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In this letter, we examine the computational mechanisms of reinforce-
ment-based decision making. We bridge the gap across multiple lev-
els of analysis, from neural models of corticostriatal circuits—the basal
ganglia (BG) model (Frank, 2005, 2006) to simpler but mathematically
tractable diffusion models of two-choice decision making. Specifically,
we generated simulated data from the BG model and fit the diffusion
model (Ratcliff, 1978) to it. The standard diffusion model fits under-
estimated response times under conditions of high response and re-
inforcement conflict. Follow-up fits showed good fits to the data both
by increasing nondecision time and by raising decision thresholds as
a function of conflict and by allowing this threshold to collapse with
time. This profile captures the role and dynamics of the subthalamic
nucleus in BG circuitry, and as such, parametric modulations of pro-
jection strengths from this nucleus were associated with parametric in-
creases in decision boundary and its modulation by conflict. We then
present data from a human reinforcement learning experiment involv-
ing decisions with low- and high-reinforcement conflict. Again, the
standard model failed to fit the data, but we found that two variants
similar to those that fit the BG model data fit the experimental data,
thereby providing a convergence of theoretical accounts of complex in-
teractive decision-making mechanisms consistent with available data.
This work also demonstrates how to make modest modifications to
diffusion models to summarize core computations of the BG model.
The result is a better fit and understanding of reinforcement-based
choice data than that which would have occurred with either model
alone.
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1 Introduction

Common models of two-choice decision making assume that noisy evi-
dence is accumulated and the decision is made when the process reaches
one of two decision criteria (also referred to as boundaries or decision
thresholds). The process either accumulates evidence in a single accumu-
lator (the standard diffusion model) in which the process accumulates
either positive evidence for one choice relative to the other choice or it
accumulates evidence separately in two separate accumulators, one for
each choice. Ratcliff and Smith (2004) reviewed the classes of evidence
accumulation models and found that only those that assumed that evi-
dence accumulation could be represented as diffusion processes (whether
one accumulator or two accumulators) were successful in accounting for
the qualitative patterns of results found in two-choice tasks (see Bogacz,
Brown, Moehlis, Holmes, & Cohen, 2006; Ratcliff, 2006; Ratcliff & McKoon,
2008; Ratcliff, Thapar, Smith, & McKoon, 2005; Usher & McClelland,
2001).

These models have been widely applied to topics in perceptual process-
ing and memory and used to examine the effects of a number of variables
such as age, sleep deprivation, and aphasia. Other models in the class
of diffusion models have been applied to decision making (Busemeyer &
Townsend, 1993; Roe, Busemeyer, & Townsend, 2001), value-based deci-
sion making (Milosavljevic, Malmaud, Huth, Koch, & Rangel, 2010), and
simple reaction time (Ratcliff & Van Dongen, 2011; Smith, 1995). Rela-
tionships have also been discovered between neurophysiological measures
and decision-making models in humans (Donaldson, Wheeler, & Peterson,
2010; Forstmann et al., 2008; Philiastides, Ratcliff, & Sajda, 2006; Ratcliff,
Philiastides, & Sajda, 2009; Wheeler, Petersen, Nelson, Ploran, & Velanova,
2008).

The models of behavioral decision making also provide good fits to data
from animal experiments. Moreover, predictions from the models have
shown a tight connection with the behavior of populations of single cells
that appear to implement the processes of evidence accumulation to crite-
rion (Gold & Shadlen, 2001, 2007; Mazurek, Roitman, Ditterich, & Shadlen,
2003; Ratcliff, Cherian, & Segraves, 2003; Ratcliff, Hasegawa, Hasegawa,
Smith, & Segraves, 2007; Smith & Ratcliff, 2004). However, there is no for-
mal model of the processes that control or regulate the decision making
process.

The class of diffusion decision models has not yet been quantitatively
fit to data from reinforcement learning paradigms. For these paradigms,
there are biologically realistic models that acknowledge a key role of more
complex circuits that link frontal cortex with basal ganglia (BG), which play
a role in both the learning and decision-making processes. In this letter,
we focus on one particular instantiation of BG models, that of Frank (2005,
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2006), which we refer to in the remainder of the letter as “the BG model”
solely for brevity. We discuss related BG models in the discussion. Our aim
is to examine the relationship between diffusion decision models and BG
models by first treating the BG model as a subject producing behavioral
data and fitting its response proportions and response time (RT) distribu-
tions with the diffusion model, and, second, by fitting human data in a
reinforcement learning paradigm that has been extensively used to test and
refine the BG models. Our goal was to understand BG model mechanisms
in terms of a diffusion process and, conversely, to refine diffusion models
based on constraints from empirical and biological data in reinforcement
tasks as informed by the BG model.

In contrast to simple cortical models of decision making, action selec-
tion in the BG model involves the entire cortico-basal ganglia circuit. In
the BG models, candidate actions are generated by frontal cortical units in
response to sensory input, and the BG gates the facilitation of the most adap-
tive actions while suppressing competing actions of lesser value. The gating
process itself involves a series of inhibitory and disinhibitory connections
between the striatum—the input segment of the basal ganglia involved in
learning stimulus and action reward probabilities—and BG output nuclei,
the thalamus, and back up to motor cortex (Frank, 2005, 2006; see also Gur-
ney, Prescott, & Redgrave, 2001a, 2001b). These dynamics are additionally
regulated by a mechanism for detecting cortical response or reinforcement
conflict. When conflict is detected, the subthalamic nucleus (STN), a key
node in BG circuitry, exhibits increased activation and temporarily delays
the BG gating process, preventing impulsive choice (Frank, 2006; see below
for a more detailed description). But how does this map into to constructs
such as decision criteria?

Given the complexity and nonlinearity of these dynamics of neuronal
activity in the BG models, unlike the diffusion models, it has not been
possible to derive closed-formed solutions that can make precise predic-
tions about the entire distribution of RTs for more reinforced versus less
reinforced choices. Furthermore, while these models have been used to
develop a theoretical framework for how neural circuitry gives rise to cog-
nitive computations and how these computations might change as a func-
tion of biological manipulations (e.g., disease, pharmacology, genetics, and
deep brain stimulation), they are not amenable to quantitative fits to the
behavior of individual subjects. Thus, prior attempts to model individual
subject choices in reinforcement learning tasks have employed algorithmic
models summarizing some of the key computational features embedded in
the neural circuits (Frank, Moustafa, Haughey, Curran, & Hutchison, 2007;
Frank, Doll, Oas-Terpstra, & Moreno, 2009; Doll, Jacobs, Sanfey, & Frank,
2009; Cavanagh et al., 2010; Frank & Badre, 2011). While those models ac-
counted for the learning process and genetic and neuroimaging predictors
thereof, this study attempts to model the dynamics of the decision-making
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process, including the full RT distributions for the different optimal and
suboptimal choices.

The remainder of this letter is organized as follows. First, we elabo-
rate the basic features of the neural model of corticostriatal circuitry in
learning and decision making. Next, we use the diffusion model to quanti-
tatively fit accuracy and RT distribution data generated by the BG model,
with parametric modulations of biological parameters (dopamine levels
and STN strength) to show how these alter diffusion parameters as a
function of decision conflict. We then describe a probabilistic reinforce-
ment learning experiment with healthy human subjects in which we col-
lected data suitable for modeling with the diffusion model. We show that
while the diffusion model provides quantitative fits to subject choices, it
fails to account for the substantially slowed RTs observed during high-
conflict choices. Based on theoretical considerations of the BG model and
related data, we modified the diffusion model to summarize the function
of conflict-based decision making and show that this modification is suf-
ficient to improve model fits to the data. We finally argue for the utility
of this approach in which the diffusion model can be used as a meeting
point between the BG model and data from the reinforcement learning
paradigm.

2 Basal Ganglia Model

The BG model is primarily intended to address the learning and decision-
making functions of corticostriatal circuitry. It has been applied in various
instances to simulate changes in decision making resulting from manipu-
lations of this BG system (for review, Doll & Frank, 2009). The model is
also constrained by data at the lower neural level of analysis: for exam-
ple, Frank (2006) simulated patterns of neural data in healthy individuals
(Magill, Sharott, Bevan, Brown, & Bolam, 2004) and pathological states as-
sociated with Parkinson’s disease (Levy, Hutchison, Lozano, & Dostrovsky,
2000). Furthermore, by virtue of interactions with different areas of frontal
cortex, the BG can participate in a wide range of cognitive functions at
different levels of abstraction. Specifically, although we focus on a single
BG circuit in decision making, such networks can be cascaded such that
one loop makes higher order cognitive decisions and provides contextual
input to the lower-level motor circuit for response selection (Frank & Badre,
2011).

Figure 1 shows the basic circuitry in the canonical BG model representing
a single frontal basal ganglia circuit (here, in the preSMA motor loop). (A
more complete description of the implemented model is presented in the
appendix.) Like the cortical models of decision making, the BG models as-
sume that a response is made once one of a population of cortical response



1190 R. Ratcliff and M. Frank



Basal Ganglia and Diffusion Models 1191

units exceeds some threshold activation. There is also lateral inhibition be-
tween the cortical response units, which are leaky and noisy. Although the
cortical response units can integrate evidence from the stimulus input, their
activities are dynamically regulated (gated) by BG circuitry. Specifically, in
addition to receiving excitatory input from (high-level) sensory representa-
tions, cortical response units also receive strong excitatory input from the
motor thalamus. However, under baseline conditions, thalamus units are
all inhibited by the output of the BG, the internal segment of the globus
pallidus (GPi), in which neurons are tonically active and send inhibitory
projections to the thalamus. Thus, under these baseline conditions, the BG

Figure 1: (Top) The BG model. The striatum receives sensory stimulus input
and candidate motor actions from preSMA. Go neurons in the direct pathway
to GPi act to facilitate the associated response by inhibiting the corresponding
column of GPi, disinhibiting the thalamus. The resulting boost of thalamocor-
tical activity is sufficient to preferentially drive a given set of preSMA response
units, which then inhibit their competitors via lateral inhibition (not shown).
NoGo neurons in the indirect pathway compete with Go activity by sending
their outputs to the GPe, which then inhibits GPi, preventing the BG from
selecting a response. The STN receives input along the hyperdirect pathway
from preSMA and exerts a temporary global NoGo function by sending dif-
fuse excitatory projections to the GPi, preventing Go signals from inhibiting
the GPi and therefore from disinhibiting the thalamus. This is particularly ev-
ident when multiple responses are coactivated in preSMA (in the snapshot,
there is low conflict and low STN activity). Dopamine neurons in the SNc mod-
ulate striatal activity, exciting Go neurons via simulated D1 receptors while
inhibiting NoGo neurons via D2 receptors. preSMA: presupplementary mo-
tor area; GPi: globus pallidus internal segment; GPe globus pallidus external
segment; SNc: substantia nigra pars compacta; STN: subthalamic nucleus. (Bot-
tom) Normalized mean firing rate of STN and all Go units coding for the re-
sponse that is ultimately selected, and corresponding thalamus units, in two
single trials. Thal. is activity in the thalamic units, and activity in these is
tracked by motor units M1. Note initially that thalamic units are inhibited,
and preSMA activity is noisy (not shown). Striatal Go unit firing increases with
time, modulated by noisy activity in preSMA for a corresponding response,
thus leading to on “accumulation” of value. STN activity surges early in the
trial and then declines, after which the Go units can disinhibit the thalamus
and a response is executed. In the top panel, STN activity declines substan-
tially before this can occur, whereas in the bottom panel, there is sufficiently
high Go activity to elicit a response earlier in time. Thus, STN activity prevents
early premature responding by inducing a delay (initial rise) and thereafter
acts as a dynamic collapsing decision threshold. (The figure shown here is a
grayscale version of a color figure presented in the online supplement, available
at http://www.mitpressjournals.org/doi/suppl/10.1162/NECO_a_00270.)



1192 R. Ratcliff and M. Frank

model essentially reduces to a standard cortical model of decision making
with leak and lateral inhibition (Usher & McClelland, 2001). Indeed, if there
is sufficient evidence for one of the alternative responses (due to strong
weights from the sensory input to one of the motor response units), then
the decision process is similar to that described in many models, without
requiring BG gating (see Frank & Claus, 2006; Frank, Scheres, & Sherman,
2007; Ashby, Ennis, & Spiering, 2007; see also the appendix). In contrast,
with BG gating, the thalamic units for one of the responses become active,
providing selective bottom-up input to one of the cortical response units
such that this unit has a tremendous advantage over those coding for al-
ternative responses, which are quickly suppressed due to lateral inhibition.
This amounts to a dynamic nonlinear gating process, as described in more
detail below.

In reinforcement learning tasks, the rules for determining which response
is correct are not known in advance, and there is no overt information in
the stimulus that conveys which response to emit. Instead, these associa-
tions have to be learned over trials by reinforcement. An extensive literature
shows that the BG are critically involved in both the learning of reinforce-
ment probabilities and the selection of actions based on reinforcement his-
tory (see Doll & Frank, 2009, and Wiecki & Frank, 2010, for reviews and
detailed biological evidence). To appreciate how this process operates in
the model, it is critical to consider how different pathways from the cortex
to the BG can affect the GPi, which controls inhibition of the thalamus. As
we shall see, there are three main pathways from the cortex though the BG
to the GPi, termed the direct (Go), indirect (NoGo), and hyperdirect (Global
NoGo) pathways.

Neurons in the striatum (the main input nucleus of the BG) receive in-
puts from both the sensory cortex (representing the current sensory state)
and presupplementary motor area (preSMA, representing the candidate
responses). Two main striatal cell populations ultimately control response
selection. The Go population facilitates the selection of a particular re-
sponse by inhibiting the corresponding units in GPi, thereby releasing the
inhibition onto thalamus. This process is termed disinhibition (Chevalier
& Deniau, 1990) and has a very strong influence on the decision process
in cortical (preSMA) units. Indeed, thalamic disinhibition will allow active
preSMA units to excite the corresponding thalamic unit (due to top-down
excitatory projections from the cortex to the thalamus), which then recip-
rocally amplify the preSMA activity. At this point, activation in the cortical
response unit ballistically accelerates as it inhibits its competitor, swiftly
reaching motor threshold (see Figure 1b).

Counteracting the Go population is the NoGo population, which pre-
vents the facilitation of responses. The main difference between Go and
NoGo populations is that the NoGo cells exert their effects on GPi indi-
rectly, sending their focused inhibitory projections to corresponding units
in the external segment of the globus pallidus (GPe), which then inhibits
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GPi.1 The NoGo cells prevent specific thalamic columns of units in the thala-
mus from being disinhibited due to the additional inhibitory route between
the NoGo cells and the GPi. Thus, separate Go and NoGo populations of
units can selectively facilitate and suppress specific responses.

Dopamine (DA) units in the substantia nigra pars compacta (SNc) modu-
late the overall balance of activity, boosting corticostriatal Go activity while
inhibiting corticostriatal NoGo activity. This occurs via separate excitatory
and inhibitory projections from SNc dopamine units to Go and NoGo popu-
lations, simulating the differential effects of D1 and D2 dopamine receptors
in these two populations (see Frank, 2005). (Note that dopamine does not
activate an entire column of Go units, but instead acts as an excitatory cur-
rent in these units that amplifies activity in those units receiving strong
excitatory input from cortex). Thus,higher levels of simulated dopamine
lead to relatively greater overall propensity for Go than NoGo activity
and faster responding. Importantly, dopamine also modulates learning in
the Go and NoGo populations, with dopamine bursts during rewarding
outcomes promoting increased synaptic plasticity in active Go units. Con-
versely, dopamine dips during negative outcomes promote plasticity in
NoGo units. In this way, the striatum learns the probability that a given re-
sponse will be rewarded and that it will be punished. The relative balance
of these quantities influences both the likelihood that this response will
be executed and the speed with which it is executed (substantially more
Go than NoGo activity will result in faster disinhibition of the thalamus
and, hence, faster responses). These two factors—dopamine effects on ac-
tivity and plasticity—allow the model to account for the effects of various
dopamine manipulations on overall response speed, reinforcement learn-
ing, and the impact of reinforcement learning on response speed (Wiecki &
Frank, 2010).

Finally, in addition to these Go and NoGo pathways, there is a third
pathway from the cortex to BG output involving the subthalamic nucleus
(STN). The STN receives input from cortical response units and sends dif-
fuse excitatory projections directly to all GPi units. STN activity implements

1The classic indirect pathway refers to a more circuitous route from the striatum to
GPe to STN to GPi, whereas in our models, we focus on the less indirect striatum-GPe-
GPi route. It was not originally known that the GPe projects directly to the GPi, and,
moreover, whereas GPe-GPi projections are focused, STN-GPi projects are diffuse. This
means that the indirect pathway in our model can inhibit specific motor actions associated
with the column, whereas the route through STN tends to globally inhibit all actions.
Furthermore, the third hyperdirect pathway (cortex-STN-GPi) was not known when the
classical model was developed in the 1980s; hence, the STN was considered part of the
indirect pathway. We thus now consider the STN pathway to be functionally distinct,
though the GPe-STN route still provides feedback inhibition to STN. Functionally, this
feedback also yields greater conflict-related STN activity when the two decision options
both have negative value: the greater NoGo activity in this case results in inhibition of
GPe and thus disinhibition of STN.
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a Global NoGo signal that excites the GPi and in turn inhibits the thalamus,
thereby making it more difficult for striatal Go activity to facilitate any re-
sponse. Thus, in contrast to the NoGo units, which act to suppress specific
responses based on their negative values, the STN Global NoGo mecha-
nism suppresses all responses for a period of time. Frank (2006) focused
specifically on simulating STN contributions in regulating the dynamics of
the decision process. During the initial response selection process, surges in
STN activity are seen (in both the model and electrophysiological record-
ings; Magill et al., 2004), and more so under conditions of response conflict
(Isoda & Hikosaka, 2008; Cavanagh et al., 2011). In the model, this tem-
porary STN surge serves to prevent premature or impulsive responding.
Coactivation of multiple cortical response units (an index of response con-
flict; cf. Botvinick, Braver, Barch, Carter, & Cohen, 2001) results in a larger
STN surge and thereby makes it more difficult to facilitate a response early
during the decision process. With time, however, this STN surge subsides
(due to feedback inhibition from GPe and neural accommodation), at which
point it is easier to select a response. Simulations showed that this delay
in the decision process is adaptive when alternative responses have subtly
different reinforcement values, as it enables the system to integrate noisy
activity over longer periods to determine the best response (Frank, 2006).
Moreover, this function is consistent with experimental data showing that
disruption of STN function results in impulsive premature responding par-
ticularly under conditions of decision conflict (Frank, Samanta, Moustafa,
& Sherman, 2007; Wylie et al., 2010; Cavanagh et al., 2011).

Given all of these dynamics, variability in RTs is influenced by the fol-
lowing factors. First, noise in the cortical response units translates into noise
in the BG selection process. Activity in striatal Go units is proportional to
the output activity of their corresponding cortical response units. Because
cortical activity is noisy, striatal Go units integrate the value of the coded re-
sponse across bouts of increasing and decreasing cortical activity. Figure 1b
shows two examples of how striatal Go unit activity for the response that is
ultimately selected shows an increasing trend throughout the trial, appear-
ing to accumulate value evidence preferentially for the activated cortical
response. (This process is analogous to recently reported data with the dif-
fusion model in which good fits to reward-based decision making were
obtained by assuming that the drift process is biased toward the decision
option to which the subject is currently fixating; Krajbich, Armel, & Rangel,
2010). This accumulating striatal Go activity also resembles monkey stri-
atal electrophysiological data in perceptual decision-making tasks (Ding &
Gold, 2010). As noted earlier, the timing of BG selection is further influenced
by relative Go to NoGo activity levels, which are themselves modulated by
dopamine and past learning (i.e., if the activated cortical response is not
adaptive, the NoGo cells will be active and it will be suppressed). Finally,
early surges in STN activity, which are larger when multiple cortical re-
sponse units are coactive, delay responding. Responses are disinhibited
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only after STN activity declines; nevertheless, with sufficient Go activity, a
response can be gated at an earlier point in this process, before STN activity
has completely subsided (see Figure 1b, bottom). We will investigate how
this STN modulation of response selection can be captured by a collaps-
ing decision bound, together with a fixed delay in the onset of evidence
accumulation.

Thus far, the BG model simulations and experiments have primarily fo-
cused on accuracy and learning. As we have alluded, in some applications,
model predictions have been generated as to the effect of behavioral and
biological manipulations on mean RT in decision making (Frank, Samanta
et al., 2007; Frank, Scheres et al., 2007, Moustafa, Cohen, Sherman, & Frank,
2008). However, the model has not generated quantitative predictions for
individual subjects and has not provided detailed predictions about RT dis-
tributions or relationship with accuracy (including speed-accuracy trade-
offs). To begin to address this issue, we generated responses from the BG
model and fit them with the diffusion model. (See Frank, 2006, and the
appendix for detailed model equations and parameters.)

3 Generating Predictions from the BG Model

The BG model supports decision-making processes by simulating nonlin-
ear dynamics among neural populations within multiple BG nodes, with
links to neurophysiological and pharmacological data. While the model
makes qualitative predictions about behavioral data resulting from biolog-
ical manipulations, it might be disingenuous to attempt to quantitatively
fit individual subject behavioral data by optimizing neural network model
parameters. The model does not attempt to simulate the entire perceptual
and motor output processes, and parameter fits would invariably require
modifying available model parameters to account for these phenomena,
but these would clearly be the wrong parameters. Moreover, there are sim-
ply too many degrees of freedom in neural models to allow free parameter
search when only observing behavioral output (accuracy and RT distribu-
tions). Nevertheless, we believe it is of utmost importance to be able to link
different levels of modeling analysis. If a model becomes more and more
complex, it becomes difficult to understand in terms of its core functional
principles. We thus generated behavioral data from the BG model, system-
atically varying a few of its relevant parameters, to observe the resulting
effects on diffusion model parameters.

The core model parameters used here remain identical to those described
previously (Frank, 2006, Moustafa et al., 2008). We generated a large num-
ber (5000) of simulated responses, focusing here on decisions based on a
fixed set of synaptic weights to approximate decision making for a given
learned association, without the added complexity of estimating how dif-
fusion decision variables change during learning. (RTs in the model change
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depending on stage of learning, the degree of positive versus negative
associations, and so on; Moustafa et al., 2008; Wiecki, Riedinger, Meyer-
hofer, Schmidt, & Frank, 2009.) This is similar to fitting decisions made by
subjects in the testing phase of the experiment described below (and not
the learning phase).

To simulate varying degrees of conflict and positive and negative associ-
ations, we directly manipulated the following variables in order to precisely
control them. We simulated two input stimuli, represented by four units in
the sensory input layer. These units projected (with full connectivity) to
both the striatum and preSMA. This allows, due to the random distribu-
tion of corticostriatal synaptic weights, differential striatal populations to
encode the conjunction between the sensory state and the candidate action,
which is important in learning environments. To code the correctness of
the response given the stimulus, we added a unit projecting to one of the
preSMA columns with a weight of 1.0. To simulate response conflict, we
manipulated the weights from this input unit to the incorrect motor units.
For low conflict, this weight was set to 0.7, whereas for high conflict, it was
set to 0.9. (Other values can be used, but we found that these produced ac-
curacy rates corresponding roughly to those observed in the experiment.)
Gaussian noise is added to the membrane potential of preSMA response
units, so that the firing rates of these units are not deterministic from one
trial to the next and from one processing cycle to the next.

Because of the projections from cortical response units to the STN, the
high-conflict condition (with greater overall cortical response unit activity)
results in a larger and prolonged STN surge, and hence slowed responding
(Frank, 2006). The degree of slowing is greater than would result from just
lateral inhibition between the cortical response units as in standard accu-
mulator models. We thus assessed the role of parametric changes in STN
function on diffusion model parameters and their sensitivity to conflict.
To do so, we varied the weight scale of the projections from the STN to
the GPi, which acts as a constant multiplier on individual synaptic pro-
jection weights. The default was 0.55 (STN mid), and we varied this to
reduce STN impact (0.4, STN low) and increase STN impact (0.7, STN
high).

We also simulated the impact of changing dopamine (DA) levels on
conflict-based decision making. In the model, dopamine units in the SNc
project to Go and NoGo units along different projections that are excitatory
and inhibitory (due to the differential expression of D1 and D2 receptors in
the two striatal populations; see Frank, 2005). Thus, an increase in dopamine
will favor Go unit activity over NoGo unit activity, and vice versa for a
decrease in dopamine. These changes in dopamine allow us to simulate
both chronic biological changes (e.g., due to Parkinson’s disease or med-
ications) and the values of the candidate choices. Thus, when dopamine
levels are high, they emphasize Go unit activity, so if both candidate ac-
tions are strongly activated in cortex (i.e., conflict), the corresponding two
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populations of Go units will be more active in a manner equivalent to that
which occurs in a win-win decision between two responses that had both
received a high probability of positive reinforcement (as in the empirical ex-
periment reported by Frank, Samanta et al., 2007, and below). Conversely,
low DA levels potentiate NoGo activity, and if cortical conflict is high,
this is equivalent to simulating a high-conflict lose-lose decision. In our
simulations, we therefore consider conditions in which DA levels are high
(normalized SNc dopamine unit activity ∼0.7) and low (normalized SNc
unit activity < 0.5). For low-conflict win-lose conditions, these changes in
dopamine activity will simply affect the relative excitability of the Go units
coding for the more activated (winning) response.

Response times are measured as described previously (Frank, Scheres,
et al., 2007; Moustafa et al., 2008; Wiecki et al., 2009). Specifically, time
in the neural model is measured in terms of processing cycles in which
membrane potentials and neural firing rates are updated (as a function of
current inputs and subject to time constants limiting the rate with which
activations can change). Because we are interested in examining the BG
contributions to decision making, we measure RTs in terms of the number
of processing cycles until a response is gated by the BG, that is, until a
given thalamic unit exceeds a threshold level of normalized firing rate
(arbitrarily set to 0.8) and one of the output motor units is at least 50% active.
(When the thalamus is excited, preSMA units reach maximal activity almost
immediately.) Using the thalamus ensures that we are always examining
RT distributions influenced by the BG circuitry, and not responses that
could in principle be generated by direct sensory-motor transformations.
(In practice, this rarely occurs in the model unless the weights from sensory
cortex to preSMA units sufficiently favor one response over the other, as
would be the case in simple perceptual decisions but not reinforcement-
based ones).

We first generated simulated data from the BG model and manipulated
three key factors: the degree of response conflict, the levels of dopamine
(emphasizing Go or NoGo activity levels), and the strength of STN-GPi
weight projections (affecting the degree to which STN activity contributes
to preventing responses from being gated prematurely). Next, we used the
diffusion model to fit the simulated data as if they had been generated
by a human subject for all combinations of the above factors. We linearly
transformed RTs in network processing cycles to a realistic range in seconds
by multiplying them by 10. This procedure allows us to estimate the diffu-
sion model parameters that best correspond to the BG model’s predictions
and how they vary as a function of experimental condition: high versus
low conflict, high versus low dopamine (simulating effects of value, e.g.,
win-win versus lose-lose), and three levels of STN-GPi projection strengths
(low, mid, and high). This theoretical exercise is needed if one were to de-
rive predictions from the BG model resulting from biological manipulation
(e.g., dopamine medications, STN deep brain stimulation, or individual
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Figure 2: The diffusion model. (Top) Three simulated paths with drift rate
v, boundary separation a, and starting point z. (Bottom) Encoding time (u),
decision time (d), and response output (w) time. The nondecision component
is the sum of u and w with mean = Ter and with variability represented by a
uniform distribution with range st.

differences in tract strengths) and to then test the model predictions as a
function of these manipulations with a human experiment. For example,
we hypothesize that transiently increased STN activity associated with de-
cision conflict induces a change in diffusion model parameters, associated
with an increase in decision threshold or delaying the onset of evidence
accumulation. Thus, we predicted that conflict would induce a change in
estimated diffusion parameters and that this conflict effect would be para-
metrically scaled by the strength of STN projections. We tested these and
other predictions by varying the relevant BG model parameters and esti-
mating their resultant effects by fitting the diffusion model to the outputs
of the biological model.

4 The Diffusion Model

The diffusion model (Ratcliff, 1978) is a model of the cognitive processes
involved in making simple two-choice decisions (see Figure 2). It separates
the quality of evidence entering a decision from the decision criteria and
from other, nondecision processes such as stimulus encoding and response
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execution. The model applies only to relatively fast two-choice decisions
(mean RTs typically less than about 1000 to 1500 ms) and only to decisions
that are a single-stage decision process (as opposed to the multiple-stage
processes that might be involved in, for example, reasoning tasks or card
sorting tasks).

Decisions are made by a noisy process that accumulates information
over time from a starting point z toward one of two response criteria, or
boundaries: a and 0. When a boundary is reached, a response is initiated.
The rate of accumulation of information is called the drift rate (v), and it
is determined by the quality of the information extracted from the stimu-
lus in perceptual tasks and the quality of match between the test item and
memory in memory and lexical decision tasks. The nondecision compo-
nents of processing such as encoding and response execution are combined
into one component with mean Ter. Within-trial variability (noise) in the
accumulation of information from the starting point toward the boundaries
results in processes with the same mean drift rate terminating at different
times (producing RT distributions) and sometimes at the wrong boundary
(producing errors and associated RT distributions). It is assumed that com-
ponents of processing vary from trial to trial. Across-trial variability in drift
rate (normally distributed with SD η) and starting point (uniformly dis-
tributed with range sz), in conjunction with boundary positions and drift
rates, determines the relative speed of correct versus error responses. It
is also assumed that the nondecision component varies across trials, uni-
formly distributed with range st (the precise form of this distribution is not
critical because the nondecision time variability is much less than the deci-
sion time variability; thus, in the convolution of the two, the decision time
distribution dominates). (For further details of the model, see Ratcliff &
McKoon, 2008, for a review; Ratcliff & Smith, 2004, for comparisons among
the different sequential sampling models; and Ratcliff & Tuerlinckx, 2002,
for how to fit the model to data.)

Fits of the diffusion model to a large number of experiments have
produced one-to-one mappings between experimental manipulations and
model parameters. Changes in the quality of evidence entering the decision
process are modeled by changes in drift rate. Speed-accuracy trade-offs are
modeled by changing the distance between the boundaries of the decision
process: wider boundaries require more information before a decision can
be made, leading to more accurate and slower responses. Both of these ma-
nipulations, quality of evidence and speed-accuracy instructions, produce
changes in both accuracy and RTs, including changes in the spreads and lo-
cations of the RT distributions across conditions, for both correct and error
responses. Changes in all aspects of the data (accuracy and the spread and
location of RT distributions for correct and error responses) are handled by
changes only in drift rates when the difficulty of the stimulus information
is manipulated and only in distance between the boundaries if speed and
accuracy instructions are manipulated. In other words, a change in one
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parameter accounts for changes entailing many degrees of freedom in the
data.

Ratcliff and Tuerlinckx (2002) carried out a number of simulations that
showed that the model is identifiable. Simulated data were generated, and
the model was then fit to the simulated data. With large numbers of obser-
vations, the original parameters were recovered with little bias. But with
smaller numbers of observations, there were some biases. This showed that
the model is identifiable in that a change in boundary separation cannot be
mimicked by a change in drift rate, for example. Ratcliff (2002) also showed
that the model is quite constrained. He generated simulated data from a
number of different assumptions and showed that the model could not fit
those patterns. The main aspect of the simulated data that the model could
not fit was the behavior of RT distributions. They had to be of just the right
shape, and they had to change in just the right ways across conditions. Thus,
we asked whether changes in conflict and BG model parameters would lead
to identifiable changes in diffusion model parameters.

Figure 3 (bottom) presents a heat map of simulated processes in the dif-
fusion model for parameter values that correspond to the low-conflict con-
dition in fits to the simulated BG data (for low STN and high dopamine/Go
conditions). As Ratcliff (1988, 2006) described, the evolution of paths is to
move the average toward the boundary to which the process is drifting.
This rapidly produces an almost stationary distribution, and then, as pro-
cesses exit the diffusion process, this distribution gradually collapses. An
example of this distribution is shown to the right of the heat map. The peak
of this distribution can be seen to correspond to the peak heat from time 0.2
and upward, which illustrates the stationary distribution of processes de-
scribed. We plotted a similar heat map for the BG model, this time plotting
the summed and normalized difference between populations of striatal Go
unit activities coding for the two responses. The overall dynamic is simi-
lar, but with the distribution collapsing more swiftly as responses exceed
threshold.

5 Fitting the BG Model Accuracy and RT Distributions
with the Diffusion Model

Simulated data from the BG model were generated with parameter values
that qualitatively match the experimental reinforcement conflict design in
Frank, Samanta et al. (2007) and Cavanagh et al. (2011). The simulated data
had three factors manipulated. We parametrically varied the strength of the
projections from STN to GPi (STN strength). This manipulation allows us to
investigate to what degree STN influence on BG output affects decision pa-
rameters and can also approximate the effects of STN manipulations (e.g., by
deep brain stimulation) or individual differences in engagement of the hy-
perdirect pathway (e.g., due to differential tract strengths or STN excitabil-
ity to preSMA inputs). We therefore estimated different values of boundary
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Figure 3: Heat maps of simulated paths for the diffusion model and the BG
model (difference between summed and normalized firing rates for striatal
Go units coding for the two responses). Red corresponds to a high path den-
sity, blue to a low path density. For the diffusion model, the distribution to
the right corresponds to the asymptotic distribution of path positions after
about 0.2 units on the x-axis. (Bottom). Example RT histograms generated
from the BG model for low- and high-conflict conditions. Distributions are
skewed and show approximately the same shape as human RT data and of
the diffusion model, and hence the corresponding diffusion model parameters
that produce these distributions can be estimated. (The figure shown here is a
grayscale version of a color figure presented in the online supplement, available
at http://www.mitpressjournals.org/doi/suppl/10.1162/NECO_a_00270.)
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separation and nondecision time for each level of STN strength. The other
factors, degree of response conflict and levels of dopamine (Go/NoGo ac-
tivity), were manipulated within each of these levels of STN strengths (e.g.,
to simulate different task conditions involving levels of conflict and reward
value).

The resulting simulated data are summarized in Table 1, showing re-
sponse proportions for the more rewarded choice and the 0.1, 0.5, and 0.9
RT quantiles for the more and less rewarded choices. The RT distributions
from the BG model are right-skewed and look typical of RT data. The right
skew can be seen from the quantiles because the distance between the 0.9
and 0.5 quantiles is greater than the distance between the 0.1 and 0.5 quan-
tiles. The effect of increasing conflict was to reduce accuracy by 15% and
disperse the RT distribution, delaying the 0.1 quantile RT by between 0
and 20 ms and the 0.9 quantile by between 40 and 120 ms. Increased STN
strength led to more skewed RT distributions, delaying the 0.1 quantile by
60 to 80 ms and the 0.9 quantile by 150 to 200 ms, and also modestly im-
proved accuracy (by about 1–2%). In general, responses for less rewarded
choices are a little slower than those for more rewarded choices.

These findings are largely consistent with those of Frank (2006), show-
ing that removing the STN altogether from the model led to premature re-
sponding and impaired accuracy in high-conflict conditions. They are also
consistent with electrophysiological data showing increased STN activity
during response conflict and accordingly increased RTs (Isoda & Hikosaka,
2008; Cavanagh et al., 2011). In contrast to STN effects, low dopamine (more
NoGo activity) relative to high dopamine (more Go activity) did not affect
accuracy but selectively delayed the leading edge of the RT distribution
and not the tail (i.e., the 0.1 quantile RT was slowed by 20 to 40 ms, for low
to high STN strength, but subsequent quantiles were delayed less, with the
0.9 quantile RT completely unchanged).

It is important to note here that some of the effects, such as a change in
only the leading edge of the RT distribution, are not normally seen with
standard decision-making manipulations, such as speed-accuracy, or dif-
ficulty. However, these effects are observed with biological manipulations
such as deep brain stimulation, dopamine manipulations, and conflict.

We fit these simulated data with two versions of the following assump-
tions. To simulate different levels of stimulus quality, we allowed drift rates
to vary as a function of conflict. However, we also asked whether, over and
above changes in drift, conflict is associated with an increase in decision
bound, due to STN contributions, as posited informally (Frank, 2006). Re-
call that this model suggests that during high-conflict decisions, a transient
increase in STN activity induces a global NoGo process that temporarily
prevents responding or makes it more difficult to facilitate any response.
That is, if the STN is sufficiently active so that no amount of striatal Go
activity will gate a response, this would be captured by a delay in the on-
set of decision process. In contrast, if the STN surge simply makes it more
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difficult to gate a response but which could still occur with sufficient stri-
atal Go activity, this would correspond to an increased decision threshold
(boundary). Finally, a combination of both effects is possible: there might
be a period during which STN effects are so strong as to delay all responses,
followed by a collapsing bound reflecting the decline in STN activity. We
thus allowed diffusion model parameters representing boundary settings
and nondecision time to differ as a function of STN strength. Finally, we
allowed dopamine levels to also influence the nondecision time, given the
known role of dopamine in facilitating motor response execution. In sum,
this combination of parameter fits allows us to test whether dopamine
affects decision- and nondecision-related processes, whether decision con-
flict can be captured solely by changes in drift rate, or whether a change in
boundary is also needed, and whether STN strength modulates all of the
above effects.

We tested the above assumptions in two sets of fits. In the first set (the
static model), the boundary setting and nondecision time variables remain
static throughout the trial but can change across conditions. In the second
set of fits (the dynamic model), we assume that the decision bounds collapse
exponentially with time (Frazier & Yu, 2008; Ditterich, 2006; Churchland,
Kiani, & Shadlen, 2008; Viviani, 1979) from a single value to asymptotic
values as in the static model. This choice was motivated by the notion that
STN activity, posited to affect the decision bound as a function of conflict,
shows an initial surge during response selection but then subsides with time
to allow a response to be gated. We assumed an exponential decay from
initial level to asymptote with a time constant of decay that was estimated
to be 250 ms.

This collapsing-bound assumption is difficult to implement in the dif-
fusion model because there are no exact solutions for the RT distribution
with collapsing boundaries. We therefore used a random walk approxima-
tion to the diffusion process (Tuerlinckx, Maris, Ratcliff, & De Boeck, 2001)
to generate accuracy values and quantile RTs for 2000 simulated trials per
experimental condition. The step size in the simulation was 1 ms. The dif-
fusion model was fit to the simulated data (and experimental data later)
by minimizing a chi square statistic in a two-step process: using a Markov
chain Monte Carlo method to obtain parameter values near the best fit and
then using a standard SIMPLEX minimization routine to find the best-fitting
parameter values. The SIMPLEX routine was restarted seven times using
the parameter values from the prior fit. The data entered into the minimiza-
tion routine for each experimental condition were the 0.1, 0.3, 0.5, 0.7, 0.9
quantile RTs for correct and error responses (more reinforced choices and
less reinforced choices) and the corresponding response proportions. The
quantile RTs and the diffusion model were used to generate the predicted
cumulative probability of a response occurring by that quantile RT. Sub-
tracting the cumulative probabilities for each successive quantile from the
next higher quantile gives the proportion of responses between adjacent
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quantiles. For the chi square computation, these are the expected propor-
tions, to be compared to the observed proportions of responses between
the quantiles (i.e., the proportions between 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0,
which are 0.1, 0.2, 0.2, 0.2, 0.2, and 0.1). The proportions are multiplied
by the number of observations in the condition to give observed (O) and
expected (E) frequencies and summing over (O − E)2/E for all conditions
gives a single chi square value to be minimized (see Ratcliff & Tuerlinckx,
2002, for a full description of the method).

We minimized the chi square measure described above to fit the static
and dynamic models to the simulated data (see Ratcliff & Tuerlinckx, 2002).
Because the units are in ten’s of milliseconds (i.e., very granular) and be-
cause the statistical properties of the model generating the simulated data
are not known, we cannot assign significance levels to the fits. However,
we can use the values to assess relative goodness of fit.

We also compared diffusion model predictions for the standard constant
boundary model from this simulation method with exact predictions us-
ing the diffusion model equations (Ratcliff & Tuerlinckx, 2002), and they
produced almost exact matches. For all conditions in the dynamic model,
a common decay time constant was used, and a common initial level of
the boundary separation was used (after preliminary fits showed similar
values when these were allowed to vary with STN level).

Figure 4 shows the fits of the model to the response proportion and the
0.1, 0.5, and 0.9 quantile RTs. The static model fits the RT quantiles a little
better than the dynamic model, but the dynamic model fits the accuracy
values better than the static model. Because these are simulated with a very
large number of observations (about 5000 per condition), the variabilities
in the quantiles and accuracy values are much lower than would be seen in
human data. Thus, although there are small consistent misses, the overall
fits are certainly as good as is obtained when fitting human data (cf. Ratcliff,
Thapar, & McKoon, 2010 and the experiment presented below).

The chi square for the model with different static values for nondecision
component and boundary separation was 2031, and for the model with
collapsing boundaries, it was 1806. We also fit a (standard) model with one
value of the nondecision time and constant boundaries, and the chi square
value was 6592. Thus, the numerical fit of the simple standard model is
three times worse than the numerical fits of the other two models, and the
static and dynamic fit about as well as each other, with a modest (but not
necessarily meaningful) advantage for the dynamic model. Our results sup-
port the notion that the effects of dopamine and conflict on RT distributions
of the BG model can be captured by a diffusion model in which conflict
either transiently or statically increases the decision threshold as a function
of STN strength, and dopamine speeds response execution. Although the
fits do not clearly distinguish between static and dynamic bounds, it is
notable that the collapsing bounds model more closely corresponds to the
known underlying profile of STN activity in the BG model, posited to affect
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Figure 4: Plots of response proportion (accuracy) and the 0.1, 0.5, and 0.9
quantile RTs from the BG model simulations and the fitted diffusion model
predictions.
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Figure 5: (Top) Plots of the decaying boundaries as a function of conflict and
STN strength. The gray lines are for low conflict and the black lines for high
conflict. Solid, dashed, and dotted lines are for fits to high, medium, and low
STN strength, respectively. (Bottom) Plots of normalized firing rates across
all STN units as a function of time, averaged across trials, for low and high
conflict, respectively. Error bars reflect SEM. Note that the best-fit decision
boundaries in the top panel match the profile of STN activity, where there is little
difference between initial heights of the STN surge but diverging trajectories
across conflict conditions with time. The effect on threshold is greater with
higher STN strength.

decision bounds (see Figure 5). Indeed, although the diffusion model fits
had access only to the RT distributions (see Figure 5, bottom), the best-fitting
trajectories of the decision bounds closely reflected the internal temporal
dynamics of the decrease in STN activity with time.
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Table 2: Parameters from Diffusion Model Fits to Simulated Data from the BG
Model.

a Ter v1 High v2 Low
Model Baseline Baseline η sz st Conflict Conflict τ

Static model .078 .420 .349 .041 .107 .121 .337
Dynamic model .056 .379 .183 .016 .121 .077 .206 .249

a1 a2 a3 Ter1 Ter2 Ter3 a4 ainitial
Static model .011 .032 −.007 .016 .033 .026 −.010
Dynamic model .027 .056 −.015 .015 .033 .020 .153

Notes: a-baseline and Ter-baseline are the values of the boundary and nondecision time
for go, high-conflict, and low STN. v1 and v2 are drift rates, η is across-trial SD in drift rate,
sz is the across-trial range starting point, st is the across trial range in nondecision time.
a1 and Ter1 are the increments in boundary and nondecision time from low to medium
STN, a2 and Ter2 are the increments in boundary and nondecision time from medium to
high STN, a3 is the increment from high to low conflict (the negative value means it is
actually decremented), Ter3 is the increment from Go to NoGo. For the static model, a4 is
the increment for NoGo (the negative value means it is actually decremented), and for the
dynamic model, τ is the time constant of decay in the collapsing boundaries, and ainitial is
the initial value of the collapsing boundary.

Analysis of fitted model parameters reinforces the above interpretations.
Plots of the best-fit collapsing bounds as a function of time for the different
levels of STN strength and different conflict levels are presented in Figure
5, and parameter estimates are shown in Table 2. Overall, STN strength
parametrically influences the decision bound in both models (parameters a1
and a2 in the table are both positive). Further, conflict modulates the bound
within each STN level (parameter a3, change from high to low conflict, is
negative). These effects of conflict are over and above changes in drift: drift
rate is lower for high conflict (v1) than low conflict (v2), as expected due to
the different levels of evidence simulated in these conditions (see Table 2).
Also in the table, nondecision time is modulated by relative NoGo activity
(low dopamine–greater NoGo–slower response execution), as captured by
a positive value of parameter Ter3. Nondecision time also parametrically
increases with STN strength in both models (Ter1 and Ter2), suggesting that
STN activity induces a delay in the onset of evidence accumulation. Finally,
follow-up simulations showed that STN strength selectively modulated
boundary and nondecision time, and not drift rate or other parameters.
Specifically, we tested a version of the collapsing-bound model in which
all parameters were estimated separately for each level of STN strength. In
these simulations, drift rates for both low and high conflict were estimated
to be virtually identical across levels of STN strengths (low conflict: 0.13,
0.12, and 0.14 for low, mid-, and high-STN; high conflict: 0.31, 0.33, 0.31). In
contrast, boundaries and nondecision times again increased parametrically
(for low conflict and high dopamine, the boundary increased from 0.066 to
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0.079 to 0.103 across levels of STN and Ter increased from 0.40 to 0.42 to 0.45).
Because this model is more complex (having nearly three times as many
parameters), we focus our analysis on the model accounting for differences
in STN strength only by changes in bound and nondecision time.

Next, we present data from a reinforcement conflict experiment in young,
healthy subjects, similar to that used in Parkinson’s patients originally mo-
tivated by the BG model (Frank, Samanta et al. 2007; Cavanagh et al., 2011).
We then apply the three diffusion model variants to determine whether they
fit the data in a way that is consistent with the way in which the diffusion
model had to be altered to fit data simulated from the BG model.

6 Experiment

The experiment replicates the probabilistic selection reinforcement learning
task (Frank, Seeberger, & O’Reilly, 2004; Frank, Samanta et al., 2007) with
college-age subjects at Ohio State University. Experimental procedures are
described in detail below. The main difference between this experiment and
prior versions of this task is that many more subjects were tested and many
more trials were collected in the test phase following learning in order to
provide enough data to examine RT distributions.

6.1 Subjects. Thirty normal healthy undergraduate students from Ohio
State University and in surrounding areas participated in the experiments.
All subjects were paid $12 for their participation in one 45-minute session.

6.2 Method. Pairs of letters were presented to the subject, and the sub-
ject’s task was to choose one of them. The letters were presented on the
screen side by side. Subjects had to respond with the / key to choose the
letter on the right and the z key to choose the letter on the left. The letter
pair remained on the screen until a response was made. The letters used
were dissimilar consonants (QF, NB, and XT), but we refer to them here as
AB, CD, and EF (for ease of presentation and comparison to prior studies
with this task in which Japanese Hiragana characters were used as stimuli).
In the training phase, for the AB pair, A was reinforced 80% of the time by
providing a correct message 80% of the time when A was chosen and an
error message the other 20% of the time. For the CD pair, C was reinforced
70% of the time, and for the EF pair, E was reinforced 60% of the time. The
reinforcement probabilities of the alternative stimuli (B, D, F) are comple-
mentary (1 − p) to those for the ones described (A, C, E). The letter pairs
were presented in random order and random screen location (e.g., AB or
BA). Feedback was presented for 300 ms followed by a 100 ms blank screen
before the next pair was presented. The training phase of the experiment
consisted of 360 of these trials (equivalent to the maximum of 6 blocks of
60 trials used in prior studies, although here this was broken down into 4
blocks of 90 trials). Subjects were able to take a break between blocks.
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In order to examine RT distributions, the test phase was considerably
longer than that typically used, consisting of 800 trials; 80% of the trials (640)
used exactly the same test structure as the training phase. The remaining
20% of the trials consisted of 10 novel combinations of stimuli that had not
been presented during the training phase. Each of these letter pairs was
presented 15 times in the test phase. There were 100 trials in a block in the
test phase.

Because there were more test trials, we provided feedback for these trials
(in contrast to the standard task in which no feedback is applied during test).
The reinforcement probabilities were chosen to be approximately consistent
with the individual letter reinforcement probabilities, thereby maintaining
the reinforcement hierarchy. Specifically, the reinforcement probabilities of
the first letter of each novel pair were AC .7, AE .7, CE .6, AF .9, BD .4,
BF .4, DF .4, EB .6, AD .7, and CB .7. These can be roughly divided into
three classes according to the amount of reinforcement conflict engendered
(Frank, 2006; Frank, Samanta et al., 2007). In high-conflict win-win choices,
both letters had been positively reinforced (AC, AE, and CE); in high-conflict
lose-lose, both letters had been associated with negative reinforcement (BD,
BF, and DF); and in low-conflict test pairs, one stimulus was positive and
the other negative (AF, EB, AD, and CD). In the data analyses, the data
from these 10 conditions were grouped into the three classes, and, together
with the three conditions that had been learned in the training phase (AB,
CD, EF), this provided six conditions for model fitting. Thus, the grouped
repaired conditions had only about 20% of the number of observations as
the test conditions that were used in training (AB, CD, and EF). Because
we focus here on decision making based on already learned reinforcement
probabilities, only the data from the 800 test trials are presented, not the
data from the 360 training trials.

Previously test phases in similar experiments usually had only 60 or 120
trials. If we used 800 trials without feedback, we would likely no longer ob-
serve conflict effects on RT as subjects begin to respond simply by stimulus-
response habit. We therefore opted to continually reinforce choices in the
test phase. Our assumption for fitting test trials was that almost all the
learning had already occurred and the feedback just maintained the reward
probabilities. Over the course of test, accuracy improved only modestly, by
1.5%, and RTs decreased by 60 ms from the first half to the second half.
However, most of the decrease was in the tail of the RT distribution; the
leading edge decreased by about 25 ms. From experience, averaging these
together (first half versus second half) will produce parameter values that
are about the average of the separate fits. We did not do this because the
quality of the fits with these few data points will increase variability and
reduce the quality of fits overall and reliability of parameter values a great
deal.

We also included a procedure to prevent subjects from responding too
fast without processing the stimulus. When a test pair was presented, if the
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response was shorter than 280 ms, a message was presented indicating that
the response was too fast. This message remained on the screen for 900 ms.
In the data analyses, responses shorter than 280 ms and longer than 5000
ms were eliminated (this resulted in elimination of about 2% of the data).

6.3 Results.

6.3.1 Response Proportion and Quantile RTs. Table 3 shows response pro-
portions (accuracy in choosing the optimal stimulus) and five quantile RTs
for the three trained conditions and the three groups of recombined con-
ditions. The response proportions for the optimal stimulus in low-conflict
test pairs (AF, EB, AD, and CD) was about the same as the average of that
for the three pairs used in training (AB, CD, and EF). Both the high-conflict
win-win (AC, AE, and CE) and lose-lose (BD, BF, DF) pairs had choice
proportions with lower accuracy (54% and 63% accuracy, respectively).

Median RTs (the 0.5 quantiles in Table 3) showed an increase in me-
dian RT for the high-conflict lose-lose condition relative to the win-win
(and other) condition. The difference was 244 ms, but about 80 ms of this
difference was due to the results from two subjects, as is shown in the
second-to-bottom row of Table 3.

This shows that negative conflict delays processing more than positive
conflict, a feature also found in previous data and BG models of conflict (see
supplemental materials of Frank, Samanta et al., 2007, and Cavanagh et al.,
2011). The speed of less rewarded choices relative to more rewarded choice
is mixed. For individual subjects, sometimes they are faster and sometimes
slower. In the training pairs (AB, CD, EF), the high reinforced response is
faster than the low reinforced choice. These patterns of RTs for the two
choices across individuals have been shown to be readily accommodated
by variability in drift rate and starting point in the diffusion model (for a
summary, see Ratcliff & McKoon, 2008).

For lose-lose (high-conflict), RTs are longer than for low-conflict trials,
with a delay in the leading edge and a longer tail. This shift in the RT
distributions is a target for modeling in the next section (cf. Ratcliff &
Smith, 2010). In contrast, there is almost no delay in the leading edge for
the positive win-win conflict pairs.

7 Diffusion Model Fits

The diffusion model was fit to the data from individual subjects. We fit
three versions of the model. The first was the standard model with a single
boundary and nondecision time across conditions, but still allowing drift
rates to differ. The second allowed a different value of the nondecision time
(a delay in the onset of evidence accumulation) for the lose-lose high-conflict
condition. The third assumed initially raised but collapsing boundaries for
the lose-lose condition with constant boundaries for the other conditions.
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(Recall that the fits to the BG model showed both increases in nondecision
time and boundary as a function of STN strength and conflict.)

We show the results in two ways. First, we show the mean response
proportions and quantile RTs for the predictions of the best-fitting collaps-
ing boundary model in Table 3. These are to be compared with the mean
data values also shown in Table 3. The model with two nondecision time
parameters shows almost identical fits to those of the collapsing boundary
model. In contrast, the standard model with one nondecision time param-
eter and constant boundaries provides a large misfit, predicting quantile
RTs for the lose-lose conflict condition almost the same as for the win-win
conflict condition, unlike the data (see lines 4 and 5 in Table 3). However,
in this standard model, the response proportions match the data.

The second display of the data shows plots of predicted and actual
accuracy values against each other and of the predicted 0.1, 0.5, and 0.9
quantile RTs against each other for each of the 30 individual subjects for the
collapsing boundary model. Because the training conditions have about five
times the amount of data as the re-paired conditions, we would expect them
to fit better because they are less noisy and weighted more. The data from
the training conditions in the test phase are shown as x’s in Figure 6, and the
repaired conditions are shown as o’s. Most of the larger misfits are from the
re-paired conditions. The model with two values of the nondecision time
shows quite similar plots with no deviations more extreme than those in
Figure 6.

These results show that allowing only the drift rate to change is not
sufficient to account for slowing in the lose-lose conflict condition, but
that the same two effects needed to capture the simulated data from the
BG model (adding a constant delay or assuming raised and collapsing
boundaries) provide a better (adequate) fit.

The diffusion model parameters for the three models are shown in
Tables 4 and 5. Across models, the parameters not used to fit the lose-
lose condition are remarkably similar (these contain 94% of the data). In
contrast, for the model with two nondecision times, the mean nondecision
time for the lose-lose condition is over 100 ms longer than that for the other
conditions. For the collapsing-boundary model, the initial boundary is over
twice as large as the asymptotic boundary, and the decay constant is almost
300 ms.

The average chi square goodness-of-fit statistic for the standard model
was 70.5 with 54 df, the value for the model with two nondecision time
parameters was 64.0 with 53 df, and the value for the model with decaying
boundaries was 62.2 with 52 df. The standard model was nested in the
other two models, and the chi square values between the standard model
and the other two were significantly different. For the standard model,
the fits for 16 of 30 subjects were significant (indicating deviations from
expected distributions predicted by the model); for the two nondecision
time models, 8 fits were significant; and for the collapsing-boundary model,
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Figure 6: Plots of response proportion (accuracy) and the 0.1, 0.5, and 0.9 quan-
tile RTs for the diffusion model predictions (with collapsing boundary) against
the data. The x’s are for the conditions used in training at test and the o’s are
for the re-paired conditions (the latter have five times less data than the former
and so are more variable).

Table 4: Model Parameters for Fits to Data from the Experiment.

Model a Ter Ter2 η sz st ainitial Decay Const. Chi Square

Standard 0.176 307 0.173 0.012 159 70.5
2Ter’s 0.175 314 422 0.191 0.012 212 64. 0
Collapse 0.175 312 0.185 0.013 180 0.370 295 62. 2

9 were significant. Thus, more than two-thirds of the subjects were well fit
by the alternative models, whereas only half of them were reasonably fit by
the standard model.

Although the differences in the chi square values were not large for
the standard versus the other two models, the lose-lose condition (the one
causing the miss) was only about 6% of the total data, so the misfit in this
was large enough to produce over a 10% change in the goodness of fit. It is
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Table 5: Drift Rates for Fits to Data from the Experiment.

Positive No Conflict Negative
Conflict Re-Paired AF, Conflict

Model AB CD EF AC, AE, CE EB, AD, CD BD, BF, DF

Standard 0.206 0.204 0.164 0.029 0.167 −0.021
2 Ter’s 0.221 0.222 0.176 0.024 0.179 −0.023
Collapse 0.218 0.215 0.168 0.020 0.180 −0.022

also worth noting that almost half the difference in chi square between the
standard model and the other two models was due to relatively poor fits
for the standard model to the data from just two subjects (e.g., 3.0 out of
the 8.3 difference between the standard model and the collapsing-boundary
model). But even for the rest of the subjects, the discrepancy was reliable.
To illustrate the quality of the fits, the bottom half of Table 3 shows averages
across subjects of the values of predicted response proportion and quantile
RTs for the model with collapsing boundaries.

In sum, modeling the lose-lose conflict condition by either inducing a
delay in onset of the decision process or allowing a temporary increase in
decision boundaries produced almost the same quality of fit. Both of these
assumptions are consistent with the fits of the diffusion model to the BG
model.

8 Discussion

These findings demonstrate the benefit of examining multiple levels of
modeling analysis, combining the best features of biologically plausible
neural circuits of decision making with the theoretical grounding afforded
by the diffusion model. Diffusion model fits to both empirical and simulated
BG model data in the domain of reinforcement conflict–based decision
making provided a unitary explanation of the effects of decision conflict.
In particular, reasonable fits to the high-conflict data could be achieved by
either inducing a delay in the onset of the decision process or increasing the
initial decision boundary and allowing this boundary to collapse with time.

In the BG model, the decision conflict is detected by the coactivation of
multiple competing motor units. Standard cortical models of decision mak-
ing (Mazurek et al., 2003; Ratcliff et al., 2007; Usher & McClelland, 2001)
predict that due to either lateral inhibition among cortical response units or
lower drift rate, this conflict would induce slowed RTs. However, this mech-
anism (which, as noted above, is also present in the cortical units of the BG
model) is not sufficient to account for the additional slowing observed in the
high-conflict condition. In the BG model, as in the data, responses are partic-
ularly slowed in high-conflict lose-lose conditions. The slowing is observed
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for two primary reasons. First, conflict detected in cortical response units
activates the STN via the hyperdirect pathway. This STN surge excites the
output of the BG, which inhibits the thalamus and prevents any response
from being facilitated until the STN activity subsides (Frank, 2006). We
showed here that parametric changes in STN strength are associated with
parametric increases in decision bound and its sensitivity to conflict. This
effect is exacerbated in lose-lose conflict conditions due to strong striatal
NoGo unit activity (Wiecki et al., 2009) which slows RTs by adding negative
evidence to each response. It also leads to greater STN recruitment (due to
less feedback inhibition from GPe), thereby magnifying conflict effects.

Thus conflict and negative value conspire to produce slowed decisions
under conflict (see Frank, Samanta, et al., 2007). This could be interpreted
as a delay in the onset of evidence accumulation (if the STN surge is suf-
ficient to prevent Go activity from affecting BG output). Or, alternatively
(as proposed in Frank, 2006), it could be interpreted as a transient increase
in decision boundaries, which then collapse as the STN activity subsides
(if the STN surge only makes it more difficult for Go activity to facilitate
a response). In contrast, for the positive win-win decisions, the STN ac-
tivity primarily acts to compensate for impulsive speeded responding that
would otherwise occur for two highly valenced decision options, due to the
overabundance of striatal Go activity in this condition. Indeed, without an
intact STN, a race model might be more appropriate than a diffusion model
to fit the positive-conflict (win-win) decision trials. Supporting this inter-
pretation, deep brain stimulation disrupts normal STN function and leads
to win-win decisions that are even faster than low-conflict trials (Frank,
Samanta, et al., 2007). Moreover, recent electrophysiological field potential
recordings revealed increased activity in both mediofrontal cortex and STN
as a function of conflict in the same low-frequency bands and in same time
period following stimulus presentation (Cavanagh et al., 2011). That study
also used diffusion model fits to estimate the degree to which variations in
mediofrontal activity related to variations in decision thresholds. Notably,
during high- but not low-conflict decisions, increases in mediofrontal activ-
ity were associated with increases in estimated decision thresholds. More-
over, this relationship between mediofrontal conflict and decision threshold
was reversed when STN function was disrupted with deep brain stimula-
tion (Cavanagh et al., 2011). This result provides converging evidence for
the claim, explored via computational simulations here, that the interac-
tion between cortical conflict and STN results in an adjustment of decision
threshold—and not drift rates or other parameters.

The diffusion model is a particular instance of a class of sequential sam-
pling models of decision making. We do not claim that it is the only such
model that could relate to BG circuitry or the current experimental data. In-
deed, similar conclusions would likely be drawn if relating the BG model to
other related models, such as the linear ballistic accumulator (LBA) model
(Brown & Heathcote, 2008) and the leaky competing accumulator (LCA)
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model (Usher & McClelland, 2001). Specifically, these other models would
have to be altered in similar ways to capture both the experimental data and
the BG model simulated data. Although models differ in their other details,
all of them involve a single decision boundary and nondecision value, which
would need to be altered to account for the pattern of accuracy and RT distri-
butions in the high-conflict versus low-conflict conditions (or as a function
of STN strength). We found that drift rate alone was not sufficient to account
for the differences between conflict conditions because accuracy was about
the same for the two conditions, but there was a large shift in the RT distri-
bution. This pattern cannot be modeled by a simple change in drift rate.

How do these results relate to other accounts of decision threshold vari-
ation in fronto-BG circuitry? Forstmann et al. (2008, 2010) showed that the
change of decision threshold (estimated with either the diffusion model or
LBA) due to speed versus accuracy instructions is accompanied by changes
in functional connectivity between preSMA and striatum (rather than
STN). However, as Bogacz, Wagenmakers, Forstmann, and Nieuwenhuis,
(2010) noted, this may reflect a shift from the default tendency to focus on
accuracy to a controlled objective to speed up, which may result from in-
creasing the baseline activation of the response units in preSMA and stria-
tum. Such an effect would result in a lowered effective decision threshold,
which is formally equivalent to maintaining a fixed threshold but adding a
constant amount of evidence to both accumulators so that they begin closer
to threshold. Indeed, other neural models of BG circuitry have shown sim-
ilar effects by increasing synaptic connection strengths from cortex to stria-
tum (Lo & Wang, 2006), which would be equivalent to increasing weights
from cortex to Go units in our model and therefore making it easier to dis-
inhibit a response. We have focused here on an alternative mechanism in
the STN route, which dynamically alters the amount of evidence required
and is engaged when slowing down due to conflict or errors, or shifting
from a prepotent response to a controlled one. Other neuroimaging and
neurophysiological data support this role for the STN hyperdirect pathway
(Aron, Behrens, Smith, Frank, & Poldrack, 2007; Isoda & Hikosaka, 2008;
Fleming, Thomas, Dolan, 2010; Jahfari et al., 2011).

In principle, our goal to relate the diffusion model to corticostriatal cir-
cuitry shares much in common with the model of Bogacz and Gurney (2007).
Indeed, they proposed that the BG precisely implemented the diffusion
model (for two alternative choices) or the multiple sequential probability
ratio test (MSPRT) for more than two alternatives. However, the approach
taken was to derive what functional form the “neurons” in this model would
have to take in order for the relationship with the diffusion model to hold.
As a result, the model could not have produced anything other than what
it was designed to do, and (understandably) a number of simplifying as-
sumptions had to be made for this to be the case. For example, each striatal
unit exactly copies the activity signaled by the cortical input (implying a lin-
ear transfer function), omits the indirect pathway altogether, and does not
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allow for transient surges in STN activity at the onset of the decision process
that decay. Nevertheless, on the surface, the Bogacz model makes a similar
prediction about the role of STN in responding to conflict. Indeed, the STN
conflict computations in their model are critical, implementing a diffusion
process such that evidence for the winning accumulator must be sufficiently
greater than the conflict term in order for a response to be selected. However,
the form of the conflict function in Bogacz models is actually quite different
from that assumed here: it is proportional to the sum of the evidence across
all accumulators. This means that a decision in which one option has high
value and another has low value (e.g., win-lose) would be predicted to have
greater conflict (and increased STN activity) relative to a decision in which
both options have low values (lose-lose). Notably, their model does not
predict that the decision boundary, if estimated with a diffusion model, is
further increased with any type of conflict. The diffusion model has already
taken into account the conflict by accumulating evidence in the form of a
difference signal. Indeed, because the Bogacz model is formally equivalent
to the diffusion model for two alternatives, it could not account for the data
in high-conflict lose-lose conditions without additional modifications (Note
that we make no claim about optimality here, but see below.)

In contrast, our approach has been to explore how the dynamics of
distributed neuronal activity may support learning and decision-making
processes without attempting to derive closed-formed solutions (due to in-
herent nonlinear complexity). Nevertheless, by fitting the diffusion model
to the output of the BG model, we showed that reasonable fits to the simu-
lated data can be obtained by assuming a delay in processing or collapsing
boundaries in the lose-lose conditions. The same assumptions allow the
diffusion model to fit human experimental data well. These results show
how levels of dopamine and conflict affect diffusion model parameters.

It is currently unclear whether the effects of reinforcement conflict on
decision bound that we observe here would extend to other kinds of conflict
paradigms. For example, in the Eriksen paradigm (Eriksen & Eriksen, 1974)
subjects must identify a target item that is surrounded (flanked) by items
that, on conflict trials, suggest the other response to the target. An example
of this is an arrow or angle bracket signaling the target as a response to the
right (>) but with flankers that suggest a response to the left (<<><<).
White, Brown, and Ratcliff (in press) and White, Ratcliff, and Starns (in
press) found that models that assumed that drift rate gradually changed
over time as processing focused more and more on the target provided
the best account of processing in this task. However, it is also possible
that the same STN conflict mechanism is involved to transiently raise the
bound in other situations. For example, consider a Simon task in which
subjects have to make a left response to a left arrow that appears on the
right side of the screen. Initially, the right response is captured by the
location of the stimulus, but after a period of time, the subject can detect
conflict between this response and the rule. Under this situation, the STN
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may reflect temporary response conflict to prevent the initial prepotent
response from reaching threshold. Indeed, this situation is analogous to
that observed in monkey studies in which the STN increases its firing rate
when automatic responses conflict with controlled responses, leading to a
delay in the RT distribution (Isoda & Hikosaka, 2008). Moreover, STN DBS
elicits premature impulsive responding in these conflict conditions just as
it does in the reinforcement conflict tasks (Wylie et al., 2010).

Our results also have theoretical implications for decision-making and
diffusion processes in general. In almost all applications, the diffusion
model assumes that the decision process turns on with a constant drift
rate. However, there are two commonsense possibilities in which drift is
nonstationary that are worth discussing. First, it could be that the rate of
drift changes with time, such that it ramps gradually up to some constant
value. It turns out that the original model with constant drift from the onset
of the decision process actually mimics the gradual ramp. Ratcliff (2002)
generated simulated data with the assumption that the drift rate ramped
up over a 50 ms interval followed by a constant drift rate. When the constant
drift model was fit to the simulated data, it fit well with three changes in the
parameter values, in particular, the nondecision time (Ter ) was delayed by
25 ms, and variability in both nondecision time (st) and starting point (sz)
(Laming, 1968) increased. Therefore, even if in many situations the drift rate
ramps up, this can almost be perfectly mimicked by a constant drift model.

The second case, more proximally related to the current project, involves
a zero drift for some duration followed by an abrupt increase to a con-
stant drift rate. Such an assumption might seem a natural way to fit the
lose-lose conditions in the reinforcement learning paradigm, as these con-
ditions might simply delay the availability of discriminative information
even though the decision process had begun. However, a delay in onset
of discriminative information will not produce the correct predictions for
RT distributions. In the experiment, there was a shift in the leading edge
of the RT distribution for the lose-lose condition. This shift is well accom-
modated by an increase in the nondecision time or a large increase in the
initial decision bound followed by decay or both. But such a shift is not
well captured by zero drift because within trials, noise causes processes to
terminate and hence would elicit only slight delays in the leading edge.
Indeed, to accommodate the delay in the leading edge with zero drift, vari-
ability in the accumulation process would need to be reduced to near zero to
avoid processes prematurely terminating (Laming, 1968; Smith & Ratcliff,
2009; see also Ratcliff & Smith, 2010). The BG model offers a proposal about
which circuits control the onset of the decision process. We therefore feel
that successful integration of the BG model with the diffusion model might
begin to allow these questions to be addressed.

Others have explored collapsing boundaries in diffusion models. For
example, Frazier and Yu (2008) have shown that the collapsing boundary
is optimal for a diffusion process if a time deadline is imposed, but they
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do not examine reinforcement conflict paradigms. It is possible that when
faced with multiple seemingly negative options, it is helpful to initially
avoid whichever responses are considered, but then eventually to reduce the
boundary so that one is not subject to decision paralysis. Indeed, while there
was no deadline imposed in the test phase, subjects knew that they must
respond at some point in order to advance to the next trial and eventually
finish the experiment. Similarly, we have proposed that the STN is involved
in the phenomenon of the paradox of choice, in which choices are avoided
or deferred in the face of conflict, but that the reduction in STN activity with
time is helpful to reduce decision thresholds such that one is not subject to
complete decision paralysis.

The contribution of this research is to show how data from the conflict
conditions in the reinforcement learning paradigm cannot be fit in the tra-
ditional way with the diffusion model (and this applies to other models of
this class). We presented two simple modifications, a delay in processing or
collapsing decision bounds, and showed how these allow the model to fit.
These modifications were motivated by the BG model which implements
equivalent mechanisms to account for conflict in reinforcement learning.
We also showed that the output from the BG model using parameter val-
ues typical of those used in other applications was well fit by the diffusion
model (with the modifications for the conflict conditions). These results
show how a simple computational model can inform a more complicated
but realistic neural model designed to account for the control processes as
well as decision processes.

Appendix: BG Model Implementational Details

For animated video captures of model dynamics during response selection
and learning, see http://ski.clps.brown.edu/BGmodel movies.html. The
BG model can be obtained by e-mailing michael frank@brown.edu. Sev-
eral demonstrations of reinforcement learning processes are available for
download at http://ski.clps.brown.edu/BG Projects.

The model is implemented with the emergent neural simulation soft-
ware package (Aisa, Mingus, & O’Reilly, 2008), adapted to simulate the
anatomical and physiological properties of the BG circuitry in reinforce-
ment learning and decision making (Frank, 2006). This framework uses
point neurons with excitatory, inhibitory, and leak conductances contribut-
ing to an integrated membrane potential, which is then thresholded and
transformed to produce a rate code output communicated to other units. In
the BG model, discrete spiking can also be used and produces similar results
for decision making (but requires additional considerations to function in
learning environments).

Model parameters remain unchanged from several prior simulations
and are listed in Frank (2006). The equations that below are written in
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general form; parameters vary according to physiological properties of
different BG nuclei. For example, GPi/GPe units are tonically active in the
absence of synaptic input, whereas striatal units fire only with convergent
excitatory synaptic input from sensory input and preSMA. The model
neuron parameters below are adjusted to capture these properties as
described in Frank (2006).

The membrane potential Vm is updated as a function of ionic conduc-
tances g with reversal (driving) potentials E according to the following
differential equation:

Cm
dVm

dt
= ge(t)ḡe(Ee − Vm) +

gi(t)ḡi(Ei − Vm) +
gl (t)ḡl(El − Vm) +
ga(t)ḡa(Ea − Vm), (A.1)

where Cm is the membrane capacitance and determines the time constant
with which the voltage can change, and subscripts e, l, i, and a refer to
excitatory, leak, inhibitory, and accommodation channels, respectively (ac-
commodation is included in STN, which allows the surge of STN activity
to decline). The reversal or equilibrium potentials Ec determine the driving
force of each of the channels, whereby Ee is greater than the resting potential
and El and Ei are typically less than resting potential (with the exception
of tonically active neurons in GPi and GPe, where leak drives current into
the neuron; Frank, 2006). Following electrophysiological convention, the
overall conductance for each channel c is decomposed into a time-varying
component gc(t) computed as a function of the dynamic state of the network
and a constant gc that controls the relative influence of the different con-
ductances. The equilibrium potential can be written in a simplified form by
setting the excitatory driving potential (Ee) to 1 and the leak and inhibitory
driving potentials (El and Ei) of 0,

V∞
m = gege

gege + glgl + gigi
, (A.2)

which shows that the neuron is computing a balance between excitation
and the opposing forces of leak and inhibition. This equilibrium form of the
equation can be understood in terms of a Bayesian decision-making frame-
work, whereby the neuron evaluates whether the excitatory evidence for the
“hypothesis” it is detecting according to its synaptic weights is sufficiently
greater than the evidence against that hypothesis. In the preSMA, gaussian
noise (μ = 0, σ = 0.002) is added to the membrane potential of each unit,
producing temporal variability in the extent to which each candidate re-
sponse is activated before one of them is gated by the BG. Accommodation
currents in the STN build up with time-integrated activity.
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The excitatory net input/conductance ge(t) is computed as the propor-
tion of open excitatory channels as a function of sending activations times
the weight values:

ge(t) = 〈xiwi j〉 = 1
n

∑
i

xiwi j. (A.3)

For units with inhibitory inputs from other layers (the red projections in
Figure 1), predominant in the basal ganglia, the inhibitory conductance is
computed similarly, whereby gi(t) varies as a function of the sum of the
synaptic inputs. Dopamine also adds an inhibitory current to the NoGo
units, simulating effects of D2 receptors. (See below for a simplified imple-
mentation of within-layer lateral inhibition.) Leak is a constant.

Activation communicated to other cells (yj) is a thresholded (�) sig-
moidal function of the membrane potential with gain parameter γ :

y j(t) = 1(
1 + 1

γ [Vm(t)−�]+

) , (A.4)

where [x]+ is a threshold function that returns 0 if x < 0 and x if X >

0. Note that if it returns 0, we assume y j(t) = 0, to avoid dividing by 0.
As it is, this function has a very sharp threshold, which interferes with
graded learning mechanisms (e.g., gradient descent). To produce a less
discontinuous deterministic function with a softer threshold, the function
is convolved with a gaussian noise kernel (μ = 0, σ = .005), which reflects
the intrinsic processing noise of biological neurons:

y∗
j (x) =

∫ ∞

−∞

1√
2πσ

e−z2/(2σ 2 )y j(z − x)dz, (A.5)

where x represents the [Vm(t) − �]+ value and y∗
j (x) is the noise-convolved

activation for that value.

A.1 Inhibition Within and Between Layers. Inhibition between lay-
ers (i.e., for GABAergic projections from striatum to GPi/GPe, GPe to
GPi/STN, and GPi to thalamus) is achieved via simple unit inhibition,
where the inhibitory current gi for the unit is determined from the net input
of the sending unit in the same way as described for ge (see above).

For within-layer lateral inhibition (used in striatum and preSMA), Leabra
uses a kWTA (k-winner-takes-all) function to achieve inhibitory competi-
tion among units within each layer (area). The kWTA function computes
a uniform level of inhibitory current for all units in the layer, such that
the k + 1th most excited unit within a layer is generally below its firing
threshold, while the kth is typically above threshold. Activation dynamics
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similar to those produced by the kWTA function have been shown to re-
sult from simulated inhibitory interneurons that project both feedforward
and feedback inhibition, and indeed other versions of the BG model use
explicit populations of striatal inhibitory interneurons (Wiecki et al., 2009).
Thus, the kWTA function provides a computationally effective and efficient
approximation to biologically plausible inhibitory dynamics.

kWTA is computed via a uniform level of inhibitory current for all units
in the layer as follows:

gi = g�
k+1 + q

(
g�

k − g�
k+1

)
, (A.6)

where 0 < q < 1 (.25 default used here) is a parameter for setting the inhi-
bition between the upper bound of g�

k and the lower bound of g�
k+1. These

boundary inhibition values are computed as a function of the level of inhi-
bition necessary to keep a unit right at threshold:

g�
i = g∗

e ḡe(Ee − �) + glḡl (El − �)

� − Ei
, (A.7)

where g∗
e is the excitatory net input.

Two versions of kWTA functions are typically used in Leabra. In the
kWTA function used in the striatum, g�

k and g�
k+1 are set to the threshold

inhibition value for the kth and k + 1th most excited units, respectively.
Thus, the inhibition is placed to allow k units to be above threshold and the
remainder below threshold.

The preSMA uses the average-based kWTA version, g�
k is the average

g�
i value for the top k most excited units, and g�

k+1 is the average of g�
i

for the remaining n − k units. This version allows more flexibility in the
actual number of units active depending on the nature of the activation
distribution in the layer and the value of the q parameter (which is set to
default value of .6). This flexibility is necessary for the premotor units to
have differential levels of activity during settling (depending on whether
a single response has been facilitated), and also allows greater activity in
high-conflict trials.

A.2 Connectivity. The connectivity of the BG network is critical, and
is thus summarized here (see Frank, 2005, 2006, for details and references).
Unless stated otherwise, projections depicted in Figure 1 are fully con-
nected (that is all units from the source region target the destination region,
with a randomly initialized synaptic weight matrix). However the units in
preSMA, striatum, GPi, GPe, and thalamus are all organized with columnar
structure. Units in the first column of preSMA represent one response and
project to a single column of each of the Go and NoGo units in the striatum,
which in turn project to the corresponding columns in GPi/GPe and the
thalamus. Each thalamic unit is reciprocally connected with the associated
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column in preSMA. This connectivity is similar to that described by anatom-
ical studies, in which the same cortical region that projects to the striatum
is modulated by the output through the BG circuitry and Thalamus.

In contrast to the focused connectivity in the striatal Go and NoGo path-
ways representing separate cortical responses, the projections from the cor-
tex to the STN, and from STN to GPi, are fully connected, representing
the diffused projections in this hyperdirect pathway that support a Global
NoGo function.

Dopamine units in the SNc project to the entire striatum, but with differ-
ent projections to encode the effects of D1 receptors in Go neurons and D2
receptors in NoGo neurons. Specifically, dopamine influences Go unit activ-
ity levels by contributing an excitatory current in Go units and an inhibitory
current in NoGo units, matching the differential effects of dopamine on
postsynaptic activity associated with these receptors.

Thus, increases in firing of SNc dopamine units promote active Go units
to become more active (or more excitable to cortical input) and NoGo units
to become less active, and vice-versa for decreases in dopamine). How-
ever, the particular set of units affected by dopamine is determined by
those receiving excitatory input from sensory cortex and preSMA. Thus,
dopamine modulates this activity, thereby affecting the relative balance of
Go versus NoGo activity in those units activated by cortex. Given that one
of the preSMA responses is more strongly activated than the other (subject
to noise), the corresponding striatal Go and NoGo units for this response
will also be preferentially active. In other applications, these corticostriatal
synaptic strengths are learned, such that it is possible for each preSMA
response to be equally active but for the striatum to nevertheless show
preferential selection of one of them based on reward history. However,
as noted in the text, here we consider the case that learning has already
occurred and the correct response is preferentially active due to bias on the
preSMA units.

A.3 Parametrically Modulating Scaling of STN-GPi Projections. In
the main text we explored the effects of modulating the relative contribu-
tions of the STN by changing the strength of the overall projections from
STN to GPi. Specifically, the equation for computing excitatory conduc-
tances (see equation A.3) is subject to additional scaling of overall pro-
jections so that some “count” more than others (meant to reflect the fact
that neurons from some areas synapse close to or farther from cell bodies
and thereby have more or less influence on postsynaptic potentials than
neurons from other areas, given the same synaptic weights). Specifically,
excitatory conductances gek

arising as a function of different projections k are
scaled as

gek
= rk∑

p rp
〈xiwi j〉k, (A.8)
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where rk reflects the relative scaling of the projection k normalized by the
sum of the scalings across all projections p. In the text we modified rk from
STN to GPi units from low (0.4) to mid (0.55, default) to high (0.7). This then
alters the contributions of the STN to GPi membrane potentials relative to
other GPi inputs (striatum, GPe).

A4 Learning. While learning is not relevant for the current simulations
(we refer interested readers to prior papers for mathematical details), a
core function of this BG model to learn stimulus-response-reinforcement
probabilities as a function of dopaminergic reward prediction error signals.
Furthermore, as the striatum becomes more and more likely to facilitate
the most rewarding responses, the input to preSMA synaptic strengths
evolves to reflect the prior probability that a given response had been
selected in the past given the stimulus. Thus, with extended training,
the correct stimulus-response links are learned directly from sensory
cortex to preSMA. At this stage, the cortex can be said to “select” the
action, with the striatum simply facilitating it, with differential speed
depending on, for example, dopamine levels. In the current simulations,
we simply hand-coded the stimulus-response strengths from sensory
cortex to preSMA in order to precisely manipulate the level of conflict.
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