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The effects of aging on accuracy and response time were examined in a letter discrimination experiment
with young and older subjects. Results showed that older subjects (ages 60–75) were generally slower
and less accurate than young subjects. R. Ratcliff’s (1978) diffusion model was fit to the data, and it
provided a good account of response times, their distributions, and response accuracy. The results
produce similar age effects on the nondecision components of response time (about 50 ms slowing) and
the response criteria (more conservative settings) to those from R. Ratcliff, A. Thapar, and G. McKoon
(2001), but also show a reduced rate of accumulation of evidence for older subjects. The model-based
approach has the advantage of allowing the separation of aging effects on different components of
processing.

Investigations of age-related differences in cognitive tasks have
often revealed a pattern of declining performance with advancing
age. The most dominant hypothesis has been the generalized
slowing hypothesis, which states that all information processing is
similarly affected by age (e.g., Birren, 1965; Brinley, 1965;
Cerella, 1985, 1990, 1991, 1994; Fisk & Warr, 1996; Salthouse,
1985, 1996; Salthouse, Kausler, & Saults, 1988). For some re-
searchers, the general slowing hypothesis has been replaced by one
that argues that different task domains show different degrees of
slowing, for example, verbal versus spatial domains (see Allen,
Ashcraft, & Weber, 1992; Allen, Madden, Weber, & Groth, 1993;
Cerella, 1985, 1994; Hartley, 1992; Hertzog, 1992; Lima, Hale, &
Myerson, 1991; Madden, 1989; Madden, Pierce, & Allen, 1992;
Myerson, Ferraro, Hale, & Lima, 1992; Myerson, Wagstaff, &
Hale, 1994; Perfect, 1994; Sliwinski & Hall, 1998). Whether
general or domain specific, the slowing hypothesis has been fa-
vored by many cognitive aging researchers because it provides a
relatively simple and intuitively appealing explanation of age-
related decrements across a variety of laboratory tasks and every-
day behaviors.

A major source of support for the slowing hypothesis is the
empirical regularity observed in Brinley functions. In a Brinley
function, older subjects’ response times are plotted against young
subjects’ response times and the result is almost always a straight
line with a slope in the range of about 1.5 to 2.5 (Brinley, 1965;

Cerella, 1985, 1991, 1994; Faust, Balota, Spieler, & Ferraro, 1999;
Fisher & Glaser, 1996; Fisk & Fisher, 1994; Hale & Jansen, 1994;
Hale, Myerson, & Wagstaff, 1987; Maylor & Rabbitt, 1994; Mc-
Dowd & Craik, 1988; Myerson & Hale, 1993; Myerson, Hale,
Wagstaff, Poon, & Smith, 1990; Myerson et al., 1994; Nebes &
Madden, 1988; Perfect, 1994; Salthouse, 1991, chap. 8; Salthouse
& Somberg, 1982; G.A. Smith, Poon, Hale, & Myerson, 1988;
Spieler, Balota, & Faust, 1996). The slope is taken to be a multi-
plicative factor that indicates the amount of slowing for the older
adults relative to the young adults.

The slowing hypothesis has been challenged, however, on sev-
eral grounds. First, Fisher and Glaser (1996) have shown that
models that distinguish among different components of cognitive
processing with different slowing rates can give rise to the regu-
larity of slopes greater than one found in Brinley functions (e.g.,
Fisher & Glaser, 1996). Second, there has been a new interpreta-
tion of what Brinley functions represent. Ratcliff, Spieler, and
McKoon (2000) showed that the slope of a Brinley function
measures how slow older adults are relative to young adults only
under limited types of models. More generally, Brinley functions
should be viewed as plots of quantiles against quantiles of the
distributions of mean response times across experimental condi-
tions, where the quantiles of a distribution are the points that divide
the total frequency in the distribution into parts (e.g., the three
quartile points divide the distribution into quarters, the .25, .50,
and .75 quantiles). As long as the distributions of mean response
times have at least approximately the same shape for the older
adults as for the young adults, two results follow: First, the Brinley
function is linear, and second, the function’s slope is the ratio of
the standard deviations of the older subjects’ and the young sub-
jects’ mean response times. Myerson, Adams, Hale, and Jenkins
(2003) claimed that the slope is not the ratio of the standard
deviations, rather it is the ratio of the standard deviations multi-
plied by the correlation coefficient, but this is not correct. The
analysis of Brinley functions in terms of quantiles is not a special
case of linear regression, as we discuss below. Also, as Ratcliff,
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Spieler, and McKoon (2003) pointed out, the slope of a Brinley
function should not be estimated from linear regression because
there is variability (i.e., measurement error) in both the older
subjects’ mean response times and the young subjects’ mean
response times (see also Draper & Smith, 1998).

Another important point made by Ratcliff et al. (2000) is that the
data on which Brinley function analyses are based, mean response
times for correct responses, are only a small subset of the data that
need to be addressed. Developing a theory based only on mean
response time guarantees that the theory will be wrong (or at least
inadequate) when applied to other aspects of the data. Dealing with
all of the aspects of response time data, namely, correct and error
response times and their relative speeds, the shapes of response
time distributions for both correct and error responses, and accu-
racy values, requires an explicit, fully specified quantitative model.
Moreover, given such a model, the Brinley function regularity in
slope can be produced in multiple ways. For Ratcliff’s diffusion
model (Ratcliff, 1978, 1981, 1985, 1988; Ratcliff, Gomez, &
McKoon, in press; Ratcliff & Rouder, 1998, 2000; Ratcliff, Van
Zandt, & McKoon, 1999), for example, Ratcliff et al. (2000)
showed that a slope in the range of 1.5 to 2.5 can be due to, among
other possibilities, older subjects adopting more conservative re-
sponse criteria than young subjects, older subjects accumulating
stimulus information more slowly than young subjects, or older
subjects having slower response execution processes than young
subjects. Crucially, within the framework of the diffusion model
(and almost certainly other sequential sampling models, see Rat-
cliff & Smith, in press), the effects of aging on response times do
not map onto standard slowing hypotheses.

Ratcliff’s diffusion model is attractive because it has been
successful in accounting for the data from a variety of two-choice
response time tasks and because it allows response time data to be
analyzed in terms of the components of processing required by a
cognitive task. In the aging research domain, Ratcliff, Thapar, and
McKoon (2001) applied the model to two visual signal detection
tasks, a numerosity judgment task and a distance judgment task. In
the numerosity judgment task, subjects viewed an array of aster-
isks on a computer screen and were asked to decide whether the
number of asterisks presented in the display was high or low. In the
distance judgment task, subjects viewed two dots and were asked
to decide whether the distance between the two dots was large or
small. In both tasks, the measures of interest were accuracy,
response times for correct and error responses, and the shapes of
the response time distributions. For all of these measures, the
model gave a good account. The main components of processing
into which the model divides the decision process are the quality
of the information from a stimulus that drives the decision process,
the variability in the quality of the information, the criterial bound-
aries on the amount of information that must be accumulated in
order for a decision to be made, and the nondecisional (encoding
and response execution) parts of response time. Applying the
model to the numerosity and distance judgment tasks, Ratcliff et
al. (2001) identified three main components of comparison be-
tween older adults and young adults. First, the older adults set
more conservative criteria than the young adults, accumulating
more information before making a response. Second, the nonde-
cisional components of processing were slower for the older
adults. Third, and most important, the quality of the information
driving the decision process was never poorer for the older sub-

jects than the young subjects, and it was sometimes better. This
third finding shows that there was no general decrement across all
of the components of processing for the older subjects, as the
slowing hypothesis predicts there should be.

In the tasks used by Ratcliff et al. (2001), the stimuli were
displayed until a response was made, so there was no limit on the
time available to encode the stimuli, that is, there was no limit on
the availability of perceptual information. The aim of the experi-
ment we report in this article was to extend the diffusion model’s
analysis of the components of processing to two-choice decisions
for which perceptual information is limited by masking and for
which there is good evidence that aging affects the acquisition of
stimulus information.

On each trial of the experiment, one of two letters was dis-
played, then masked, and the subject’s task was to indicate which
of the two letters had been presented. Earlier research on visual
information processing and backward masking with older adults
has suggested performance deficits for older adults in whole versus
partial report procedures (Coyne, Burger, Berry, & Botwinick,
1987; Walsh & Prasse, 1980), in visual persistence (Di Lollo,
Arnett, & Kruk, 1982; Kline & Nestor, 1977; Kline & Orme-
Rogers, 1978; but see Walsh & Thompson, 1978), and in backward
masking (Till & Franklin, 1981; Walsh, 1976). Two relatively
recent chapters that provide more general reviews of visual deficits
in aging are those by Fozard (1990) and Spear (1993). For letter
identification specifically, older adults require more time to view
a stimulus before it is masked than do young adults in order
to reach a criterion level of accuracy in identification (Cramer,
Kietzman, & Van Laer, 1982; Hertzog, Williams, & Walsh, 1976;
Schlapfer, Groner, Lavoyer, & Fisch, 1991; Till & Franklin, 1981;
Walsh, 1976; Walsh, Till, & Williams, 1978; Walsh, Williams, &
Hertzog, 1979). The question for the experiment we present was
which of the processing components identified by the diffusion
model is responsible for the decrement in performance.

The Diffusion Model

The diffusion model is designed to apply only to relatively fast
two-choice decisions and only to decisions that are composed of a
single-stage decision process (as opposed to the multiple-stage
decision processes that might be involved in, for example, reason-
ing tasks or card sorting tasks). As a rule of thumb, the model
would not be applied to experiments in which mean response times
are much slower than about 1 to 1.5 s. Models of the general class
of diffusion models have also been applied to decision making
(Busemeyer & Townsend, 1993; Roe, Busemeyer, & Townsend,
2001) and simple response time (P.L. Smith, 1995).

The diffusion model assumes that decisions are made by a noisy
process that accumulates information over time from a starting
point toward one of two response criteria or boundaries, as in
Figure 1 where the starting point is labeled z and the boundaries
are labeled a and 0. When one of the boundaries is reached, a
response is initiated. The rate of accumulation of information is
called drift rate (v), and it is determined by the quality of the
information extracted from the stimulus. For example, if the letter
A was displayed for a long time prior to masking, information
quality would be good and the mean value of the drift rate toward
the A boundary would be large. Within each trial, there is noise
(variability) in the process of accumulating information so that
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processes with the same mean drift rate terminate at different times
(producing response time distributions) and sometimes at different
response boundaries (producing errors). This source of variability
is called within-trial variability. The top panel in Figure 1 shows
three processes, all with the same mean drift rate toward the A
boundary (shown by the arrow labeled Drift Rate). One terminates
quickly at the correct boundary, another terminates more slowly,
and the third terminates at the incorrect boundary.

In the experiment we present, subjects are sometimes instructed
to respond as quickly as possible and sometimes to respond as
accurately as possible. Speed–accuracy tradeoffs are modeled by
altering the boundaries of the decision process—wider boundaries
require more information before a decision can be made, and this
leads to more accurate and slower responses. The dashed lines in
the top panel of Figure 1 show narrow boundaries. With these
boundaries, the processes terminate at the points labeled T, one
with a correct response and the other two with error responses.

Empirical response time distributions are positively skewed and
become more skewed as drift rate decreases. The diffusion model
naturally predicts this shape by simple geometry, as shown in the
bottom panel of Figure 1. Moving from left to right in the figure,
equal size decreases in the rate of approach to the boundary (the X
values, shown by the arrows) for the fastest processes lead to
smaller increases in response time than those for the slowest
processes (shown by the values Y and Z, respectively).

In the diffusion model, the relative speeds of correct and error
responses come from variability in processing across trials. Both
the drift rate for a stimulus and the starting point for the accumu-
lation of information vary around their means across trials. Panel
A of Figure 2 shows the mean drift rates for two letter stimuli (v�

and v�) and the distributions of variability for them. Panel B of
Figure 2 illustrates the effect of variability in drift rate, using two
values of drift rate (v1 and v2, symmetrical about v�, in the top
panel) rather than the whole distribution of drift rates that would be
used in a real implementation of the model (we assume a normal
distribution with standard deviation �). Because the larger drift
rate (v1) produces fast error response times but fewer of them than
the smaller drift rate (v2), the weighted average response time for
errors is longer than the weighted average for correct responses.
Panel C of Figure 2 shows the effect of variability in starting point,
again using two values (z1 and a � z1) for illustrative purposes
instead of a whole distribution (we assume a uniform distribution

Figure 2. An illustration of how parameter variability in the diffusion
model leads to fast and slow error responses. Panel A shows distributions
of drift rate across trials. Panel B shows two processes with drift rates v1

and v2 and starting point halfway between the two boundaries. Correct and
error responses have equal mean response times (RTs; 400 ms and 600 ms,
respectively). The average of these weighted by probability of response
leads to slow error responses relative to correct responses. Panel C shows
the effect of variability in starting point. Processes starting at z1 hit the
correct boundary with high accuracy and short RT, and errors are slow.
Processes starting at a � z1 hit the correct boundary with lower accuracy
and longer RT, and errors are fast. The weighted average gives fast errors
relative to correct responses.

Figure 1. An illustration of the diffusion model. The top panel shows
three sample paths (derived from a random walk approximation to the
diffusion process) and the effect of moving the boundaries from the solid
lines to the dotted lines (where the processes terminate at the points marked
T). The bottom panel illustrates the effect on response time (RT) distribu-
tions of reducing the drift rate for the fastest and slowest finishing pro-
cesses by the same amount, X. The fastest responses slow by Y, and the
slowest responses slow by Z, which means that longer mean response times
result mainly from the distribution skewing.
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with range sz). When the starting point is near the error boundary,
the decision process hits it quickly and with high probability,
whereas when it is nearer the correct boundary, errors occur with
low probability and they are slow. The weighted average leads to
faster error responses than correct responses. The combination of
across-trial variability in drift rate and variability in starting point
leads to one of three patterns of results: errors faster than correct
responses if starting point variability is large, errors slower than
correct responses if drift variability is large, and a crossover such
that errors at intermediate levels of accuracy (e.g., .5 to .9) are
slower than correct responses, and errors at extreme levels of
accuracy (e.g., above .95) are faster than correct responses, if both
kinds of variability have moderate to large values.

Besides the decision process, there are nondecision components
of processing such as encoding and response execution. These are
combined in the diffusion model into one parameter, Ter (which is
not shown in Figures 1 and 2). Like drift rate and starting point, the
nondecision components of processing have variability across
trials (from a uniform distribution with range st). The effect of this
variability depends on the mean value of drift rate (Ratcliff &
Tuerlinckx, 2002). With a large value of mean drift rate, variability
in the nondecision component of processing acts to shift the
leading edge of the response time distribution shorter than it would
otherwise be (by as much as 10% of st). With smaller values of
drift rate, the effect is smaller. With variability in the nondecision
component of processing, Ratcliff and Tuerlinckx showed that the
diffusion model could fit data with large differences in .1 quantile
response times across experimental conditions.

In sum, the parameters of the diffusion model correspond to the
components of the decision process as follows: z is the starting
point of the accumulation of evidence; a is the upper boundary,
and the lower boundary is set to 0. For the fits of the model to the
data described in this article, the boundaries were assumed to be
symmetric about the starting point so that z � a/2. The amount of
variability in the mean drift rate across trials is assumed to be
normally distributed with standard deviation � and the variability
in starting point is assumed to have a uniform distribution with
range sz . For each different stimulus condition in an experiment, it
is assumed that the rate of accumulation of evidence is different
and so each has a different value of drift, v. Within-trial variability
in drift rate (s) is a scaling parameter for the diffusion process (i.e.,
if it were doubled, other parameters could be doubled to pro-
duce exactly the same fits of the model to data). Ter represents
the nondecision components of response time, and variability in
this across trials is assumed to have a uniform distribution with
range st.

The components of the model that are the most likely candidates
for explaining age-related differences in response times are drift
rate, boundary position, and Ter . Ratcliff et al. (2001) found that
older adults set wider boundaries, thus increasing accuracy, and
that they were slower in the nondecisional components of process-
ing. In Ratcliff et al.’s (2001) tasks, numerosity judgment and
distance judgment, drift rates were not smaller for older adults than
young adults. However, in those tasks, subjects had ample time to
view the stimuli, so the quality of the information was not limited.
In the experiment reported here, with backward masking of briefly
displayed letters, it might be expected that drift rates would be
smaller for the older adults. Across-trial variability in drift rate,
starting point, and Ter could also vary between older and young

subjects. There were no age-related differences in these parameters
in Ratcliff et al.’s (2001) findings, but the difficulty of perception
under backward masking conditions might lead to extra variability
for older subjects.

Ratcliff and Rouder (2000) applied the diffusion model to young
adults’ data from the same backward-masking, letter-identification
task as was used in the experiment reported here. They tested two
hypotheses about the time course of the availability of information
in the decision process. One hypothesis was that the information
from the stimulus is integrated over the time between stimulus
onset and mask, and a constant value of drift rate is provided to the
decision process over time. The other hypothesis was that drift rate
tracks stimulus availability, with a large value of drift rate when
the stimulus is on and a zero value when the stimulus is masked.
The data supported the hypothesis of constant drift rate over time.
The main prediction from the other hypothesis is that error re-
sponse times should slow considerably as accuracy increases, but
instead the data showed that errors sped up as accuracy increased.
The same pattern of results was found with the experiment re-
ported here as in the Ratcliff and Rouder (2000) experiment, so we
discuss only the constant drift hypothesis.

Experiment

Although, as mentioned, considerable research indicates that
older subjects’ performance suffers compared with young subjects
in tasks that require fast visual processing, it has not previously
been possible to separate out the components of processing re-
sponsible for the performance decrement in both accuracy and
response time, because analytic techniques such as that offered by
the diffusion model have not been available (see Hertzog, Vernon,
& Rympa, 1993). Letter identification is an especially interesting
case to examine because it can serve as a simplified version of the
processes involved in processing alphanumeric characters and
because it is a simple task with which to examine the processing of
well-known categorical stimuli. We also know that the diffusion
model can fit such data with young subjects, so we have confi-
dence that the model will apply here (Ratcliff & Rouder, 2000).

On each trial of the experiment, one of two letters was displayed
on the screen and then masked. The duration of the stimulus was
varied to produce near chance performance at the shortest duration
to near ceiling at the longest duration. The subject’s task was to
indicate which letter was presented. Speed instructions alternated
with accuracy instructions across blocks of trials. Speed instruc-
tions asked subjects to respond as quickly as possible, and accu-
racy instructions asked them to respond as accurately as possible.

The speed versus accuracy manipulation was included in the
experiment because it gives considerable leverage, both in com-
paring performance of young and older subjects and in constrain-
ing the fits of the diffusion model to the data. In particular, it
should be possible to model changes in response time and accuracy
as a function of speed versus accuracy instructions with only the
single parameter representing boundary separation changing. The
manipulation should also show how fast older subjects can respond
when they are encouraged to go fast and how this compares with
young subjects when they are asked to be accurate. This empha-
sizes the point that response time is not a fixed characteristic of a
subject; rather it is adjustable in the same way as, for example, hit
and false alarm rates in signal detection.
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Method

Subjects. A total of 40 young adults (18 men and 22 women) and 38
older adults (14 men and 24 women) participated in the experiment. The
young adults were college students who participated for course credit in an
introductory psychology course at Northwestern University. The older
adults were healthy, active, community-dwelling individuals, 60 to 75
years old, living in the suburbs of Philadelphia. The older adults were
recruited from advertisements placed in local newspapers and were paid for
their participation. The older adults had to meet the following inclusion
criteria to participate in the study: a score of 26 or above on the Mini-
Mental State Examination (Folstein, Folstein, & McHugh, 1975); a score
of 15 or less on the Center for Epidemiological Studies–Depression Scale
(CES–D; Radloff, 1977); and no evidence of disturbances in conscious-
ness, medical or neurological disease causing cognitive impairment, head
injury with loss of consciousness, or current psychiatric disorder. Their
static visual acuity was screened to ensure a minimum corrected visual
acuity of 20/30 using a Snellen “E” chart. The older adults also completed
the Picture Completion subtest and the Vocabulary subtest of the Wechsler
Adult Intelligence Scale–Revised (Wechsler, 1981), and estimates of their
Full-Scale IQ were derived from the scores of the two subtests (Kaufman,
1990). The means and standard deviations for the older adults tested are
presented in Table 1. Although the young adults tested in this experiment
did not complete these assessment measures, this information was obtained
for a similar group of young adult subjects who completed a memory
experiment conducted in our lab and we report their means and standard
deviations in Table 1 for comparison (this sample matches two other
samples in Ratcliff et al., 2001, Table 1). None of the differences between
young and older subjects on the four background characteristics tests was
significant.

Stimuli and procedure. Stimuli were presented on the screen of a PC
computer, and responses were recorded on the computer’s keyboard. The
stimuli were white letters displayed in the center of the computer screen
against a dark background. Letters were paired so as to be dissimilar from
each other. The pairs were F/Q, P/L, W/K, B/N, T/X, and G/R.

Subjects were tested individually for two, three, or four sessions in order
to get two sessions of usable data. The reason for the variability in the
number of sessions completed by individual subjects is that some of the
older subjects ignored the speed instructions in part or all of the first
session and instead applied the same pace for the speed and accuracy trials.
As a result, many of the older subjects were not fully practiced at differ-
entiating their speed versus accuracy performance until the third session.
For all subjects, at least two sessions of data were used for the analyses.
The older adult subjects completed the demographic assessment forms
during the first session, and then they were given instructions for the letter

identification test. Each session consisted of 12 blocks of letter identifica-
tion trials, preceded by 10 practice trials with accuracy instructions and 10
practice trials with speed instructions. There were 6 blocks of trials with
speed instructions and 6 blocks of trials with accuracy instructions, with
speed versus accuracy instructions alternating.

The same two letters were the response alternatives for all of the trials
of a block. They were displayed one to the left of the center of the computer
screen and one to the right, and they remained on the screen throughout the
block. Each trial began with a fixation point in the center of the screen,
displayed for 500 ms, then the target letter was displayed, followed by a
variable delay (the stimulus duration) and a mask. The mask remained on
the screen until the subject made a response. Subjects were instructed to
press the / key on the keyboard if the right alternative had been presented
and the Z key if the left alternative had been presented. The mask consisted
of a square outline, larger than the letter stimuli, filled with randomly
placed horizontal, vertical, and diagonal lines. The mask was a random
rectangle selected from a picture that was about 10 times larger in area than
the mask and filled with randomly placed horizontal, vertical, and diagonal
lines. Thus the mask was different on every trial.

Four stimulus durations were used: 10, 20, 30, and 40 ms. For the older
subjects, there were two additional long stimulus durations, 50 and 60 ms,
because in pilot data, some of the older subjects became discouraged
because they could not see the stimuli. This means that there were less data
(30% less) for the older subjects. The older subjects showed greater
accuracy for the 50 and 60 ms stimulus duration conditions compared with
the shorter durations, but because there is no comparable young subject
data, we do not report the data from these longer stimulus durations.

Each block was made up of 96 trials. The target letter corresponding to
the correct response for each trial was determined randomly with the
restriction that each alternative be used equally often. Each block lasted
approximately 2 min, and subjects were encouraged to take brief rest
breaks between blocks.

For the speed blocks, subjects were instructed to respond as quickly as
possible. Responses longer than 650 ms were followed by a TOO SLOW
message displayed for 700 ms, and responses faster than 250 ms were
followed by a TOO FAST message displayed for 1,500 ms. For the
accuracy blocks, subjects were instructed to respond as accurately as
possible. Incorrect responses were followed by an ERROR message dis-
played for 300 ms. No feedback was provided for correct responses.

Results: Brinley Functions

In the data analyses, response times shorter than 300 ms for
young subjects and 350 ms for older subjects and longer than 2,000
ms for young subjects and 3,000 ms for older subjects were
eliminated. This resulted in 1% of data being eliminated for young
subjects and 1.5% being eliminated for older subjects. Further
discussion of outliers and contaminants is presented in the section
on fitting the diffusion model to the data.

As we mentioned earlier, the standard procedure in aging re-
search is to plot older subjects’ response times for each experi-
mental condition against young subjects’ response times for the
same conditions in a Brinley function. Although in models such as
Ratcliff’s diffusion model, Brinley functions can be produced from
any of several different mechanisms, and therefore are not theo-
retically constraining, we present them here for the data from our
experiment to show that our results are consistent with the results
from previous studies. In Figure 3, the mean response times for
correct responses for older subjects are plotted against the mean
response times for young subjects for each experimental condition.
The points on each function are the points for the experimental
conditions, that is, the stimulus duration conditions.

Table 1
Subject Background Characteristics

Measure

Older adults Young adults

M SD M SD

M age 69.09 3.88 19.78 2.00
Years of education 16.00 2.44 12.36 1.04
MMSE 28.45 1.98 29.13 1.06
WAIS–R Vocabulary 13.08 2.65 14.24 2.12
WAIS–R Picture Completion 13.05 2.36 10.71 2.32
IQ estimate 117.95 11.86 114.46 9.14
CES–D: Total 7.61 5.01

Note. The young adult background characteristics are for a group of
subjects from the same pool as those tested here. MMSE � Mini-Mental
State Examination; WAIS–R � Wechsler Adult Intelligence Scale–
Revised; CES–D � Center for Epidemiological Studies–Depression Scale.
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Calculating the slope of the Brinley function as m � SDo/SDy,
where SD represents the standard deviation in the mean response
times across conditions (see Ratcliff et al., 2000, and Draper &
Smith, 1998) and the intercept as c � mean RTo � m mean RTy,
then for the speed conditions, RTo � 1.52RTy � 85 ms, and for the
accuracy conditions, RTo � 1.55RTy � 59 ms; and for both
combined, RTo � 1.98RTy � 283 ms. The fact that the slope
varies according to whether all or part of the data are plotted
illustrates one of the problems with the slowing hypothesis: It
would not be expected that the amount of cognitive slowing for
older subjects relative to young ones would depend on whether
speed and accuracy conditions are fitted separately or combined.

The approximate equality of slopes for the speed and accuracy
conditions differs from results obtained by Ratcliff et al. (2000,
Experiment 2), where the slopes were different for speed and
accuracy conditions, 1.46 and 2.62, respectively. That experiment
also differs from the one here in that accuracy rates were approx-
imately the same for older and young subjects, which is not the
case here. These comparisons between experiments suggest that
there is likely to be no simple and general pattern of effects of
speed–accuracy manipulations on Brinley function slopes.

The standard error bars around the data points in Figure 3
illustrate a problem rarely discussed in the Brinley function liter-
ature: Does a straight line actually fit the data? The straight line fit
to the speed conditions intersects confidence ellipses for all four
data points, but the line for the accuracy conditions intersects only
two out of four confidence ellipses, and the line fit to all of the data
combined intersects only four out of eight. Thus, although the

Brinley functions look typical of those found in the literature, a
straight line does not provide a good fit for the accuracy conditions
or for both conditions combined. It might be that a straight line
does provide the best account of processing, and it is other factors,
such as averaging, subjects truncating their long responses, and so
on, that account for the deviations. Or it might be that a linear
function truly is not the best account of processing, and so that is
the reason for the poor fit.

It should also be mentioned that the use of Brinley functions has
sometimes had a prerequisite that accuracy values be equivalent
(e.g., Myerson et al., 1990) for old and young subjects. In our
experiment reported here, the accuracy values were considerably
lower for the older subjects than for the young subjects. If accuracy
values are not equivalent, there is no common agreed method for
interpreting the functions, although there have been a number of
attempts to address the covariation of the two variables (e.g.,
Cerella, 1985; Kliegl, Mayr, & Krampe, 1994; Salthouse, 1996;
G.A. Smith & Brewer, 1995). Because the diffusion model makes
predictions about both accuracy and response time, it provides a
theoretically based means of dealing with this problem, as illus-
trated below.

Results: Quantile Probability Functions

To fully test the diffusion model, it is simultaneously fit to all
aspects of the data: accuracy rates, correct and error response
times, and response time distributions. Plotting all of these aspects
of the data separately would make their relative behaviors difficult
to grasp, so the data are displayed in quantile probability functions
(Figures 4 and 5).

For quantile probability functions, the quantiles of the response
time distributions for each experimental condition are plotted as a
function of response probability. In Figures 4 and 5, the .1, .3, .5
(median), .7, and .9 quantiles are plotted for each of the four
stimulus duration conditions (for older and young subjects and the
speed and accuracy conditions separately). The xs are the data
points and the lines are the best fitting functions from the diffusion
model, which will be discussed later. The four right-hand points
for each quantile represent correct responses in the four stimulus
duration conditions. For the older subjects, for example, the prob-
ability of a correct response varies from about .85 (with the longest
stimulus duration) to about .55 (with the shortest stimulus dura-
tion). The four left-hand points represent error responses in the
four conditions, with the left-most point representing errors in the
highest accuracy condition (which corresponds to the longest
stimulus duration). The data for the left- and right-hand response
alternatives were combined because there were no significant
differences between them.

The quantile probability functions give a summary picture of the
shapes of the response time distributions. With accuracy instruc-
tions, for correct responses, the response time distribution skews
out as stimulus duration decreases. Across the four conditions, the
.1 quantile response times stay about the same, but the .9 quantiles
slow from about 1,000 ms to about 1,300 ms for the older subjects
and from about 600 ms to 800 ms for the young subjects. With
speed instructions, the skewing is much less apparent, from about
750 ms to 850 ms for the older subjects and from about 500 ms to
600 ms for the young subjects.

Figure 3. Brinley functions for correct response times (RTs) for the
experiment. The points on the graph represent the same conditions for older
and young subjects. Straight lines are fitted for speed and accuracy con-
ditions separately and for the conditions combined. Error bars are 2 SEs in
mean RT. The four data points in the bottom left of the figure are for the
speed conditions, and the four data points in the top right of the figure are
for the accuracy conditions.
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The quantile probability functions also show the relative speeds
of correct and error responses. For example, with accuracy instruc-
tions, in the highest accuracy condition (the furthest right quantile
points), response times for correct responses are about 900 ms at
the .9 quantile and the error responses in that condition (the
farthest left quantile points) are much slower, 1,400 ms at the .9
quantile.

For both older and young subjects, response time increases and
accuracy decreases as stimulus duration decreases, and error re-
sponse times are longer than correct response times. The changes
in response times across conditions are smaller in the speed con-
dition than the accuracy condition, and the minimum response
times are shorter in the speed condition than in the accuracy
condition. The overall shapes of the response time distributions are
about the same across the experimental conditions. Averaged
across stimulus duration conditions, the difference in accuracy for
the speed versus accuracy conditions is about 2% for the older
subjects and about 5% for the young subjects.

Overall, the data show that the older subjects differ from the
young subjects in three main ways: First, the older subjects are
slower than the young subjects in all conditions. Second, the older
subjects are less accurate than the young subjects in all conditions,
which can be seen in the quantile probability plots by the young

subjects’ data points shifted further to the left and right relative to
the older subjects’ data points, away from the .5 response proba-
bility point. Third, the older subjects show increasing response
times for errors as error probability decreases, whereas the young
subjects show decreasing response times, especially in the speed
conditions. In sum, the results show regular patterns for the effects
of difficulty (stimulus duration), speed versus accuracy instruc-
tions, and age on performance. The question for the diffusion
model is what components of processing are responsible for these
effects.

Results: Fitting the Diffusion Model

The diffusion model was fit to the data by minimizing a chi-
square value with a general SIMPLEX minimization routine that
adjusts the parameters of the model to find the parameters that give
the minimum chi-square value. The data entered into the minimi-
zation routine for each experimental condition were the response
times for each of the five quantiles for correct and error responses
and the accuracy values. The quantile response times were fed into
the diffusion model, and for each quantile, the cumulative proba-
bility of a response by that point in time was generated from the
model. Subtracting the cumulative probabilities for each succes-
sive quantile from the next higher quantile gives the proportion of

Figure 5. Quantile-probability functions for young subjects. The lines
represent the fits of the diffusion model, and the xs represent the data. The
lines in order from the bottom to the top are for the .1, .3, .5, .7, and .9
quantile response times. Correct responses are to the right of the .5
response probability point, and the corresponding error responses are to the
left.

Figure 4. Quantile-probability functions for older subjects. The lines
represent the fits of the diffusion model and the xs represent the data. The
lines in order from the bottom to the top are for the .1, .3, .5, .7, and .9
quantile response times. Correct responses are to the right of the .5
response probability point, and the corresponding error responses are to the
left (if the correct response probability is p, the error response probability
is 1 � p).
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responses between each quantile. For the chi-square computation,
these are the expected values, to be compared with the observed
proportions of responses between the quantiles (multiplied by the
number of observations). The observed proportions of responses
for each quantile are the proportions of the distribution between
successive quantiles (i.e., the proportions between 0, .1, .3, .5, .7,
.9, and 1.0 are .1, .2, .2, .2, .2, and .1) multiplied by the probability
correct for correct response distributions or the probability of error
for error response distributions (in both cases, multiplied by the
number of observations). Summing over (Observed � Expected)2/
Expected for all conditions gives a single chi-square value to be
minimized.

In their research on fitting the diffusion model to data, Ratcliff
and Tuerlinckx (2002), found that when long or short outlier
response times were added to simulated data, the chi-square
method could not accurately recover the parameter values that
were used to generate the data. To address this problem, short
outliers (response times shorter than 300 ms for young subjects
and 350 ms for older subjects) are trimmed out by examining the
time at which accuracy begins to rise above chance (e.g., Swens-
son, 1972), and long outliers (responses longer than 2,000 ms for
young subjects and 3,000 ms for older subjects) are also eliminated
from the analyses. Ratcliff and Tuerlinckx showed that any re-
maining contaminant response times can be explicitly modeled. A
parameter ( po) is added to represent the probability of a contam-
inant in each condition of the experiment. Contaminants are as-
sumed to come from a uniform distribution with maximum and
minimum values corresponding to the maximum and minimum
response times in the condition. For the data reported here, the
value of the probability parameter, po, was the same across all
experimental conditions (speed and accuracy and the different
levels of difficulty). There might be reasonable alternative assump-
tions for the distribution of contaminants, but the small proportion
usually estimated (less than 2% here), the ease of implementation,
the fact that this adds only one parameter to the model, and the
ability to recover parameter values better than methods without
this assumption (Ratcliff & Tuerlinckx, 2002) all indicate that this
was a reasonable approximation.

For the fits of the model presented here, five parameters were
held constant across the four stimulus duration conditions and

speed versus accuracy instructions: Ter, across trial variability in
the nondecision component of processing (st), the range of the
starting point of the diffusion process across trials (sz), across trial
variability in drift rate (�), and the probability of contaminant
response times ( po). Holding these five parameters constant re-
flects the assumption that neither speed versus accuracy instruc-
tions nor the quality of the information from the stimulus (stimulus
duration) affects any of these components of the decision process.

Boundary separation was assumed to be constant across stimu-
lus duration conditions, with one value of separation for the speed
conditions and a different value for the accuracy conditions. If
boundary separation were to vary with stimulus duration condition,
it would mean that subjects had identified the condition, adjusted
the boundary separation, and then begun extracting information
from the stimulus. This sequence of events is not plausible. Also,
changes in boundary separation with duration conditions would
produce changes in the .1 quantile response times that are not
observed in the data.

Drift rates were assumed to be constant across the speed and
accuracy conditions because the quality of information from the
stimulus should not change with these instructions. Drift rates were
assumed to vary only with stimulus duration.

The model must account for accuracy rates, the relative speeds
of correct and error responses, and the shapes of the response time
distributions for correct and error responses. Specifically, with
only boundary separation varying, the model must account for the
small changes in accuracy and the large changes in response time
between the speed and accuracy conditions. With only drift rate
varying, the model must account for the changes as a function of
stimulus duration in accuracy and distribution shape for both error
and correct responses and for both the speed and accuracy
conditions.

We fit the diffusion model to the data in two ways. First, each
subject’s data were fit individually and the parameter values av-
eraged across subjects. The means for each of the parameters are
shown in Table 2 along with their standard deviations. Standard
errors in the parameter values can be found by dividing the
standard deviations by the square root of the number of subjects
(40 young subjects or 38 older subjects). The second fits of the
model were to the data averaged across all of the older subjects and

Table 2
Parameter Values and Standard Errors From Fits of the Diffusion Model

Condition Subjects as aa Ter � sz v1 v2 v3 v4 po st

Subjects Old 0.107 0.168 0.413 0.276 0.034 0.043 0.112 0.214 0.305 0.006 0.136
M data Old 0.103 0.162 0.407 0.231 0.010 0.039 0.094 0.183 0.266 0.000 0.143
Subjects Young 0.084 0.122 0.343 0.239 0.053 0.140 0.317 0.427 0.491 0.007 0.112
M data Young 0.079 0.121 0.353 0.246 0.055 0.141 0.313 0.423 0.487 0.005 0.126
SDs over

subjects Old 0.034 0.039 0.048 0.092 0.032 0.044 0.070 0.089 0.105 0.016 0.053
SDs over

subjects Young 0.016 0.032 0.032 0.094 0.019 0.089 0.126 0.154 0.159 0.012 0.045

Note. as � boundary separation for speed condition; aa � boundary separation for accuracy condition; Ter �
nondecision component of response time; � � standard deviation in drift across trials; sz � range of the
distribution of starting point (z); v � drift rates; po � proportion of contaminants; st � range of the distribution
of the nondecision component of processing. In the subjects condition, the model was fit to each individual
subject and the parameter values averaged over the subjects’ values. The SDs were standard deviations over the
parameter values for the fits for the individual subjects. In the M data condition, the model was fit to the data
averaged over subjects.
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all of the young subjects. These fits were used as the basis for the
predictions displayed in Figures 4 and 5 (the solid lines). Note that
the parameter values obtained from the group data and the average
parameter values across individuals are all within 2 SEs of each
other (see Table 2). Also, the parameter values are in the range of
parameter values from other experiments (Ratcliff, 2002; Ratcliff
& Rouder, 1998, 2000; Ratcliff et al., 1999, 2001, 2003).

In general, the fits are good. The model captures the changes in
response time and accuracy as a function of stimulus duration and
speed versus accuracy instructions for both correct and error
responses as well as the overall differences between the older and
young subjects. The only noticeable misses are in the .9 quantile
response times for the older subjects with accuracy instructions;
the model predicts longer response times than the data, but the
misses are not severe given the high variability in long response
times. The young subjects have .9 quantile response times less
than 1,000 ms, and their fits do not systematically deviate from the
data.

The systematic misfits in the .9 quantile response times for older
subjects in the accuracy conditions might be due to the subjects
calling it quits after 1 to 2 s of processing or they might be due to
the boundary separation being reduced after about a second of
processing (e.g., Luce, 1986, p. 375). The diffusion model predicts
that some proportion of the response time distribution tails extends
into 2, 3, or 4 s, given the parameters of the fits for older subjects
in the accuracy conditions. If subjects truncated these long dura-
tion processes, then the .9 quantile response times would be
reduced. To examine the effect of such truncation, we refit the
diffusion model to the data with the assumption that all responses
were terminated by 2,000 ms and response times that would have
terminated after 2,000 ms were eliminated. The .1, .3, and .5
quantile response times were hardly altered, but the .7 quantile
response times were decreased from the predicted values by 9 ms
and the .9 quantile response times were decreased by 33 ms. The
change in the .7 quantile hardly alters the quality of the fit in
Figure 4, but the change in the .9 quantile reduces the location of
the predicted .9 quantile function such that it does not deviate
systematically from the data. Thus the model’s mispredictions can
be explained if it is the case that older subjects are unwilling to
wait several seconds for a very slow decision process to end.

For the young and older subjects, respectively, the chi-square
goodness-of-fit values were reasonable, 84.1 and 119.1 with df �
77; the critical chi-square value is 98.5 for p � .05. For the
individual fits, for young subjects, the mean value of chi-square
was 100.8 (SD � 37.7) and for older subjects, the mean value of
chi-square was 82.3 (SD � 25.9). The number of chi-square values
significant was 21/40 for young subjects and 11/38 for older
subjects. These values show the model fits most individual subject
data at about a level that is borderline significant, on average about
as well as the fits shown in Figures 4 and 5.

Analysis of the parameter estimates showed that the older sub-
jects differed from the young subjects in three ways. For both
groups of subjects, there is a healthy drop of about 30% in
boundary separation going from accuracy to speed instructions.
With both kinds of instructions, the older subjects have wider
boundary separations than the young subjects by about 20%,
t(76) � 3.81, p � .05, and t(76) � 5.63, p � .05, for speed and
accuracy instructions, respectively. The value of Ter was larger for
older subjects than young subjects by about 50 to 70 ms,

t(76) � 7.57, p � .05. Both of these results replicate those of
Ratcliff et al. (2001). However, different from Ratcliff et al.
(2001), drift rates were lower for the older subjects than the young
subjects, t(76) � 6.02, 8.84, 7.43, and 6.08, p � .05, for the four
stimulus duration conditions, long to short, respectively: The drift
rates were about one half the size for older subjects as for young
subjects. This translates into differences as large as 200 ms in
mean response time and 10% in accuracy, indicating that the
quality of the stimulus information is much lower for the older
subjects than for the young subjects. In other words, the older
subjects were obtaining stimulus information from the display at
about one half the rate of the young subjects.

There were no significant differences between the older and
young subjects in between-trial variability in drift rate (�), starting
point (sz), or the nondecision component of response time (st).
Also, for both groups of subjects and in all experimental condi-
tions, the estimated probability of contaminants was less than 1%.

Figures 6 and 7 present histograms of the distributions of the
parameter values from the individual subject fits for the young and
older subjects. First, the distributions for Ter and drift rates are
symmetrical (except perhaps for v1, the lowest drift rate, which has
a few large values for both the old and young subjects; apparently
these subjects could see the stimulus letters at the 10-ms stimulus
duration). Second, the distributions for boundary separation are a

Figure 6. Histograms for the parameter values for older subjects for fits
of the diffusion model.
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little right-skewed. This is probably because of scaling: Boundary
separation can be increased without bound, but it cannot be de-
creased below zero (or more realistically, some minimum around
.04 or .05). Third, the distributions of � are roughly symmetrical.

Fourth, the distributions of sz have some values near zero for the
older subjects, and the distributions of variability in Ter have some
values near zero for both the older and the young subjects. These
near-zero values might arise from having relatively few observa-
tions in extreme error conditions for some subjects (i.e., the fitting
program may estimate low values because of a lack of stability in
the data). The fitting program compensates for a low value of st

with a lower value of Ter and a larger value of boundary separa-
tion. These values of Ter and boundary separation give rise to
relatively high values of correlations between boundary separation
a and Ter for older subjects. If we eliminate the 8 (out of 38)
subjects with the largest boundary separations, the correlations
drop to �.19 and �.22. Of these 8 subjects, 6 also have the lowest
values of st.

The main result from Figures 6 and 7 is that there is nothing
surprising about the parameter values across individuals. With the
exceptions noted above, the distributions appear quite symmetric.
The most straightforward interpretation of this is that each of the
components of processing represented by the parameter values is
selected from a roughly symmetric distribution and individuals do
not deviate systematically from this pattern.

Tables 3 and 4 show correlations among subjects’ parameter
values for the two groups of subjects. We point out the more
important effects, those where there are high correlations for both
groups of subjects. First, boundary separations for the speed and
accuracy instructions are positively correlated. If a subject sets a
relatively wide separation in the speed condition, they also do so
in the accuracy condition. Second, drift rates are highly correlated
with each other. This means that if a subject is obtaining good
information at one stimulus duration relative to other subjects, then
the subject is also obtaining good information at the other stimulus
durations. Third, Ter is correlated with st, which means that if Ter

is large, then st is also large (this is another scaling effect). Fourth,
the drift rates are correlated with variability in drift. If the drift
rates are high, then the variability in drift across trials is also high.
This again can be seen as a scaling effect.

We also performed a correlational analysis on the parameter
values and the experimental data for the older and young subjects

Figure 7. Histograms for the parameter values for young subjects for fits
of the diffusion model.

Table 3
Correlations Between Parameter Values for Individual Subjects for Young Subjects

Variable 1 2 3 4 5 6 7 8 9 10 11

1. as 1.00
2. aa .53 1.00
3. Ter .15 .16 1.00
4. � .37 .02 .06 1.00
5. sz .63 .22 .16 .43 1.00
6. v1 .07 �.11 �.34 .47 �.02 1.00
7. v2 .01 �.27 �.25 .64 �.08 .79 1.00
8. v3 �.03 �.22 �.19 .63 �.14 .72 .94 1.00
9. v4 �.01 �.20 �.12 .71 �.06 .61 .91 .94 1.00

10. Po �.29 �.08 .07 �.25 �.04 �.18 �.18 �.22 �.15 1.00
11. st �.17 .10 .87 .08 .21 �.28 �.24 �.19 �.15 .13 1.00

Note. as � boundary separation for speed condition; aa � boundary separation for accuracy condition; Ter �
mean of the nondecision component of response time; � � standard deviation in drift across trials; sz � range
of the distribution of starting point (z); v � drift rates, po � proportion of contaminants; st � range of the
distribution of the nondecision component of processing. A single correlation of plus or minus .31 would be
significant at a .05 level.
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combined. The aim was to see if individual differences in response
time or accuracy were related to or determined by single param-
eters of the model. The experimental data were the correct and
error response time means, the .1 quantile response times for
correct responses, and accuracy, each averaged across all of the
experimental conditions. The .1 quantile response times showed
the same pattern of correlations as the mean response time, so it is
not reported. We reduced the number of parameters presented
(e.g., Table 5) first by eliminating parameters that did not correlate
highly with any of the data (�, sz, and st), and second by combining
parameters that showed the same patterns of correlations, namely
the two boundary separations and the four drift rates.

Table 5 shows the correlations, and Figure 8 displays the scatter
plots. Drift rate correlates strongly positively with accuracy and
strongly negatively with both correct and error response times.
This means that the better the information extracted from the
stimulus, the higher is accuracy and the shorter are correct and
error response times. Boundary separation is strongly positively
correlated with mean correct and error response times. This is
because the more widely subjects set boundaries, the slower are
responses. There is a weaker correlation of boundary separation
with accuracy, suggesting that subjects with poorer extraction of
evidence attempted to compensate by setting more conservative

boundary separations. But examination of the scatter plot in Figure
8 suggests that this is not a strong relationship. Ter is correlated
moderately negatively with accuracy and positively with response
time for both correct and error responses. This indicates that if the
nondecision components of response time are long, then the ex-
traction of stimulus information is somewhat poorer than if the
nondecision components are short. Finally, accuracy and response
times are highly negatively correlated because subjects are gener-
ally fast and accurate or slow and inaccurate.

The correlations between the parameter values and the data
indicate that it is not possible, in the diffusion model framework,
to interpret the effects of aging as showing a decrement in a single
parameter or a single common decrement in several parameters.
Drift rates measure the quality of information extracted from the
stimuli, and the better the quality, the more accurate and faster the
responses. Boundary separation measures speed–accuracy crite-
rion setting, and subjects are able to improve accuracy by a few
percentages at the expense of several hundred milliseconds in
response time. Average drift rate does not correlate with boundary
separation, as can be seen in Tables 3, 4, and 5, which indicates
that a single factor cannot be extracted from drift rates and bound-
ary separations.

In the diffusion model, the equality of the slopes of the Brinley
functions for the speed and accuracy conditions is explained by
two factors balancing each other. The drift rates (and accuracy
values) for the older subjects are lower than for the young subjects,
and there are smaller differences in drift rates among conditions
for the older subjects relative to the young subjects. Also, bound-
ary separations are larger for older subjects than young subjects.
This combination (both lower values of, and smaller differences in,
drift rates and wider boundary separations) leads to equal slopes in
Brinley functions for the speed and accuracy conditions.

General Discussion

The experiment reported in this article shows, unsurprisingly,
that older subjects are slower and less accurate than young subjects
in a letter identification task with masked stimuli. With speed
instructions, median response times for correct responses for

Table 4
Correlations Between Parameter Values for Individual Subjects for Older Subjects

Variable 1 2 3 4 5 6 7 8 9 10 11

1. as 1.00
2. aa .63 1.00
3. Ter �.72 �.57 1.00
4. � .19 .09 �.22 1.00
5. sz .24 .47 �.14 .22 1.00
6. v1 �.03 .14 �.12 .10 .22 1.00
7. v2 .26 .07 �.20 .45 .20 .51 1.00
8. v3 .11 �.02 �.15 .56 .15 .48 .81 1.00
9. v4 .09 �.03 �.09 .70 .16 .43 .77 .92 1.00

10. Po .04 .45 �.13 .04 .32 �.14 �.15 �.23 �.09 1.00
11. st �.54 �.39 .67 �.22 �.35 �.03 �.04 .01 .05 �.09 1.00

Note. as � boundary separation for speed condition; aa � boundary separation for accuracy condition; Ter �
mean of the nondecision component of response time; � � standard deviation in drift across trials; sz � range
of the distribution of starting point (z); v � drift rates; po � proportion of contaminants; st � range of the
distribution of the nondecision component of processing. A single correlation of plus or minus .32 would be
significant at a .05 level.

Table 5
Correlations Between Parameter Values and Data
for Individual Subjects

Parameter 1 2 3 4 5 6

1. Mean a 1.00 —
2. Ter .05 1.00 —
3. Mean v �.38 �.53 1.00 —
4. Accuracy �.43 �.63 .86 1.00 —
5. Mean RT .77 .58 �.77 �.77 1.00 —
6. Mean error RT .90 .40 �.61 �.61 .94 1.00

Note. a � average boundary separation for speed and accuracy condi-
tions; Ter � nondecision component of response time (RT); v � mean of
the four drift rates for the four stimulus duration conditions. A single
correlation of .22 would be significant at a .05 level.
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young subjects were between 380 and 410 ms and accuracy values
were between .65 and .90, whereas for older subjects the values
were between 520 and 570 ms and .55 and .80, respectively. With
accuracy instructions, correct median response times for young
subjects were between 460 and 520 ms and accuracy values were
between .69 and .94, while for older subjects they were between
620 and 720 ms and .56 and .84, respectively.

The deficits in performance between old and young are large
both in accuracy and response time. In earlier work, with a
signal detection task, Ratcliff et al. (2001) found a deficit only
in response time; accuracy levels were about the same for old
and young. In the signal detection task, subjects were asked to
judge whether the number of asterisks presented in a 10 � 10
array on a computer monitor was large or small, and the array
remained on the screen until a response key was pressed. Thus
there were no limiting perceptual or memory demands on the
subjects, and so it might be expected that the older subjects
would not show a deficit in accuracy. But in the experiment in
this article, the short presentation time for the letter stimuli,

coupled with an immediate mask, restricts perceptual process-
ing. The result is that accuracy falls for the older subjects
relative to the young ones, indicating a decrement in perfor-
mance that is more than just a decrement in processing speed.
Whether this decrement generalizes to all perceptually limited
tasks is an open question.

Brinley function analyses of the data showed that when response
time means for correct responses are plotted for the speed and
accuracy conditions separately, the slopes of the functions are both
about 1.54, but when the speed and accuracy conditions are com-
bined, the slope is 1.98. The often noted Brinley function regular-
ity, that slope values should remain relatively constant, was not
obtained; the slope values were different when conditions were
separated than when they were combined. The regularity also did
not appear with the signal detection task used by Ratcliff et al.
(2001), for which different slope values were obtained for the
speed and accuracy conditions (1.4 and 2.6, respectively).

The diffusion model fit all aspects of data reported in this
experiment, including accuracy rates and distributions of response

Figure 8. Scatter plots of parameters of the diffusion model and data for individual subjects. The parameters
are the average of the boundary separation parameters for speed and accuracy, the value of the nondecision
component of response time (RT), and the average of the four drift rates. The data are values of accuracy, mean
correct RT, and mean error RT. These were averaged over experimental conditions (stimulus duration) and over
speed and accuracy conditions.
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times for both correct and error responses. The analysis of the
components of processing provided by the diffusion model is
consistent in three respects with the account that was provided for
the signal detection experiment (Ratcliff et al., 2001). First, the
parameter estimates produced by the model indicate that older
subjects are more conservative than young subjects in that they set
response boundaries wider apart, in essence requiring more infor-
mation before reaching a decision. Second, the nondecision com-
ponents of response time, summarized by Ter, are 50 to 60 ms
longer for older subjects than young subjects. Third, the parame-
ters representing variability in drift and starting point are similar
for older and young subjects. The important difference between the
results obtained here and the results obtained by Ratcliff et al.
(2001) lies in drift rates, which reflect the quality of the informa-
tion entering the decision process from the stimuli. For the signal
detection task used by Ratcliff et al. (2001), the drift rates were the
same for older and young subjects. But here, drift rates are lower,
about one half the size, for older subjects than for young subjects.
In other words, for the quickly flashed letter stimuli, the older
subjects extracted about one half of the information per unit time
compared with the young subjects.

The lower drift rates for the older subjects suggest an explana-
tion for why older subjects set more conservative decision criteria
than young subjects even in experiments for which there are no
perceptual or memory limitations, experiments such as the signal
detection experiment where drift rates were the same for older and
young subjects. If we assume that the decision criteria, that is the
boundary positions of the diffusion process, are set at about the
same values across tasks, then it may be that older subjects set
conservative criteria in all tasks in order to compensate for their
difficulties in those tasks that have perceptual or memory
limitations.

There are a number of other sequential sampling models of the
same general class as the diffusion model presented here. Ratcliff
and Smith (in press) examined them in detail and concluded that
the diffusion model provides the best overall account of data.
Another candidate model is the Ornstein–Uhlenbeck model (see
Smith, 1995). It is the same as the diffusion model except that drift
rate is assumed to decay as a function of position away from the
starting point. When decay is small or moderate, this model
mimics the diffusion model (Ratcliff & Smith, in press) and so, as
long as decay was not large, it could fit the data presented here.
Another candidate model is an accumulator model with criteria
that are exponentially distributed across trials (see Ratcliff &
Smith for the most successful versions of this model). The accu-
mulator model assumes that evidence from a stimulus is normally
distributed, and that discrete, repeated samples are taken from this
distribution. If the evidence is positive, it is added to one counter,
and if it is negative, it is added to a second counter. Evidence is
accumulated until one of the counters reaches a criterion. If the
criteria are variable and exponentially distributed across trials, the
model does a good job of fitting data except that it is unable to
predict error response times shorter than correct response times, a
pattern that occurs in many tasks. It would be able to fit the data
from the experiment presented here because errors are slower than
correct responses. Also, the model fits the data from Experiment 2,
Ratcliff et al. (2001), which are similar to the data presented here.
For this experiment, the conclusions from the accumulator model
would be similar to those from the diffusion model. Changes in

decision criteria lead to large changes in response time, but rela-
tively small changes in accuracy. Thus, fits of the model would
produce lower rates of accumulation for older subjects relative to
young subjects in the accumulator model just as in the diffusion
model.

The diffusion model captures the deficit in accuracy for older
subjects while simultaneously capturing their longer response
times. The interpretation provided by the model is that older
subjects have a lower rate of extraction of information from
masked letter stimuli than young subjects, a finding that is con-
sistent with earlier research on age deficits in visual perception
(Fozard, 1990; Spear, 1993). The earlier literature is based on
accuracy measures, so the diffusion model provides a means of
reconciling the findings of that literature with the results of tasks
that measure response time. On the basis of earlier findings, we
would expect that the age deficit observed in the rate of extraction
of information in letter identification is not the result of a general
deficit but a task-specific deficit for high spatial contrast stimuli.
The crucial next step will be to test this expectation, using a variety
of kinds of perceptual stimuli.
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