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The effects of aging on simple 2-choice decision making was investigated with the diffusion model (R.
Ratcliff, 1978). Data for 75- to 90-year-olds were collected and compared with previous data from 60-
to 75-year-olds and college students for 5 tasks: a signal detection–like task, letter and brightness
discrimination with masking, recognition memory, and lexical decision. The model fit the data well and
therefore allows components of processing to be examined as a function of age. Compared with
decision-making processes in college students, decision criteria and nondecision components of process-
ing increased with participants’ age. However, the quality of the evidence on which decisions were based
decreased with age only for letter and brightness discrimination.

Keywords: aging, reaction time, cognitive ability, diffusion model

A central finding about aging is that as people age, their re-
sponse times (RTs) increase. Also, there is sometimes a decrease
in accuracy. Recently, Ratcliff, Thapar, and McKoon (2001, 2003,
2004); Ratcliff, Thapar, Gomez, and McKoon (2004); and Thapar,
Ratcliff, and McKoon (2003) (henceforth, RTM) examined the
effects of aging in several two-choice tasks: two signal detection–
like tasks, a brightness discrimination task with masked stimuli, a
recognition memory task, a lexical decision task, and a letter
discrimination task with masked stimuli. We separated out aging
effects on component processes of the tasks by applying the
diffusion model (Ratcliff, 1978, 1981, 1985, 1988, 2002; Ratcliff
& Rouder, 1998, 2000; Ratcliff & Smith, 2004; Ratcliff, Van
Zandt, & McKoon, 1999). We found that 60- to 75-year-old
subjects adopted more conservative decision criteria than did
college-age subjects and also had slower nondecision components
of processing (encoding, response execution, memory access, lex-
ical access). However, the quality of the stimulus evidence driving
the decision process was not significantly worse for the older
subjects than for the young subjects except in masked letter dis-
crimination. The finding of lower quality stimulus information for
masked letter discrimination but not for masked brightness dis-
crimination is consistent with the psychophysical finding that
deficits occur with age for high but not for low spatial frequency
stimuli (Spear, 1993).

In the studies described in this article, application of the diffu-
sion model was extended to 75- to 90-year-olds. The questions
addressed were whether the diffusion model could fit the data from
the 75- to 90-year-olds as well as it had fit the data from the
younger subjects and whether components of processing differ
between 75- to 90-year-olds and 60- to 75-year-olds. Earlier re-
search has found substantial loss of cognitive abilities for 80- to
100-year-olds (Baltes, 1998; Baltes & Smith, 2003; Singer, Lin-
denberger, & Baltes, 2003; Singer, Verhaeghen, Ghisletta, Linden-
berger, & Baltes, 2003). In our studies, the 75- to 90-year-old
subjects were active and well functioning, as evidenced by their
willingness and ability to take part in our experiments, and they
were matched to college students in terms of IQ and education.

Method

In Experiments 1–6, we used the same test lists, procedures, and
instructions as in the experiments by RTM, and full descriptions can be
found in those articles. All of the subjects in the experiments reported here
(different subjects in each experiment) and in RTM’s experiments met the
following inclusion criteria: a score of 26 or above on the Mini-Mental
State Examination (Folstein, Folstein, & McHugh, 1975); a score of 15 or
less on the Center for Epidemiological Studies—Depression Scale
(CES–D; Radloff, 1977); and no evidence of disturbances in conscious-
ness, medical or neurological disease causing cognitive impairment, his-
tory of head injury with loss of consciousness, or current psychiatric
disorder. All subjects completed either the Picture Completion and Vocab-
ulary subtests or the Digit Symbol and Information subtests of the Wech-
sler Adult Intelligence Scale—3rd Edition (WAIS–III; Wechsler, 1997).
All of these measures showed that our 75- to 90-year-old subjects matched
the other two groups (characteristics are shown in Table 1). For the
Experiments 1–6, there were 24, 35, 33, 35, 33, and 34 subjects, respec-
tively. The same two sites used for earlier experiments (Bryn Mawr
College and Northwestern University) provided subjects, and the same
experimenters using the same apparatus tested subjects.
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The experimental tasks were chosen to span a range of possible limita-
tions on cognitive performance. Experiment 1 used a signal detection task:
Subjects were asked to judge whether the distance between two dots was
large or small. The stimuli were clearly visible on a computer monitor and
were displayed until the subject responded, so there were no perceptual or
memory limits on performance. In Experiments 2 and 3, in which, respec-
tively, letter discrimination and brightness discrimination were tested,
perceptual information about the stimuli was limited through masking.
Experiment 4 was a standard recognition memory task, and Experiments 5
and 6 were standard lexical decision tasks.

For Experiment 1, we manipulated stimulus difficulty by varying the
distances between the two dots and, in Experiments 2 and 3, by varying the
time between presentation of the stimulus and presentation of the mask. In
Experiment 3, the stimuli were patches of pixels, and we manipulated
difficulty using both stimulus duration and brightness, with brightness
ranging from mostly white pixels to mostly dark pixels. For recognition
memory, words on the study lists were high, low, or very low in frequency
and were presented either once or three times. Test words that had not
appeared in the study list were also high, low, or very low in frequency.
The same high-, low-, and very-low-frequency words were used in the
lexical decision experiments. In Experiment 5, the nonwords were
pseudowords, and in Experiment 6, they were random letter strings.

For Experiments 1– 4, on alternating blocks of trials, instructions
stressed that responses be either as accurate as possible or as fast as
possible. Subjects were given feedback appropriate to the instructions: In
accuracy blocks, accuracy feedback was given on each trial, and in speed
blocks, a “too slow” message was given after responses that exceeded 700
ms in the signal detection and brightness discrimination experiments, 650
ms in the letter discrimination experiments, and 800 ms in the recognition
memory experiment. For Experiments 5 and 6, subjects were instructed to
respond quickly and accurately.

Results

Response times shorter than 300 ms and longer than 4,000 ms
were eliminated from the data (�1.8% of the data for each exper-
iment). Figure 1 shows the RTs and accuracy values averaged
across all the independent variables in each experiment for the 75-
to 90-year-olds reported here and the college students and 60- to
75-year-olds reported in the RTM articles.

For the experiments that included the speed or accuracy instruc-
tion manipulation, college students were more willing to trade
accuracy for speed than were older subjects, as shown by the larger
differences for college students who received speed instructions
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Figure 1. Plots of accuracy and mean response time (RT) averaged over
all subjects and all conditions in the experiments. In each plot, there are
two lines for each group of subjects for the first four experiments. In the
accuracy plot, the top line corresponds to the accuracy condition, and the
bottom line corresponds to the speed condition. For the RT plot, the top
line is for the accuracy condition, and the bottom line for the speed
condition.

Table 1
Subject Characteristics

Measure

Signal
detection

Discrimination
Recognition

memory

Lexical decision

Letter Brightness Pseudowords Random letters

M SD M SD M SD M SD M SD M SD

Mean age 79.2 3.14 80.1 4.05 79.8 3.54 79.2 3.46 81.2 4.66 80.5 3.54
Years education 16.3 3.23 15.9 3.27 16.2 2.55 16.1 2.22 14.7 3.04 16.0 2.65
MMSE 28.8 1.13 28.3 1.31 28.8 1.27 28.1 1.23 28.1 1.64 28.4 1.50
WAIS–III Vocab/Info 14.3 2.39 14.2 2.54 14.7 1.90 14.9 2.11 15.2 2.44 14.7 2.04
WAIS–III PC/Dig-Sym 12.5 2.69 12.4 3.09 13.1 2.73 12.1 2.38 13.2 2.68 12.9 2.46
CES–D Total 8.4 5.12 9.5 7.09 7.4 4.99 9.4 5.68 9.7 5.14 7.9 6.51

Note. For Experiments 1–6, there were 24, 35, 33, 35, 33, and 34 subjects, respectively. MMSE � Mini-Mental State Examination; WAIS–III � Wechsler
Adult Intelligence Scale—3rd edition (subjects were given either Vocabulary [Vocab] and Picture Completion [PC] subtests or Information [Info] and
Digit-Symbol [Dig-Sym] subtests); CES–D � Center for Epidemiological Studies—Depression Scale.
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compared with those who received accuracy instructions. With
speed instructions, college students were always faster than 60- to
75-year-olds, who were always faster than 75- to 90-year-olds.
With accuracy instructions, 75- to 90-year-olds had RTs that were
longer than those of 60- to 75-year-olds except in the signal
detection experiment; however, some of the differences were
small and not reliable. For 75- to 90-year-olds, the effect on
RTs of speed instructions versus accuracy instructions varied
across experiments from as little as 100 ms to as much as 300
ms. The RT effects were smaller for college students and 60- to
75-year-olds.

The effects of age on accuracy varied across tasks. Accuracy
was roughly equivalent for the three subject groups for the signal
detection task; there were relatively small decrements as a function
of age in recognition memory; and accuracy was higher for both
groups of older subjects than for college subjects in lexical deci-
sion. In the letter discrimination task, in which the stimuli had high
spatial frequency, college students were over 10% more accurate
than either group of older subjects. In the brightness discrimination
task, in which the stimuli had lower spatial frequency, college
students and 60- to 75-year-olds showed equivalent levels of
accuracy, whereas the 75- to 90-year-olds showed more than a
10% drop.

Quantile Probability Functions

Quantile probability functions provide a summary picture of the
shapes of RT distributions, how they vary across conditions (i.e.,
levels of accuracy), and how correct RTs compare with error RTs.
The functions for the 75- to 90-year-olds were constructed in the
same way as they were for the younger subjects described in the
RTM articles. The probability of a response determines position on
the x-axis, and quantile RTs are plotted vertically on the y-axis. In
Figures 2 and 3, the .1, .3, .5 (median), .7, and .9 quantiles are
plotted. Correct responses fall on the right-hand sides of the
functions, and error responses on the left (the probabilities of
correct responses are usually greater than .5, and the probabilities
of error responses are usually lower than .5). The quantiles for
correct responses for the easiest (most accurate) stimulus condi-
tions fall on the far right of the plots, and their error quantiles on
the far left. For more difficult conditions, the quantiles are nearer
the center. The quantiles are ordered so that for each vertical line
(i.e., each stimulus difficulty condition), the lowest is the .1 quan-
tile, the next lowest is the .3 quantile, and so on.

The quantile probability functions in the figures represent aver-
ages across subjects for each experimental condition. For Experi-
ment 1, the signal detection experiment, there were 32 different
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Figure 2. Quantile–probability plots for the signal detection, letter discrimination, and brightness discrimination
experiments. The Xs represent the data averaged across subjects, and the lines represent the theoretical fits of the
diffusion model. The quantile response times (RTs) in order from the bottom to the top are the .1, .3, .5, .7, and .9
quantiles, and in each vertical line, the quantiles have to have this order. For the brightness discrimination experiment
in several conditions, a moderate proportion of subjects did not have enough responses to allow computation of
quantiles, so no quantiles are presented for these extreme error conditions. For signal detection, the order of the
conditions represents grouping presented in Ratcliff et al. (2006). For letter discrimination, the extreme points
represent stimulus durations of 40, 30, 20, and 10 ms, respectively. For brightness discrimination, the extreme points
represent more extreme stimuli with .65 and .35 proportion of white pixels and longer stimulus durations (150 ms),
whereas the conditions in the center (accuracy near .5) represent more difficult conditions with .525 and .475
proportion of white pixels and shorter stimulus durations (50 ms).
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distances between the dots, grouped by similar RTs and accuracy
(Ratcliff et al., 2001) into four conditions in the figures. For
Experiment 2, there were four possible stimulus durations between
presentation of a letter and presentation of the mask. For Experi-
ment 3, there were 18 conditions, defined by crossing three stim-
ulus durations with six different proportions of white versus black
pixels. For these three experiments, responses for the two choices
were approximately symmetric for both accuracy and RTs. In other
words, in the signal detection task, for example, the same accuracy

and correct and error RTs were found with responses of “large” to
a large stimulus as with responses of “small” to the corresponding
small stimulus. Therefore, the correct responses for the two
choices were grouped together as were the error responses, giving
a single quantile probability function for conditions with speed
instructions and a single function for conditions with accuracy
instructions. (For Experiment 3, there were too few observations to
plot quantiles for errors in the most accurate conditions; therefore,
for these conditions, no quantiles are displayed.)
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best fits of the model to the data. For recognition memory for the left-hand plots, the conditions from right to
left represent 3V, 3L, 3H, 1V, 1L, 1H, NH, NL, and NV, where 3 � three presentations, 1 � one presentation,
N � new words, V � very-low-frequency words, L � low-frequency words, and H � high-frequency words.
For the right-hand panel, the conditions are in the reverse order. For the lexical decision experiments, word
responses for the high-frequency words were more accurate than those for the low-frequency words, which were
more accurate than those for the very-low-frequency words. RT � response time.
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For Experiments 4, 5, and 6 (recognition memory and lexical
decision tasks), accuracy and RTs were not symmetric for the two
choices, so there were two quantile probability functions for each
experiment: for recognition memory, one for “old” responses and
one for “new” responses, and for lexical decision, one for “word”
and one for “nonword” responses. For Experiment 4, there were
six conditions for studied words (presented once or three times
crossed with three levels of frequency) and three conditions for
words that had not been studied (three levels of frequency). For
Experiments 5 (pseudowords as nonwords) and 6 (random letter
strings as nonwords), there were three conditions for words, de-
fined by three levels of word frequency.

Overall, with both speed and accuracy instructions, the .1 quan-
tile RTs for correct responses changed by less than 100 ms across
levels of accuracy, whereas the .9 quantile RTs changed by as
much as several hundred ms. In general, error responses were
slower than correct responses, and, as with correct responses,
changes in median error RTs across conditions were mainly re-
flected in the RT distributions spreading rather than shifting
(changing by as much as 1,000 ms in the .9 quantiles in lexical
decision). The patterns for the 75- to 90-year-olds qualitatively
match those for the two younger groups described in the RTM
articles. Comparing the 75- to 90-year-olds reported here with the
60- to 75-year-olds in the earlier experiments, we found that
accuracy was lower for 75- to 90-year-olds only in brightness
discrimination, whereas RTs were longer in all conditions except
with accuracy instructions in Experiment 1. The question for the
diffusion model is what components of processing are responsible
for these effects.

Interpreting the Data Through the Diffusion Model

Our goal with the diffusion model is to explain the cognitive
processes involved in making simple two-choice decisions. The
model separates the quality of evidence entering a decision from
the decision criteria and from other, nondecision processes such as
stimulus encoding and response execution. Decisions are made by
a process in which information accumulates over time from a
starting point z toward one of two response criteria, or boundaries,
a and 0. When a boundary is reached, a response is initiated. The
rate of accumulation of information is called the drift rate (v), and
it is determined by the quality of the information extracted from
the stimulus in perceptual tasks and by the quality of the match
between the test item and memory in memory and lexical decision
tasks. The nondecision components of processing such as encoding
and response execution are combined into one component with
mean Ter. Within-trial variability (noise) in the accumulation of
information from the starting point toward the boundaries results
in processes with the same mean drift rate terminating at different
times (producing RT distributions) and sometimes at the wrong
boundary (producing errors). It is assumed that components of
processing vary from trial to trial. Across-trial variability in drift
rate (normally distributed with SD �) and starting point (uniformly
distributed with range sz), in conjunction with boundary positions
and drift rates, determines the relative speed of correct responses
versus error responses. It is also assumed that the nondecision
component varies across trials, uniformly distributed with range st.
For further details of the model, see the RTM articles and Ratcliff
and Tuerlinckx (2002).

The main manipulations in the experiments were stimulus dif-
ficulty and, in Experiments 1–4, speed instructions versus accu-
racy instructions. We manipulated difficulty with distance between
the dots in the signal detection task, stimulus duration in the letter
discrimination task, brightness and stimulus duration in the bright-
ness discrimination task, number of repetitions and word fre-
quency in recognition memory, and word frequency in lexical
decision. Differences in difficulty are modeled by differences in
drift rate. Speed–accuracy tradeoffs are modeled by changes in the
distance between the boundaries in the decision process—wider
boundaries require more information before a decision can be
made, and this leads to more accurate and slower responses. The
assumptions that only drift rate can change with difficulty and that
only boundary separation can change between speed and accuracy
instructions produce a highly constrained model, one that would be
falsified by many possible deviations of the data from predicted
values (Ratcliff, 2002).

Because of the results of the RTM studies, we expected response
boundaries and Ter to increase with age in all six experiments. For
the signal detection task, there were no perceptual or memory
limits on the information available to the subjects; therefore,
according to Ratcliff et al. (2001), drift rates should not vary with
age. For the other tasks, the RTM studies found that drift rates
were lower for 60- to 75-year-olds than for college students only
in masked letter discrimination, but for 75- to 90-year-olds, lower
drift rates might also be expected in masked brightness discrimi-
nation and recognition memory.

We fit the diffusion model to the data using a standard minimi-
zation routine (Ratcliff & Tuerlinckx, 2002). Each subject’s data
were fit individually, and the resulting parameter values were
averaged across subjects (Tables 2 and 3). Standard errors in the
parameter values can be found by dividing the standard deviations
by the square root of the number of subjects for each experiment.
To perform significance tests for differences in parameter values
between the 75- to 90-year-old subjects tested here and the 60- to
75-year-old subjects from the RTM articles, we combined the
standard errors from the two groups to produce a pooled standard
error; this pooled standard error doubled was used as the critical
value.

The model was also fitted independently to the data averaged
across subjects: Accuracy values and each quantile RTs were
averaged across subjects for each condition. These fits provided
the lines in Figures 2 and 3. Group data have often been used in
fitting models, and the assumption (usually implicit) is that the
parameter values for fits to the group data will be the same as
averages from fits for the individual subjects. This was true for our
experiments. Parameter values obtained from the fits to the group
data and average parameter values across individuals were within
2 standard errors of each other for all parameters with only two
exceptions: For brightness discrimination, the differences were the
result of a relatively low number of errors in high accuracy
conditions, and for the lexical decision experiment with random
letter strings, the differences occurred because some conditions
had very high accuracy and consequently very low numbers of
errors.

Goodness of fit. Figures 2 and 3 show that the model does a
good job of capturing changes in correct and error RT distributions
and accuracy values, with only drift rate changing across condi-
tions of stimulus difficulty. For the experiments in which two
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variables were manipulated (presentation duration and brightness
in brightness discrimination; word frequency and repetitions in
recognition memory), the RT quantiles lie on the same functions.
This is consistent with the assumption that both variables affect a
single common component of processing, drift rate.

The model also captures the effects of speed and accuracy
instructions, with only boundary separation changing. The only
systematic misses are in the .9 quantile RTs with accuracy instruc-
tions in brightness discrimination and recognition memory (with
smaller misses in signal detection and letter discrimination) and in
the .1 quantile RTs for brightness discrimination and recognition
memory. First, the .9 quantile RTs may miss because subjects did
not allow processes to run to completion (RTs are long, e.g., 1.5 s),
thereby reducing their .9 quantile RTs relative to predictions.
Second, it may be that accuracy instructions slow processing for
components other than the decision process, leading to a larger
value of Ter. A modest increase in Ter (e.g., 20–30 ms, see
Rinkenauer, Osman, Ulrich, Müller-Gethmann, & Mattes, 2004)
would produce a slight increase in the predicted .1 quantile RTs
(e.g., 20–30 ms), which would allow the model to better match the
data in the brightness discrimination and recognition memory
experiments. This would require a smaller value of boundary

separation (a) to produce the best fits, which would reduce the
predicted .9 quantile RTs to better match the data. The change in
Ter and a would not significantly affect the values of the other
parameters of the model and therefore would not change any
conclusions.

The chi-square values averaged over individual subjects are
shown in Table 2. Across all the experiments, the chi-square
values for the 75- to 90-year-olds are similar to those for the
college students and 60- to 75-year-olds in RTM’s experiments.
The similarity of the chi-square values shows that the model fits
the data well across all three age groups (see Ratcliff, Thapar,
Gomez, & McKoon, 2004, p. 285, for discussion of the power of
the chi-square test).

Differences in parameter values with age. Table 4 summarizes
z tests for parameter values for the 75- to 90-year-olds compared
with those of RTM’s 60- to 75-year-olds and RTM’s 60- to
75-year-olds compared with college students with pooled standard
deviations as noted above (significance level � .05).

The three parameters identified in the RTM articles as most
likely to be involved in slowing of older relative to younger adults
are boundary separation, the nondecision component of process-
ing, and drift rate. As Figure 4 and Table 4 show, boundary

Table 2
Means and Standard Deviations in Parameter Values Across Subjects for Fits of the Diffusion Model to the Experiments

Experiment as aa Ter � sz st po zs za �2 �2 60–75 yr �2 college df

Mean

Signal detection .118 .183 .395 .170 .056 .183 .000 141 135 115 77
Letter discrimination .103 .156 .408 .216 .011 .151 .004 88 119 84 77
Brightness

discrimination
.089 .193 .432 .186 .063 .220 .036 1175 951 680 377

Recognition memory .100 .184 .616 .184 .028 .257 .001 .045 .081 427 431 368 180
Lexical decision

(psuedo)
.199 .543 .100 .041 .129 .047 .091 91 203a 304a 77

Lexical decision
(random)

.204 .533 .150 .071 .099 .050 .108 75 71a 172a 77

Signal detection
(60–75 yr)

.102 .190 .368 .192 .050 .122 .001

Signal detection
(college)

.084 .155 .312 .161 .029 .169 .004

Standard deviation

Signal detection .026 .044 .051 .052 .040 .058 .001 44
Letter discrimination .035 .052 .051 .052 .040 .049 .011 34
Brightness

discrimination
.020 .074 .044 .056 .022 .039 .002 643

Recognition memory .032 .067 .050 .099 .021 .064 .001 .018 .033 376
Lexical decision

(pseudo)
.053 .076 .054 .041 .083 .040 .021 59

Lexical decision
(random)

.046 .056 .069 .046 .064 .041 .028 117

Note. The last two columns show the average chi-square values from the college student and 60- to 75-year-old groups from the Ratcliff, Thapar, and
McKoon (2001, 2003, 2004); Ratcliff, Thapar, Gomez, and McKoon (2004); and Thapar, Ratcliff and McKoon (2003) studies. The last two columns of
means (for the signal detection experiment with college and 60- to 75-year-old subjects) are fits to the data sets from Ratcliff, Thapar, and McKoon (2001)
in which more up-to-date programs were used in fitting all the other experiments and in which a parameter representing variability in Ter (st) and a parameter
representing the proportion of contaminant RTs ( po) were used. as � boundary separation for speed condition; aa � boundary separation for accuracy
condition; Ter � nondecision component of response time; � � standard deviation in drift across trials; sz � range of the distribution of starting point (z);
st � range of the distribution of nondecision times; po � proportion of contaminants; zs � starting point for speed condition; za � starting point for accuracy
condition.
aValues are from data collapsed into supersubjects so that the chi-square values are inflated relative to the values for the 75- to 90-year-old subjects.
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separations were larger for 75- to 90-year-olds than for 60- to
75-year-olds with speed instructions in the signal detection1 and
brightness discrimination experiments and with accuracy instruc-
tions in the brightness discrimination and recognition memory
experiments. In RTM’s experiments, 60- to 75-year-olds had
larger boundary separations than did college students for all the
tasks except brightness discrimination. Boundary separation is
assumed to be under subjects’ control, so it might be expected that
differences with age would not be consistent across experiments;
instead, boundary settings would depend on how subjects differ-
entially interpreted instructions. However, this was not the finding:
The separations were consistently smaller for college students
relative to 75- to 90-year-olds in all the experiments, indicating a
general trend of increasing boundary separation with age.

The nondecision component of processing was slower for 75- to
90-year-olds than for 60- to 75-year-olds only in signal detection,
recognition memory, and lexical decision with random letter
strings. In RTM’s experiments, the nondecision component was
slower for 60- to 75-year-olds than for college students in all the
tasks.

The most striking result is that for three of the tasks—signal
detection, recognition memory, and lexical decision—drift rates
did not significantly decrease with age. This indicates that the
quality of information entering the decision process did not decline
with age. For letter discrimination, drift rates decreased from
college students to 60- to 75-year-olds but no further for 75- and
90-year-olds. For brightness discrimination, drift rates were the

same for college students and 60- and 75-year-olds and decreased
from 60- and 75-year-olds to 75- and 90-year-olds. Brightness
discrimination was the only task for which drift rates were lower
for 75- and 90-year-olds than for 60- and 75-year-olds. These last
two results were replicated in Ratcliff, Thapar, and McKoon (in
press) with small groups of subjects.

The estimates of variability parameters have proportionally
larger standard deviations than do the estimates of other parame-
ters (Ratcliff & Tuerlinckx, 2002), so differences among them
must be much larger to be significant. Overall, in Experiments 1–6
and in the RTM studies, there was a tendency for larger variabil-
ities in drift rate, starting point, and the nondecision component of
processing for the 75- and 90-year-olds than for the younger

1 The original fits of the signal detection experiment (Ratcliff et al.,
2001) did not use more recent fitting programs that include variability in
the nondecision component of processing (st) and the possibility of con-
taminant (e.g., outlier) response times ( po). In addition, the data presented
here had slightly different biases in the zero point of drift across subjects,
so a drift criterion parameter that represents this difference was added.
These changes increased the number of degrees of freedom from 78 to 159
(because “large” responses to large stimuli and “small” responses to small
stimuli were fit separately, but the data and fits were displayed combined
as in Ratcliff et al., 2001). The only major effect on parameter values was
an increase in the value of Ter because the inclusion of variability allowed
shorter values of the quantiles to be accommodated (the new minimum was
Ter � st/2).

Table 3
Means and Standard Deviations in Drift Rates and Drift Criteria for Fits of the Diffusion Model to the Experiments

Experiment v1 v2 v3 v4 v5 v6 v7 v8 v9 vcr13 vcr46 vcr79

Mean

Signal detection .449 .250 .140 .041
Letter discrimination .310 .219 .116 .043
Brightness discrimination .181 .101 .036 .226 .130 .048 .245 .158 .053 �.036 .011 .056
Recognition memory .334 .285 .185 .113 .082 .027 �.243 �.229 �.168
Lexical decision (psuedo) .435 .303 .207 �.276
Lexical decision (random) .565 .454 .363 �.425
Signal detection (60–75) .470 .256 .141 .074 .036
Signal detection (college) .453 .251 .133 .054 .077

Standard deviation

Signal detection .111 .099 .079 .073
Letter discrimination .199 .162 .105 .069
Brightness discrimination .152 .086 .039 .169 .114 .041 .182 .114 .046 .061 .046 .055
Recognition memory .177 .165 .115 .078 .070 .063 .155 .146 .127
Lexical decision (psuedo) .124 .099 .074 .096
Lexical decision (random) .164 .142 .117 .130

Note. For signal detection, drift rates (v) represent grouping presented in the text. For letter discrimination, v1–v4 represent stimulus durations of 40, 30,
20, and 10 ms respectively. For brightness discrimination, the first three, second three, and third three drift rates are for 50-, 100-, and 150-ms stimulus
durations, respectively. Within each group of three drift rates, the first has .35 and .65 pixel conditions combined, the second, .425 and .575 combined, and
the third, .475 and .525 combined. vcrij represents the drift criterion for conditions i and j. For recognition memory, the first three drift rates are for items
presented three times, the next three for items presented once, and the last three for new items. Within each group of three, the first drift rate is for
very-low-frequency words, the second for low-frequency words, and the third for high-frequency words. For lexical decision, the first drift rate is for
high-frequency words, the second for low-frequency words, the third for very-low-frequency words, and the fourth for nonwords. The last two columns
of means (for the signal detection experiment with college and 60- to 75-year-old subjects) are fits to the data sets from Ratcliff, Thapar, and McKoon (2001)
in which more up-to-date programs were used in fitting all the other experiments and in which a parameter representing variability in the nondecision
component of response time (range of the distribution of nondecision times) and a parameter representing the proportion of contaminant response times
were used.
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groups (Table 2). However, a few differences were significant:
first, the differences in � between college students and 60- to
75-year-olds for letter discrimination and recognition memory, and
between 60- to 75-year-olds and 75- to 90-year-olds for brightness
discrimination; second, the differences in sz between college stu-

dents and 60- to 75-year-olds for lexical decision with random
letter strings and between 60- to 75-year-olds and 75- to 90-year-
olds for brightness discrimination; and third, the differences in st

between college students and 60- to 75-year-olds for signal detec-
tion and between 60- to 75-year-olds and 75- to 90-year-olds for
brightness discrimination and recognition memory.

Correlations. Relationships among the dependent variables
(accuracy, correct RTs, and error RTs) and the main parameters of
the model (drift rate, boundary separation, and the nondecision
component) averaged over all the experiments are shown in Table
5. For those experiments with speed or accuracy instructions, we
calculated correlations only for conditions with speed instructions
because the data were more stable and the boundary separation
parameters more consistent across subjects than for conditions
with accuracy instructions. For the dependent variables, means
were calculated across all the conditions of an experiment.

The correlations were remarkably similar across the six exper-
iments reported here and across RTM’s experiments. For example,
the correlations between correct mean RTs and a were .85, .89,
.75, .86, .89, and .57, and the correlations between accuracy and
drift rate were .67, .79, .94, .80, .57, and .35 for Experiments 1–6,
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Figure 4. Plots of the parameter values from the diffusion model as a
function of experiments (A–F) and of subject groups. The results from the
college-age subjects and the 60- to 75-year-old subjects are from Ratcliff,
Thapar, and McKoon (2001, 2003, 2004); Ratcliff, Thapar, Gomez, and
McKoon (2004); and Thapar, Ratcliff and McKoon (2003). The drift rate
is the average over all conditions in the experiments.

Table 4
Effects of Subject Groups on Parameters of the Diffusion Model

Experiment

Parameter difference

60 to 75-year-old vs. college-age subjects
75 to 90-year-old vs. 60 to 75-year-old

subjects

as Ter v as Ter v

Signal detection higher longer ns higher longer ns
Letter discrimination (masked) higher longer lower ns ns ns
Brightness discrimination (masked) ns longer ns higher ns lower
Recognition memory higher longer ns ns longer ns
Lexical decision pseudowords higher longer ns ns ns ns
Lexical decision random letter strings higher longer ns ns longer ns

Note. For the lexical decision experiment, there is one value for a, and for the other four experiments, the value of a for the speed (s) condition is used.
a � boundary separation; Ter � nondecision component of response time; v � drift rate.

Table 5
Average Correlations Across Experiments for the Main Features
of the Data and the Parameter Values

Variable ERT Pr CRT as Ter �

Pr �.11
CRT .80a �.03
as .74a .03 .80a

Ter .28 .17 .25 �.06
� �.03 .21 .07 .21 .28a

drift �.30a .69a �.20 �.08 .21 .58a

Note. The critical value of the correlation coefficient for 21 correlations
averaged over six experiments is .13. For the recognition memory and
lexical decision experiments, all the drift rates for new items and nonwords
were negative, so their absolute values were used. ERT � error RT; Pr �
probability of the response (accuracy); CRT � correct RT; as � boundary
separation for the speed condition; Ter � nondecision component of
processing; � � SD in drift across trials. Response times are averaged over
conditions.
a Values had the same sign for each experiment.
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respectively. (The lower correlations for lexical decision with
random letters as nonwords in Experiment 6 might be due to
extreme values of drift rate that result in a lower range of drift rates
across subjects.) Given the general similarity, the table reports the
correlations averaged across experiments.

We computed a significance value, .13, from the 21 correlations
in Table 5. The value was obtained under the assumption that both
the data and the parameter values come from normal distributions
for each experiment. The .13 value was obtained from repeated
comparisons carried out in Monte Carlo simulations for each
parameter and data statistic. There are seven data statistics and
parameter values (see Table 5), and each was used in six compar-
isons. The significance value was the value of the 500th largest of
10,000 simulations (the 5% point). Differences moderately larger
than .13 are likely significant (“likely” because the data and
distributions of parameter values might deviate from normality).
Correlations with absolute values greater than .13 and the same
sign for each experiment (asterisked values in Table 5) are cer-
tainly significant.

The main results (Table 5) are that mean RTs for both correct
and error responses strongly correlate with boundary separation
and that accuracy strongly correlates with drift rate. The other
results are as follows: The standard deviation in drift rate across
trials is correlated with drift rate. Correct and error RTs are
correlated with each other and are weakly negatively correlated
with drift rate. Neither accuracy and mean RT nor boundary
separation and drift rate are correlated. The nondecision compo-
nent of processing is not strongly correlated with any of the other
quantities.

The results broadly replicate those of RTM. The overall level of
RT (both correct and error RTs) is determined by the boundary
separation that subjects adopted. More conservative subjects re-
sponded more slowly, less conservative subjects more quickly. RT
is at most weakly determined by drift rate: The quality of the
information on which decisions were based was only slightly
better for faster subjects than for slower subjects. Overall accuracy
is mainly determined by drift rate: Subjects with higher drift rates
performed more accurately than subjects with lower drift rates.
Accuracy is not a function of boundary separation: More conser-
vative subjects were not more accurate than less conservative
subjects.

It is important to stress that these correlations concern individual
differences in overall levels of performance averaged across all the
conditions with speed instructions in each experiment. Even
though overall accuracy and RT are not correlated across subjects,
it is the case that within a subject, changes in drift rate, for
example, have strong and reliable effects on both accuracy and RT
(Figures 2 and 3).

General Discussion

For two-choice decision tasks, the diffusion model allows com-
ponents of processing to be extracted from RT and accuracy data.
In this article, application of the model was extended from the
college age and 60- to 75-year-old subjects of earlier experiments
(RTM) to 75- to 90-year-olds.

The model fit the data well, apart from some modest misses in
the .1 and .9 quantiles of RT distributions in some conditions for
some experiments. The model is highly constrained, especially in

the behavior of RT distributions. This was proven by Ratcliff
(2002). Several fake data sets that were plausible but never ob-
served empirically were generated; for example, for one set, RT
distributions had normal distributions instead of the right-skewed
distributions that are observed empirically. For another set, RT
distributions shifted as task difficulty increased instead of spread-
ing. The model was fit to all the fake data sets, and in each case,
the model failed to fit significantly.

The most salient result of the experiments reported here is that
the quality of the information entering the decision process, drift
rate, was as high for the 75- to 90-year-olds as for the 60- to
75-year-olds in five out of the six experiments and as high as for
the college students in four out of the six. Drift rates differed
between the 75- to 90-year-olds and the 60- to 75-year-olds only
for brightness discrimination. Drift rates differed between both the
60- to 75-year old and 75- to 90-year-old groups and the college
students for letter discrimination.

The signal detection task offers a useful control for the other
experiments. It shows that drift rates do not decline as participants
age in a task with little cognitive or memory load and with no limit
on the availability of perceptual information. In masked letter
discrimination, in which the stimuli have high spatial frequencies,
drift rates decreased between the college students and the 60- to
75-year-olds (RTM) but not between the 60- to 75-year-olds and
the 75- to 90-year-olds. For masked brightness discrimination, in
which the stimuli have low spatial frequencies, drift rates did not
significantly decrease between the college students and the 60- to
75-year-olds, but they did decrease between the 60- to 75-year-
olds and the 75- to 90-year-olds.

Drift rates for recognition memory did not significantly decline
across the three groups of subjects (RTM’s studies and Experiment
4). Previously, the conclusion in the literature has been that aging
has little effect on recognition memory (Balota, Dolan, & Duchek,
2000; Bowles & Poon, 1982; Craik, 1994; Craik & Jennings, 1992;
Craik & McDowd, 1987; Erber, 1974; Gordon & Clark, 1974;
Kausler, 1994; Neath, 1998; Naveh-Benjamin, 2000; Rabinowitz,
1984; Schonfield & Robertson, 1966). However, this conclusion
has been based only on accuracy measures. In Experiment 4 and in
RTM’s experiments, older adults were much slower than college
students. This presents a puzzle: Slowing for older adults has often
been interpreted as a deficit such that, for example, cognitive
operations are not fully completed in the available time or the
products of earlier operations are not fully available for later
operations (e.g., Salthouse, 1996). The diffusion model reconciles
the RT and accuracy data: Older adults are as accurate as college
students because the quality of their information from memory is
as good as that of the students. Older adults are slower because
they set their response boundaries more conservatively.

Drift rates for lexical decision also showed no significant
differences among the three age groups, suggesting that vocab-
ulary does not change with age. Less accurate performance by
college students results from their less conservative decision
criteria (Ratcliff, Thapar, Gomez, & McKoon, 2004, and Ex-
periments 5 and 6).

In most tasks, the 60- to 75-year-olds set more conservative
decision criteria than college students (RTM) and the 75- to
90-year-olds set more conservative criteria in all six experiments
reported here. However, the 75- to 90-year-olds were more con-
servative than the 60- to 75-year-olds only for some of the exper-
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iments. Our interpretation of these results is that older subjects
tend to adopt more conservative criteria, but that this is variable
across individuals and their understanding of speed and accuracy
instructions. Such variability is to be expected if criteria settings
are under the control of subjects (as they must be because speed–
accuracy instructions have large effects on RT). In the experiments
reported here and in the RTM articles, with fully functional older
adults matched on relevant characteristics, it is likely that the 75-
to 90-year-olds and the 60- to 75-year-olds were similar enough
that differences in criteria sometimes occurred and sometimes did
not. The same interpretation applies to the nondecision component
of processing. Whereas the 60- to 75-year-olds were almost always
slower in this component than the college students, the 75- to
90-year-olds were only sometimes slower than the 60- to 75-year-
olds. Again, there may be less difference between fully functioning
and matched 75- to 90-year-olds and 60- to 75-year-olds than the
age difference might suggest.

In all of the studies in this article and in the RTM articles, if the
RT data were considered in isolation from the accuracy data, the
suggestion would be that aging has a relatively large effect on
cognitive processes. On the other hand, if the accuracy data were
considered alone, the suggestion would be that aging has a rela-
tively small effect. In the diffusion model framework, the RT and
accuracy data are jointly interpreted: The large differences in RTs
arise from differences in nondecision components of processing
and criteria settings. Accuracy is similar across the age groups (in
all but the letter and brightness discrimination experiments) be-
cause drift rates are similar.

Previous research with fully functioning 80- to 100-year-olds
has indicated a substantial decline in cognitive abilities relative to
60- to 75-year-olds. Baltes and colleagues (Baltes, 1998; Baltes &
Smith, 2003; Singer, Lindenberger, & Baltes, 2003; Singer, Ver-
haeghen, et al., 2003) reported significant declines in memory,
language fluency, general knowledge, and especially perceptual
speed. Our results are consistent with the findings on perceptual
speed: 75- to 90-year-olds were always slower than 60- to 75-
year–olds, who were always slower than college students (with
one minor exception in one condition). However, we found high
levels of accuracy for both our older groups in recognition mem-
ory, lexical decision, and signal detection. One reason performance
was better for our oldest subjects than for Baltes and colleagues’
subjects might be that ours were younger, with a mean age of about
80 and an upper limit of 90. Another reason might be that the
components of processing in our simple two-choice tasks are
relatively preserved for 75- to 90-year-olds. We believe that pro-
cesses like those in our tasks are representative of the building
blocks that make up higher level processes, and we hypothesize
that they are the last cognitive processes to show decrements with
advanced age.

As the theoretical analyses of the diffusion model are brought to
various tasks, the quality of the information extracted from stimuli
is decoupled from criterion effects and from nondecision compo-
nents of processing. Instead of a monolithic account of processing
speed in terms of only mean correct RTs, we have instead an
account based on all aspects of the data. The quality of information
extracted from stimuli can be separated from subject-adjustable
decision criteria. The data and analyses from the studies reported
here add to a growing body of support for the diffusion model in
particular and quantitative modeling approaches in general.
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