismatch between x’s and their corresponding circles show the absolute fit of
the models in terms of item-wise RT quantiles (Color figure online).

RTs. At the same time, relative model fit indices showed that item sets measuring different latent
traits favored different process models. A potential implication of this result is that measurement
of different latent traits may be driven by cognitive processes with different structures. However,
this conclusion is not yet settled, particularly because all three latent traits examined are related
to motivation. Thus, there could be only minor differences in their underlying processes, which
could be an explanation for why the absolute fit results are similar across traits. At this point, we
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see the models that we presented as a first step in the process of model development and testing,
and more comprehensive evaluations and further model development are needed.

Process models must be evaluated not only based on empirical data but also from the the-
oretical perspective. The central assumption we relied on in our modeling is that the sequential
sampling framework and evidence accumulation can account for cognitive processes underlying
the measurement of latent traits. It is hard to conceive evidence accumulation as a completely
appropriate description of complex problem-solving processes driven by latent abilities (although
it may provide an approximate account; Kang et al., 2022a) because complex tests tend to require
multiple heterogeneous processeswhile evidence accumulation is a simple single decisionprocess.
In contrast, we claim that the psychological processes related to the measurement of latent traits
by ordinal responses (e.g., Likert scale) and RTs with short item sentences are relatively simple
and evidence accumulation is well applicable. When responding to an item sentence describing,
for example, a personality trait, respondents need to collect information to determine whether
the sentence appropriately characterizes their personalities. In this process, the information may
refer to a piece of memory from the respondents’ individual history related to the described per-
sonality and a match/mismatch between the item sentence and the respondents’ self-identified
personality. Although this assumption is new and needs to be further investigated, earlier stud-
ies on text/sentence reading skills and related inferences have shown that sequential sampling
models such as the Ratcliff diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2008) can
provide excellent accounts for data from reading tasks that are as complex as or even more com-
plex than reading psychometric items to measure latent traits (McKoon & Ratcliff, 2016, 2017,
2018) . These findings provide evidence supporting our assumption that reading and processing
psychometric item sentences and inferring the degree of match between the sentences and per-
sonality/attitude traits can be accounted for by the sequential sampling framework and evidence
accumulation.

Another fundamental assumption wemade, by using the diffusion process in our modeling, is
that within-process noise is the primary source of probabilistic and stochastic properties of the pro-
posed models. This was shown by wiggly trajectories of evidence accumulation in Figs. 1, 2, and
3. Thus, the models account for distributions of responses and RTs by (1) person and item effects
captured by differences in person-wise and item-wise parameters and (2) stochastic variability
introduced by within-process noise. Thanks to the second component, the models can predict
distributions of responses and RTs for each person-by-item pair. This within-process variability
is a fundamental source of noise that has perceptual and cognitive plausibility. It explains why
there is randomness and moment-to-moment fluctuation in our information processing. It also has
neural plausibility because neurons produce random spikes even when there is no stimulus/item
being processed.

In contrast, an earlier psychometric process model for ordinal responses and RTs proposed by
Ranger and Kuhn (2018) assumes that there is no internal noise within the evidence accumulation
process for each person-item pair. This model predicts that the trend of evidence accumulation is
linear so that, at every time point in a single response process, exactly the same amount of evidence
is accumulated during the same amount of time (as it is developed based on the LBA model by
Brown & Heathcote 2008). Instead, the model assumes random variability across persons (but
per item) in cognitive components, which corresponds to across-trial variability parameters in
cognitive models (i.e., variability of cognitive components across multiple trials done by a single
subject in a psychological experiment; e.g., Brown & Heathcote, 2008; Ratcliff & McKoon,
2008). For person p and item i , Ranger and Kuhn’s model assumes two accumulators (as our
Model 2) and determines a drift rate for accumulator j ( j = 1, 2) via the log-linear model:
log (vpi j ) = c1i j + c2i j · θpj + ηi j · epi j where c1i j and c2i j are item-wise intercept and slope
with respect to the person-wise latent trait θpj , respectively, ηi j is a standard deviation of random
variation in drift rate, and epi j is a realization of a standard normal random variable. The variation



PSYCHOMETRIKA

in drift rate ηi j ·epi j is the only source of variability of the model. Given the parameters for person
p and item i such as drift rate vpi j and a common decision boundary αpi , the Ranger and Kuhn’s

model predicts RT deterministically as min
j=1,2

αpi

vpi j

6.

Although drift rate vpi j in Ranger and Kuhn’s model has a random component, it leaves a
theoretical question if this variability can fully account for the variation in process and outcome
variables; for a single pair of person p and item i , its response and RT are probabilistic (rather
than deterministic) realizations with variability. This can only be explained by the internal noise
of cognitive processes (which corresponds to within-trial noise in cognitive models). Also, it is
important to note that, while across-trial variability components are important sources of noise in
perceptual and cognitive decision-making data (e.g., Kang, Ratcliff, & Voskuilen, 2020; Ratcliff,
Voskuilen, & McKoon, 2018), its counterpart in psychometric models (random variability across
persons and items, or across persons but per item as in Ranger and Kuhn) captures residual
or conditional dependency between responses and RTs in psychometric data (i.e., remaining
associations between responses and RTs after controlling for person and item effects; Bolsinova,
Tijmstra, Molenaar, & De Boeck, 2017b; Kang, De Boeck,& Partchev, Kang et al. (2022a,b)).
Although it is important to find a model-based account for the unexplained dependency between
responses and RTs to better understand response processes, it is hard to conceive this residual
dependency as a fundamental source of noise in cognitive processes of psychometricmeasurement.
Therefore, we chose to build our psychometric process models based on the diffusion process
with internal noise in evidence accumulation rather than a simplified account by the LBA model.

The three models we examined have different theoretical characteristics and limitations.
Model 1 has the simplest and most parsimonious structure among the three proposed models and
was built based on established theories and models in psychometrics and cognitive psychology.
However, it has a theoretical limitation in that accumulated evidence is not directly involved with
the determination of responses and response proportions. Given person and item parameters, a
response is predicted by the distribution of continuous latent response without the accumulated
evidence. Instead, drift rate and decision boundary of the evidence accumulation process account
for response proportions and capture the association between responses and RTs. Thus, Model 1
can be said to be an approximate or a ‘pseudo’ description of cognitive processes.

An important theoretical consideration forModel 2 is that the balance-of-evidence hypothesis
was proposed for tasks in which a subject is asked to make a binary decision first and then make
a confidence judgment (e.g., Baranski & Petrusic, 1998; Vickers, 1979). For example, in a word
recognition task, a subject decides whether a presented word stimulus is in the previously studied
word list or not, and then is asked to determine the confidence level of this binary decision.
Although the absolute fit ofModel 2 was reasonably good, this hypothesis may not be an adequate
description of response behavior for the psychometric measurement in which persons respond to
an item directly on the ordinal scale. A possible interpretation that can reconcile this gap is that
respondents first make an internal decision of which side of the Likert scale (agree side or disagree
side) is more appropriate for their personalities and then determine the degree of appropriateness.
In this case, the validity of the assumption remains to be studied. Another consideration is that the
balance-of-evidence models do not explain internal processes that make a confidence judgment
after a binary decision as they only use a threshold method. These models also assume that a
cognitive system such as a respondent in the psychometric measurement has direct access to the
amount of accumulated evidence (Ratcliff & Starns, 2009) while they do not explain the time
course of the processes that read out evidence difference exactly at the decision time. It has been
shown that neural activity immediately begins to decay after the decision threshold is reached

6Ranger and Kuhn’s model does not consider nondecision time, unlike our models.
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(Ratcliff et al., 2007a) and it is unclear how the balance-of-evidence hypothesis can account for
this finding.

The primary assumption of themulti-accumulatormodel (Model 3) is that cognitive processes
employ as many accumulators as the number of response options given in the questionnaire. This
implies that the latent structure of cognitive processes can largely differ as a function of the
number of response options given. The assumption is an appropriate account for memory tasks
with confidence judgments inwhich a subject has to press one of theM separate keys on a keyboard
to express their decision on the M-point confidence scale. The assumption can be questioned in
psychometric measurement particularly when the measurement is done with pencil and paper
or with mouse-clicking on one of the response options. Some behavioral properties of neurons
correspond to the assumption on the number of evidence accumulators. In general, neurons have
their own response preferences and respond to the maximal degree when a presented stimulus
matches their preference (Beck et al., 2008; Cowell et al., 2006; Jazayeri &Movshon, 2006). The
level of activation decreases as the discrepancy between the stimulus and preference. Also, it has
been shown that build-up neurons in Superior Colliculus (SC) show systematic changes in their
activity as a function of the experimenter-imposed number of targets in a saccadic movement task
(Basso &Wurtz, 1998). Thus, it makes sense to assume that neurons respond to different degrees
to provided item response options and their summed activity defines the behavior of competing
evidence accumulators (Ratcliff & Starns, 2013).

The proposed models were designed to provide parsimonious accounts, instead of complete
and comprehensive descriptions, for psychological processes. To this end, we based our modeling
on cognitive and psychometric theories introduced in Section 1. One can achieve a more thorough
process model by introducing other psychometric factors, cognitive theories, and neurally plau-
sible components. For example, response is subject to aberrant behavior such as rapid guessing
and cheating and there could be hidden latent classes. Variation in response due to these factors
can be accounted for by mixture modeling (DiTrapani et al., 2016; Lu et al., 2021; Wang & Xu,
2015; Wang et al., 2018). Also, random variability in cognitive components can be introduced as
done in some previous psychometric process models for binary responses and RTs (Kang et al.,
2022a,b), which allows a study of conditional dependency between the two outcome variables.
Accumulated evidence may decay or leak as a function of the currently accumulated amount (as
in the Ornstein–Uhlenbeck process; Smith, 2000; Usher &McClelland, 2001). Wemay also allow
accumulators to inhibit their competitors (Usher & McClelland, 2001). When evidence in the
accumulation process represents firing rates of neurons (which cannot be negative), we may need
to constrain accumulated evidence to be nonnegative (Ratcliff et al., 2007b; Ratcliff & Starns,
2009). A spatially continuous evidence (in contrast to scalar-valued evidence) can be used, as in
the spatially continuous diffusion model (SCDM; 2018), which can potentially provide a theoret-
ically better account for the measurement processes with a single accumulator than our Model 1.
Models with these additional components may provide a more adequate account of the cognitive
processes of measurement. However, these extensions are rather challenging because resulting
models do not have closed-form likelihoods (as the leaky competing accumulator model by Usher
& McClelland, 2001). Fitting these models requires likelihood-free estimation methods such as
approximateBayesian computation (Turner&Sederberg, 2012; Turner&VanZandt, 2012, 2014)
, probability density approximation (Turner & Sederberg, 2014), or likelihood approximation
networks (Fengler et al., 2021).

A primary function of jointmodeling of responses andRTs in psychometrics has been improv-
ing the precision of the measurement of latent attributes (abilities and traits) by combining infor-
mation from both outcome variables (Bolsinova & Tijmstra, 2018; De Boeck & Jeon, 2019) . We
attempted to show that further theoretical improvement can be achieved by modeling individual-
level measurement processes. In our modeling, latent variables were redefined as components
in cognitive processes of measurement. Unlike traditional latent ability and speed factors, these
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components have their own meaningfully interpretable referents; drift rate refers to the mean rate
of evidence accumulation or the quality of information processing for decision-making and deci-
sion boundary refers to the amount of quantity of information required to respond to experimental
stimuli or measurement items. Our model development also showed how a causal relationship
between the variations in latent attributes and the variations in measurement outcomes can be
explicitly described, with noise in evidence accumulation and individual differences in cogni-
tive components. This modeling approach was in line with Borsboom and colleagues’ suggested
solution to the validity issue they raised (Borsboom et al., 2003, 2004). We hope that this psy-
chometric process modeling approach can illustrate how cognitive theories of decision-making
can be integrated with psychometric theories to provide principled accounts for individual-level
measurement processes and further stimulate other novel attempts.
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