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a comparison of sequential
sampling models
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Philip L. Smith, and Gail McKoon

Abstract

Ratcliff and colleagues have examined the effects of aging on cognitive
processes in a number of two choice tasks. They fit the diffusion model to the
response time and accuracy data for each task and interpreted the effects of
aging in terms of the components of processing identified by the model. The
question addressed in this chapter is whether the interpretations are specific to
the diffusion model. To address this question, we fit two other models, the
accumulator model and the leaky competing accumulator model of Usher and
McClelland, to the data from young and older subjects for six experiments.
We found that, although the diffusion model fit the data better than
the other models for most of the experiments, the models’ explanations of
how aging affects components of processing do not differ significantly.

Introduction

A central finding in the literature on aging is that people’s response times in
cognitive tasks increase with age. Along with the increase in response times,
performance sometimes shows a decrease in accuracy. Recently, Ratcliff,
Thapar, and McKoon (2001, 2003, 2004), Ratcliff, Thapar, Gomez, and
McKoon (2004), and Thapar, Ratcliff, and McKoon (2003) examined the
effects of aging on performance in a number of two-choice decision tasks:
signal detection-like tasks, a masked brightness discrimination task, a recogni-
tion memory task, a lexical decision task, and a masked letter discrimination
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task. These tasks were chosen because they span a range of cognitive processes
that might be expected to show deficits, including perceptual processing,
lexical processing, and memory, with the signal detection task representing a
case where only general deficits might occur. Ratcliff and his colleagues applied
a sequential sampling model, the diffusion model (Ratcliff, 1978, 1981, 1985,
1988; Ratcliff, Van Zandt, & McKoon,1999; Ratcliff & Rouder, 1998, 2000), to
the data to identify the effects of aging on several of the components of
processing that determine performance, separating from each other such
factors as the quality of stimulus information available to the processing
system and the amount of information required before making a decision.

The older subjects in these studies adopted more conservative criteria for
their decisions than the young subjects and they were also slower in compo-
nents of processing outside the decision process (e.g. encoding and response
execution). In all of the tasks except letter discrimination, the quality of
the stimulus evidence driving the decision process was not significantly lower
for the older subjects than the young ones. For the brightness and letter
discrimination tasks, the deficits occurred exactly as would be predicted from
psychophysical research on the effects of aging on visual discrimination
(Coyne, 1981; Fozard, 1990; Owsley, Sekuler, & Siemsen, 1983; Spear, 1993):
a deficit occurred with the high spatial frequencies of letters in the letter
discrimination task but not with the low spatial frequencies of the stimuli in
the brightness discrimination task.

The advantage of models like the diffusion model is that they provide
insights into performance that allow the response time (RT) and accuracy
data from two-choice tasks to be decomposed into components of processing.
This theoretical approach also has the advantage that it deals with all aspects
of the data: correct and error RTs and their relative speeds, the shapes of the
RT distributions for correct and error responses, and accuracy values.

This chapter has two aims. First, we fit two other sequential sampling
models to the 12 sets of data from Ratcliff et al. (2001, 2003, 2004), Ratcliff
et al. (2004), and Thapar et al. (2003) in order to determine whether the
conclusions from the diffusion model about the components of processing
that differ between young and older subjects are the same for the other
models. The two other models, reviewed by Ratcliff and Smith (2004), are the
accumulator model (Smith & Vickers, 1988; Vickers, 1970, 1979; Vickers,
Caudrey, & Willson, 1971) and the leaky competing accumulator model
(the LCA model, Usher & McClelland, 2001). Second, the relative qualities
of the fits across the three models allows a moderately comprehensive
comparison of them that serves to extend the comparisons in Ratcliff
and Smith.
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The diffusibn model

The diffusion model is a model of the cognitive processes involved in making
simple twochoice decisions. It separates the quality of evidence entering the
decision from the decision criteria and from other, nondecision processes such
as encoding the stimulus and response execution. The diffusion model, like the
other two models as they are considered here, applies only to relatively fast two-
choice decisions (mean RTs less than about 1000 to 1500 ms) and only to deci-
sions that are a single-stage decision process (as opposed to the multiple-stage
processes that might be involved in, for example, reasoning tasks or card sorting
tasks). Other models in the class of diffusion models have been applied to other
types of decision making (Busemeyer & Townsend, 1993; Diederich, 1995, 1997;
Roe, Busemeyer, & Townsend, 2001) and to simple RT (Smith, 1995).

The diffusion model assumes that decisions are made by a noisy process that
accumulates information over time from a starting point toward one of two
response criteria or boundaries, as in Figure 1.1, where the starting point is
labeled z and the boundaries are labeled a and 0. When one of the boundaries
is reached, a response is initiated. The rate of accumulation of information is
called the drift rate (v), and it is determined by the quality of the information
extracted from the stimulus. There is noise (variability) in the process of
accumulating information from the starting point toward the boundaries so
that processes with the same mean drift rate do not always terminate at the
same time (producing RT distributions) and do not always terminate at the
same boundary (producing errors). This source of variability is called within
trial variability. Empirical RT distributions are positively skewed and in the
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diffusion model, this is naturally predicted by simple geometry (see figure 1.1,
Ratcliff & Rouder, 1998).

Components of processing are assumed to be variable across trials. From a
theoretical perspective, one would not expect subjects to be able to achieve
identical settings of the various components of processing from trial to trial
(e.g. Van Zandt & Ratcliff, 1995). From a practical perspective, the assumption
of across-trial variability allows the model to account for differences in RTs
between correct and error responses (Luce, 1986). Variability in drift rate
across trials leads to slow errors and variability in starting point leads to fast
errors (Ratcliff et al. 1999; Ratcliff & Rouder, 1998), and the relative values of
the two control the pattern of error compared to correct RTs that is obtained
in an experiment. Drift rate is assumed to be normally distributed with stand-
ard deviation m and starting point is assumed to be uniformly distributed with
range s,. In addition, the nondecision components, which are combined into
one component with mean T,, are assumed to have variability across trials
that is uniformly distributed with range s, (Ratcliff, Gomez, & McKoon, 2004;
Ratcliff & Tuerlinckx, 2002).

In four of the six experiments discussed in this chapter, subjects are
sometimes instructed to respond as quickly as possible and sometimes to
respond as accurately as possible. Speed-accuracy tradeoffs are modeled by
altering the boundaries of the decision process—wider boundaries require
more information before a decision can be made and this leads to more
accurate and slower responses. |

For each stimulus condition in an experiment, it is assumed that the rate of
accumulation of evidence is different and so each has a different value of drift, v.
A zero point, the drift criterion, separates stimuli into those with positive
drift rates and those with negative drift rates, functioning in the same way as
the criterion in signal detection theory. Like the signal detection criterion, the
value of the drift criterion can vary with experimental manipulations such as
payoffs or the proportions of stimuli for which one versus the other of the
responses is correct (Ashby, 1983; Link, 1975; Link & Heath, 1975; Ratcliff,
1978, 1985, 2002; Ratcliff et al. 1999). Changing the drift criterion from one
block of trials to another is equivalent to adding or subtracting a constant to
the drift rates for all stimuli in one block relative to another (Ratcliff, 2002).

In sum, the parameters of the diffusion model correspond to the components
of the decision process as follows: z is the starting point of the accumulation of
evidence, a is the upper boundary and the lower boundary is set to 0; 1 is the
standard deviation in drift rate across trials; s, is the range of the starting point
across trials; T,, is the mean time taken up by the nondecision components
of processing, and s, is the range of the values of T,, across trials. For each
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stimulus condition in an experiment, there is a different value of drift, v.
Within-trial variability in drift rate (s) is a scaling parameter for the diffusion
process (i.e. if it were doubled, other parameters could be multiplied or divided
by two to produce exactly the same fits of the model to data). sis set to 0.1 in
fits to the data as it has been in other applications of the model to data.

The accumulator model

The accumulator model (Smith & Vickers, 1988; Vickers, 1970, 1978, 1979;
Vickers et al. 1971) assumes that evidence in favor of one response is
accumulated in one accumulator, evidence in favor of the other response is
accumulated in a second accumulator, and the decision is determined by the
first accumulator to reach its criterion (see Figure 1.2). Evidence is accumul-
ated at discrete time steps. The amount of evidence accumulated on each step
is variable, normally distributed with standard deviation 1.0 and a mean, u,
that depends on the quality of the information from the stimulus. With this
variability, information in the wrong accumulator can reach its criterion first,
leading to an error. A criterion, termed the “sensory referent,” is set on the
underlying evidence dimension such that if the amount of evidence sampled
at a time step falls above the criterion, an amount equal to the difference
between that amount and the criterion is added to one accumulator.
If the amount falls below the criterion, the difference is added to the
other accumulator. Like the drift criterion in the diffusion models, this
criterion represents a point of zero stimulus information. Because evidence is
accumulated at discrete time steps, a parameter, A, is required to converts time
steps to continuous time.
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Ratcliff and Smith (2004) assumed that there is variability across trials in
three components of the accumulator model (cf. Smith & Vickers, 1988) for
the same reasons as for the diffusion model. First, the means of the evidence
distributions are assumed to vary randomly across trials according to a
normal distribution with mean u and standard deviation 0, This variability
is the counterpart to variability in drift rates across tr1als in the diffusion
model. Second, the nondecision component of RT varies across trials with a
rectangular distribution with mean T, and range s,, exactly as in the diffusion
model. Third, the values of the response criteria vary across trials. The values
of the criteria on each trial (Figure 1.2) are calculated by adding a value
obtained from an exponential with mean « to two base values, k, and kg
(the same value added to each), to obtain the values of K, and Kj for each
trial (i.e. the mean values of the criteria are k4 + « and kg + k). Without this
variability, RT distributions are not skewed enough to match empirical data.
Also, in order to accommodate differences in performance, it is necessary for
the mean of the exponential to be larger when subjects are instructed to
respond accurately than when they are instructed to respond quickly.

This model produces error responses that are slower than correct responses, a
pattern that is often found in experimental data, but not always. An important
problem for the model is that no way has been found for it to produce errors faster
than correct responses, a pattern often obtained experimentally especially in
paradigms such as choice RT (Ratcliff & Smith, 2004). The problem arises because
the evidence sample is larger for evidence added to the positive accumulator (in
Figure 1.2) than evidence added to the negative accumulator, because the average
amount of evidence above the criterion is larger (e.g. above w) than the average
amount below (e.g. just a little below the criterion).

The leaky competing accumulator model

The LCA model (Usher & McClelland, 2001) was developed as an alternative
to the diffusion model with the aim of implementing neurobiological prin-
ciples that the authors felt should be incorporated into RT models, especially
mutual inhibition mechanisms and decay of information across time.

The LCA model is similar to the accumulator model in that evidence
is accumulated in separate accumulators for the two responses (see Figure 1.3),
but the accumulation processes themselves are modeled as diffusion processes.
Evidence is continuously distributed and accumulates in continuous time, just
as in other diffusion process models. The rate of accumulation is a combina-
tion of three components. The first is the input from the stimulus, v, with a
different value of v for each experimental condition. If the input to one of the
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accumulators is v, the input to the other is 1 — v so that the sum of the two
rates is 1. The second component is decay in the amount of accumulated
information, k, with decay growing as the amount of information in the
accumulator grows, and the third is inhibition from the other accumulator, 3,
with the amount of inhibition growing as the amount of information in the
other accumulator grows. Combining the three components, the equivalent of
drift rate in the diffusion model for accumulator i (where j is the competing
accumulator) is v — kx; — Bx;, where x; and x; is the amount of evidence
already accumulated in accumulator i and j respectively.

If the amount of inhibition is large, the model exhibits features similar to the
diffusion model because an increase in accumulated information for one of

the response choices produces a decrease for the other choice. The assumption’

of inhibition between accumulators makes the model similar to an earlier,
discrete-time model proposed by Heuer (1987).

The rate of accumulation of information is variable; the amount of evidence
added to an accumulator on each trial includes Gaussian variability with
standard deviation o. Because of this variability, accumulated information
can reach the wrong criterion, resulting in an error. Because of the decay and
inhibition in the accumulation rates, the tails of RT distributions are longer
than would be produced without these factors (cf. Vickers, 1970, 1979; Vickers
et al. 1971), which leads to good matches with the skewed shape of empirical
RT distributions.

The expression for the increment to the amount of accumulated information
at time ¢ in accumulator 4, is:

dx,-= [V,’ - kx,- - BE.X}:ld?t + o —d,.r‘t,

j#i
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where dt/7 is set to 0.1 to correspond to 10 ms steps as in Usher and
McClelland (2001). The amount of accumulated information is not allowed to
take on values below zero, so if it is computed to be below zero, it is reset to
zero; this constraint is written as x; — max(x;, 0) and it introduces nonlinearity
into the model.

The LCA model without across-trial variability for any of its components
predicts errors slower than correct responses. To produce errors faster than
correct responses, Usher and McClelland assumed variability in the accumul-
ators’ starting points, just as is assumed for the diffusion model. Also, we
made the same assumption about nondecision components of processing as
for the diffusion and accumulator models, that they vary with a rectangular
distribution with range s, and mean T, (Ratcliff & Smith, 2004).

Displaying data and fitting the models to the data

In fits of any model to RT data, there are two dependent variables to consider,
accuracy and RT. The proportions of correct and error responses and the
relationships between their RTs, as well as the distributions of the RTs, must
all be considered when assessing the fit of a model. Traditionally, accuracy,
mean RTs, and RT distributions have all been plotted separately as a function
of experimental condition. Here, we display them all tdgether in quantile
probability functions (QPFs). This method of displaying the data has
the advantage that the joint behaviors of the dependent variables can be more
easily examined. The QPF derives from the latency probability function (LPF),
which was used to display the joint behavior of mean RT and accuracy
in early work on sequential sampling models by Audley and Mercer (1968),
Audley and Pike (1965), LaBerge (1962), Pike (1973), Pike and Ryder (1973),
and others. .

A QPF is constructed by plotting the quantiles of the distribution of RTs for
each experimental condition on the y-axis and the probability of the response
on the x-axis. For the data presented in this chapter, we used five quantiles,
with the plotted quantile points representing the RTs below which fall 0.1, 0.3,
0.5, 0.7, and 0.9 of the total probability mass in the distribution. The lines that
connect the quantiles across experimental conditions, as in Figures 1.4 and
1.5, form the QPF, and the shape of this function must be explained by the
models. For each experimental condition, the quantile points plotted on the y-
axis show the shape of the RT distribution. Because there is 0.2 probability
mass between each pair of quantiles (e.g. the 0.1 and 0.3 quantiles), equal area
rectangles can be constructed between the quantiles and these approximate
the RT histograms that conventional analyses would produce (see Ratcliff &
Smith, 2004, figure 1.5).
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Fig. 1.4 Sample fits for the accumulator, LCA, and diffusion models to data from the
letter discrimination experiment with young subjects. X2 values are 22.4, 15.7, and 7.5,
respectively. (a) Letter discrimination: young subjects; (b) diffusion model recognition
memory older subject data; (c) LCA model recognition memory older subject data.

A full representation of the data from an experiment requires two QPFs, one
for each response, as were plotted for the data from Experiments 4, 5, and 6
below. However, if the data are symmetric for the two responses (i.e. RTs and
accuracy values for the two choices are about the same), they can be averaged
across responses to give a single QPF with error responses plotted to the left
of 0.5 and correct responses to the right. Experiments 1, 2, and 3 below yielded
symmetric data of this kind.
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Fig. 1.5 (Continued)

When difficulty is varied across experimental conditions in such a way that
subjects cannot know at the time a stimulus is presented which condition it is
in (e.g. when high and low frequency words are presented in random order in
a lexical decision experiment), there are two important constraints on the
models. First, the effects of difficulty are determined by only one parameter,
the rate of accumulation of evidence: drift rate in the diffusion model and
accumulation rate in the accumulator and LCA models. With only drift or
accumulation rate varying, accuracy rates plus mean RTs and RT distributions
for both correct and error responses must be explained.

The second constraint is that the shape of the QPFs is determined by only
a few parameters of the models. For example, in the diffusion model with
starting point equidistant from the two boundaries, the form of the QPF is
determined by three parameters: a (boundary separation), 1 (across-trial
variability in drift rate), and s, (across-trial variability in starting point). With
starting point half way between the decision boundaries, then: When 7 and s,
are zero, RTs for correct and error responses for each experimental condition
are equal and the QPF is symmetric with an inverted U shape. When 7 is high
and s, is low, error responses are slower than correct responses and the QPF
has a peak to the left of the 0.5 probability point. When 7 is low and s, is high,
error responses are faster than correct responses and the QPF has a peak to the
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right of the 0.5 probability point. Thus the shape of the QPF allows the
relative speeds of correct and error responses to be determined by visual
inspection. The vertical location of the QPF is determined by the nondecision
component of response time, T,

We chose to evaluate the models against group data obtained by averaging
quantiles of the RT distributions and response probabilities across subjects
(Ratcliff, 1979; Thomas & Ross, 1980). Fits to individual subjects and fits to
quantile-averaged group data exhibit very similar features and the parameter
values obtained from group fits are in good agreement with the average
parameter values obtained from fits to individual subjects (see Ratcliff, Thapar &
McKoon, 2001, 2003, 2004; Ratcliff, Thapar, Gomez & McKoon, 2004; and
Thapar et al. 2003, for examples with about 40 subjects per group, and Smith,
Ratcliff, & Wolfgang, 2004, with six subjects). Fitting individual subjects would
have required months of computer time for the LCA and accumulator models.

We used a minimum x? statistic to assess how well a model fit experimental
data. For N observations grouped into six bins between the five quantile RTs
and outside the two extreme quantiles, this statistic has the form

XZ 2 N(pl '771')2 / U

where p; is the observed proportion of responses in the ith bin, 7; is the
theoretical (expected) proportion of responses in the ith bin, and N is
the number of observations per condition.

Because our fits were carried out on group data, obtained by averaging
quantiles across subjects, it was not appropriate to weight the observed and
predicted proportions in the 2 statistic by the total sample size N as is done in
the usual Pearson x? test. Instead, we calculated the statistic from the observed
and predicted proportions instead of frequencies and multiplied the values
by 100 for readability. We use this statistic as a relative rather than absolute
measure of fit and denote it by the symbol X2 to emphasize that it is not
a proper x2 because it has been calculated from quantile-averaged data. In
order to compare the models, later we divide the X2 values by the number of
experimental conditions in each experiment to provide X2 values that are
approximately in the same range across the experiments (e.g. Experiments 5
and 6 had 4 conditions whereas Experiments 3 and 4 had 18 conditions).

The diffusion model was fit to the experimental data by minimizing the X?
value with a general Simplex minimization routine that adjusts the parameters
of the model to find the parameters that give the minimum X2 value (see
Ratcliff & Tuerlinckx, 2002, for a full description of the methods). The data
entered into the minimization routine for each experimental condition were
the RTs for each of the five quantiles for correct and error responses and the
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accuracy values. The quantile RTs and the diffusion model were used to
generate the predicted cumulative probability of a response occurring at or
before the given quantile RT. Subtracting the cumulative probabilities for each
successive quantile from the next higher quantile gives the proportion of
responses between each quantile. These expected values are compared to the
observed proportions of responses between the quantiles and the observed
proportions of responses for each quantile are the proportions of the distribu-
tion between successive quantiles (i.e. the proportions between 0, 0.1, 0.3, 0.5,
0.7,0.9,and 1.0 are 0.1, 0.2,0.2,0.2,0.2,and 0.1).

The expected (theoretical) values of the probabilities were generated
from the models in two different ways. For the diffusion model, an explicit
expression for the cumulative distribution function is available (Ratcliff, 1978;
Ratcliff et al. 1999). This involves an infinite series that must be summed
numerically, with numerical integration over the distributions of drift rate,
starting point, and the nondecision component of RT that represent across-
trial variability in these components of processing. This combination was used
to produce the cumulative probabilities at the quantile RTs. From these, the
proportions between successive quantiles needed for X2 can be computed.

For the accumulator model, a simulation method was used to compute
accuracy and RT distributions. Because we wished to allow independent vari-
ability in criteria, it was more efficient to generate predictions by simulation
than to use the exact numerical methods used by Ratcliff and Smith (2004)
Smith and Vickers (1988). Exact methods require an additional numerical
integration for each new source of parameter variability, which appreciably
slows program execution. In contrast, simulations make it easy to add sources
of across trial variability in parameters of the models because all that is
required is for a random value to be selected from the appropriate distribution
on each trial. The simulation method allowed us to avoid the need to do
extensive checking on the four numerical integrations that are needed to han-
dle variability across trials in accumulation rate, the nondecision component
of RT, and the two decision criteria. One hundred thousand simulations of
the accumulator process for each experimental condition were used, which
provided highly accurate predictions (repeated runs provided the same values
of all the quantile RTs except the 0.9 quantile for errors that varied by a few ms
from run to run).’

No explicit expressions have yet been obtained for the RT distributions
predicted by the LCA model when the amount of accumulated evidence is
constrained to be positive. Because of this, Usher and McClelland (2001)
obtained predictions from the model by simulation and we followed their
method. In the fits of the model to the data described here, 20,000 simulations
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of the decision process per condition were used to compute the accuracy
values and the RT distributions for the two responses (fewer simulations were
used than for the accumulator model because the fitting program took 4 to
6 h for the larger data sets for one fit).

Each of the models was fit to the data using a Simplex algorithm (Nelder &
Mead, 1965) along with a set of starting values that were a reasonable guess
based on other fits. The Simplex algorithm is given ranges (we used 0.1 times
the parameter values) for each of the starting values and the algorithm evalu-
ates the y? function for a range of values of the parameters based on these
initial points and ranges. One hundred iterations of the Simplex algorithm
were run and then the final parameters were used as initial points with
the same ranges around these values. This was repeated for five sets of runs of
the Simplex algorithm with the last-set running for 400 iterations. If the fits
were moderately poor, new starting values were tried and the fitting procedure
run again until different and better fits could not be found.

Experiments

The data against which the models were tested came from six experiments
each with one data set for young subjects and one data set for older subjects,
previously published by Ratcliff and colleagues. The experimental tasks, all
two-choice tasks, were chosen to allow comparison of the performance of
young and older subjects across several different kinds of cognitive processing.
In two of the tasks, one with high spatial frequency letters and one with low
spatial frequency brightness arrays, the stimuli were masked in order to look
at the effect of limited availability of stimulus information. Another of the
tasks was recognition memory, chosen to investigate the availability of newly
learned information, and another was lexical decision, chosen to investigate
the availability of well-known information. For the first five experimernts,
there was a speed-accuracy manipulation: In half the blocks of trials, subjects
were instructed to respond quickly, while in the other half of the trials,
subjects were instructed to be as accurate as possible. For all the experiments,
sufficient data were collected per subject to provide reliable estimates of the
differences in components of processing between young and older subjects.
The young subjects were all Bryn Mawr or Northwestern University students
and the older subjects were all between the ages of 60 and 75 and they were
matched to the young subjects on standard characteristics.

Experiment 1: Signal detection

In this experiment (Ratcliff et al. 2001), two vertically-aligned dots were
displayed on each trial and subjects were asked to decide whether the separation
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between them was “large” or “small.” Stimulus difficulty was varied via the
amount of separation: There were 32 possible separations, labeled 1 through 32
with 1 being the smallest separation, ranging from 1.75 cm to 3.33 cm in equal
intervals. After each trial, subjects were given feedback such that the response
was designated as “correct” or “error.” The response classification was proba-
bilistic, so it was not possible for subjects to be perfectly correct. Feedback was
determined by a probability associated with each stimulus: For stimuli 1-7,
“small” was designated correct with probability 0.999. For stimuli 8~16, “small”
was designated correct with probabilities 0.913, 0.888, 0.856, 0.819, 0.774,
0.722, 0.664, 0.601, and 0.534, respectively. For stimulj 2632, “large” was desig-
nated correct with probability 0.999, and for stimuli 25 through 17, “large” was
correct with the same probabilities as for “small” for stimulj 8 through 16.
Subjects understood that they could not be completely accurate, that for sepa-
rations in the middle of the range, either response might be designated as cor-
rect, and that their task was to give their best judgment. There were 12 blocks of
stimuli in each session, with 3 presentations of each of the 32 stimuli in each
block. In 6 of the blocks, subjects were given accuracy instructions and in the
other 6, they were given speed instructions. Speed versus accuracy instructions
alternated between blocks. Subjects were asked either to respond as quickly as
possible or to make as few errors as possible. In the speed blocks, responses
longer than 700 ms were followed by a “Too slow” message. In the accuracy
blocks, “large” responses to stimuli 1-6 and “small” responses to stimuli 26—32
were followed by a “Bad error” message. There were 17 young and 13 older
subjects, and each participated in two 45 min sessions.

The data were grouped into four conditions such that high probability
responses were grouped together (“large” responses to large separations and
“small” responses to small separations) and low probability responses were
grouped together (“small” responses to large separations and “large” responses
to small separations). Specifically, the stimulus groupings were: “small”
responses to distances 1-8 were grouped with “large” responses to distances
21-32; “small” responses to distances 9 and 10 were grouped with “large”
responses to distances 19 and 20, “small” responses to distances 11 and 12 were
grouped with “large” responses to distances 17 and 18, and “small” responses to
distances 13 and 14 were grouped with “large” responses to distances 15 and 16.

Experiment 2: Letter discrimination with masking

In this experiment (Thapar et al. 2003), subjects were presented on each trial
with a letter that was masked after 10, 20, 30, or 40 ms. The task was to decide
whether the masked letter was one of two target letters, which were presented
in the top corners of the display screen and changed after every block of

17
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96 trials. The mask consisted of a square outline, larger than the letter stimuli,
filled with randomly placed horizontal, vertical, and diagonal lines that were
different on every trial. Subjects participated in six blocks of speed trials
alternating with six blocks of accuracy trials in each session for either two or
three sessions each. There were 40 young and 38 older subjects.

For the speed blocks, subjects were instructed to respond as quickly as
possible. Responses longer than 650 ms were followed by a “Too slow” message,
and responses faster than 250 ms were followed by a “Too fast” message. For the
accuracy blocks, subjects were instructed to respond as accurately as possible.
Incorrect responses were followed by an “Error” message. No feedback was
provided for correct responses.

Experiment 3: Brightness discrimination with masking

The task in this experiment (Ratcliff, Thapar, & McKoon, 2003) was to decide
whether 64 X 64 arrays of black and white pixels were “bright” or “dark.” On
each trial, an array was presented for 50, 100, or 150 ms, then masked by four
different checkerboard patterns, each 64 X 64 pixels, presented sequentially
for 17 ms each. There were six brightness conditions, determined by the
probability of a pixel being white equal to 0.350, 0.425, 0.475, 0.525, 0.575, or
0.650. Thirty six young and 35 older subjects participated in two or three sessions
each, with five blocks of speed trials alternating with five blocks of accuracy
trials (144 trials per block) in each session. In accuracy blocks, if a response
was an error, the word “Error” was displayed and in speed blocks, there was no
accuracy feedback. In speed blocks, if a response was longer than 700 ms, “Too
slow” was displayed.

Experiment 4: Recognition memory.

In this experiment (Ratcliff et al. 2004), subjects studied lists of single words.
Each list had 9 words presented once and 9 words presented 3 times for a study
list of 36 words, presented at a rate of 1 s per word. Immediately following
each study list, subjects were presented with 36 single test words, deciding for
each word whether it had been in the study list or not (half of the 36 had been
in the study list, half had not). Within lists, accuracy was manipulated by
varying the number of times a word appeared in the study list (one or three)
and by using high, low, and very low frequency words (mean frequency values
of 325, 4.4, and 0.37, Kucera & Francis, 1967).

Subjects received alternating speed and accuracy blocks of trials. In accuracy
blocks, if a response was incorrect, the word “Error” was displayed before the
next test word was presented. In speed blocks, there was no accuracy feedback,
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and if a response was longer than 800 ms for young subjects and 900 ms for
older subjects, “Too slow” was displayed.

In each session, there were 10 blocks of accuracy trials and 10 blocks
of speed trials. A minimum of two sessions per subject were used in data
analyses.

Thirty nine young adults and 41 older adults participated in the experiment.

Experiments 5 and 6: Lexical decision

On each trial of these experiments (Ratcliff et al. 2004), a letter string was
presented and subjects were asked to judge whether it was a word or a non-
word. In each session, there were 70 blocks of 30 trials each, half words and half
nonwords. In each block, there were equal proportions of high, low, and
very low frequency words, the same pools of words as in Experiment 4.
In Experiment 5, the nonwords were constructed from words by randomly
replacing all the vowels in each word with other vowels and in Experiment 6,
the nonwords were random letter strings. Subjects were instructed to respond
quickly and accurately and error feedback was given.

Fifty four young adults and 44 older adults participated in Experiment 5
and 54 young adults and 40 older adults participated in Experiment 6.

Components of processing

When the models were fit to the data from the six experiments, the diffusion
model fit 30% better on average than the accumulator and LCA models, as is
shown in the next section. Despite this difference in the qualities of the fits,
the differences in performance between the young and older subjects were
generally ascribed to the same sources by all three models. The parameter
values corresponding to each component of processing are shown in the
Tables 1.1-1.6 for the three models. Sample fits for Experiments 2 and 4 are
presented in Figures 1.4 and 1.5. Here, the main findings are reviewed.

Rates of accumulation of information

Figure 1.6 (bottom right panel) shows the differences in average drift and
accumulation rates between young and older subjects for the three models for
each experiment. The rates of accumulation of evidence for the older subjects
were substantially lower than those for the young subjects only for masked
letter discrimination, for which the stimuli are high spatial frequency. For all
the other tasks, the rates for older subjects were at least as high as those for the
young subjects; in other words, the quality of the information they obtained
from the stimuli was not measurably worse than for the young subjects. (The
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Table 1.1 Diffusion model parameters for fits to the 12 experiments
Experiment a a z z Ter n Sz S¢

speed  accuracy speed  accuracy

SDT young 0.082 0.146 0.041 0.073 305 0.151 0.004 122
SDTO‘der ...................... 0 097 ........ 0181 ............... 0048 ......... 0 090 .............. 358 ........ 015100 17 ........ 1 73

Letter young ................ 0 074 ........ 011 1 ............... 0037 ......... 0056 .............. 337 ,,,,,,,, 0”90 004 ........ 1 21

Letterdder .................. 0 109 ........ 0178 .............. 0 054 ........ 00 89 .............. 403 ........ 0 244 ........ 0 009 ........ 1 32

Bnghtyoung ............... 0073 ........ 0137 .............. 0036 ........ 0 0 56 .............. 409 ........ 01420044 ........ 1 79

Bnghto‘der .................. 0 072 ........ 0126 .............. 0036 ......... 0 063 .............. 456 ........ 01670040 ........ 1 63

Recognyoun90076 ........ 0140 .............. 0040 ......... 0 065 .............. 488 ........ 01720053 ........ 1 81

Recogn0|der0100 ........ 0135 .............. 0046 ........ 0062 .............. 589 ........ 02030004213

LexpseUdyoung ........... S 0126 ................. e 0 0 64 .............. 439 ........ 010 10062 ........ 1 59
................................................................... 0 09651800900032171

Lex rand older

Table 1.2 Drift rates for the diffusion model for the 12 experiments
Experiment vy 1) v; vy Vs v v; vy vy

Note: Drift criteria for the brightness discrimination experiments are for young subejcts: ~-0.058, 0.004,
and 0.048, and for older subjects: ~0.039, 0.023, and 0.061. Order of conditions for experiments.

Dot separation, extreme to intermediate separation. Letter discrimination: large stimulus presentation to
srall. Brightness discrimination, intermediate brightness, fong to short stimulus presentation; moderate
brightness long to short stimulus presentation, extreme brightness long to short

stimulus presentation Recognition Memory, H, L, VL frequency new words, H, L, VL once presented
words, and H, L, VL three times presented words. Lexical decision, H, L, VL frequency words and
nonwords. ' )
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Table 1.3 Accumulator model parameters for fits to the 12 experiments

Experiment Crit1 Crit2 Crit1 Crit2 T, o A K K St
speed speed acc acc speed acc
SDT young 0.565 0.565 1.594 1.594 315 0.481 0.058 0.960 2.317 90
sDTo|der ................... 0894 ...... 0894 ...... 1936 ,,,,, 1936352 ...... 0491 ‘‘‘‘‘ 00681079 ..... 3193 ........ 7 8
letteryoung 0609 0.609 1.370 1370 340 0377 0052 0818 1281 83
Lettero!der ................ 0807 ...... o 80720852035411 ....... 0693 ..... 0053 ...... 1 904 ..... 3010 ........ 55
Bnghtyoung ............. 0487 ....... 0487 ...... 1804 ..... 1804405 ...... 0469 ..... 0054 ..... 0335 ..... 1901164
Brightolder  0.657 0.657 1968 1968 443 0426 0046 1013 1540 129

Lex rand older — — 1.212 0775 510 0.298 0.073 — 3506 76

Table 1.4 Accumulation rates for the accumulator model for the 12 experiments

Experiment vy v, v; vy Vg Vg v; vy Vg
SDT young 1.177 0708 0.368 0.074 — — — — —
SDT o] der ...................... 125 8 ......... 0690 ________ 0377 ........ o 002 ......... S e S e o

Letteryoung ................. 0 884 ........ o 775 ........ 0 . 555 ........ 0 142 ......... — I s R e

Letter o|der ................... 0773 ......... 0543 _________ 0263 ........ 0 120 ......... e F e R e

Bnghtyoung ................ 0 925 ......... 0546 ........ 0193 ________ 1020 ______ 07120260 ..... 0 9810595 0229

BnghtOIder .................. 0971 .......... 0 435 ........ 0173 ........ 1034 ...... 06440 272 ..... 1020 ..... 0 5280 243

Lex rand older 1.718 1.341 1.011 -1.389 — — — — —

Note: Accumulation rate criteria for the brightness discrimination experiments are for young subjects:
—0.174,0.012, and 0.134 and for older subjects: 0.010, 0.029, and 0.048. Order.of conditions for
expts. Dot separation, extreme to intermediate separation. Letter discrimination: large stimulus
presentation to small. Brightness discrimination, intermediate brightness, long to short stimulus
presentation; moderate brightness long to short stimulus presentation, extreme brightness long to short
stimulus presentation. Recognition memory, H, L, VL frequency new words, H, L, VL once

presented words, and H, L, VL three times presented words. Lexical decision, H, L, VL frequency

words and nonwords.
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Table 1.5 LCA model parameters for fits to the 12 experiments

Experiment aitt cit2 ait1 ait2 T k B o s, S¢
speed speed acc acc
SDT young 1642 1.642 2562 2562 278 4127 0.188 0.595 0.754 86
smolder1306 ..... 1306 ..... 2745 ..... 2745 ...... 323 ..... 4967 ..... 02340613 ..... 0583 ..... 1 21
Letteryoung1431 ...... 1431 ...... 2137 ..... 2137 ...... 3262580 ..... 01250667 ..... 0560 ..... 1 12
o y726 1726 2045 2285 360 5931 0245 0509 0507 110
Bnghtyoung1o73 ..... 1073 ...... 1709 ..... 1709 ..... 372 ..... 3693 ..... 03310433 ..... 0231 ...... 1 66
B”ghto|der1091 ...... 1091 ...... 1633 ..... 1638 ..... 414 ..... 3061 AAAAAA 02960397 ..... 0329 ..... 139

Lex rand older — 3313 3.161 423 0.560 0.127 0.642 1.073 92

Table 1.6 Accumulation rates for the LCA model for the 12 experiments

Experiment vy v, v3 7] Vs Vg v; ) )
SDT young 0884 0.746 0623 0550  — — — — —
smolder .................... 0335 ...... 0706 ...... 0616 ...... 0547— .............. S R e o

Letteryoung .............. 0615 ...... 0729 ...... 0311 ....... 0878_ .............. R e e e

Letterdder 4444444444444444 0523 ...... 0573 ...... 0641 ....... 0694——— ............ e S e

Bnghtyoung .............. 0716 ______ 0639 ...... 0552 ....... 0732 ...... 0670 ...... 0568 ...... 0 727 ....... 0 665 ...... 0563

Bnghtdder ................ 0741 ....... 0640 ...... 0552 ....... 0757 ...... 0665 ...... 0557 ...... 0 751 ....... 0 669 ...... o 564

Lex rand older 0.140 0.232 0298 0784 —  — — —. —

Note: Accumulation rate criteria for the brightness discrimination experiments are for young subjects:
—0.041, 0.002, and 0.033 and for older subjects: —0.035, 0.016, and 0.039. Order of conditions for
expts. Dot separation, extreme to intermediate separation. Letter discrimination: large stimulus
presentation to small. Brightness discrimination, intermediate brightness, long to short stimulus
presentation; moderate brightness long to short stimulus presentation, extreme brightness long to short
stimulus presentation. Recognition memory, H, L, VL frequency new words, H, L, VLonce

presented words, and H, L, VL three times presented words. Lexical decision, H, L, VL frequency

words and nonwords.
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difference for the lexical decision task with random letter strings appears to be
large, but this task has very high drift and accumulation rates and their
estimates have much higher variability than those for the other tasks.)

For the diffusion model, for the signal detection, masked brightness
discrimination, recognition memory, and lexical decision tasks, we were able
to perform significance tests between the 4-9 drift rates for young and older
subjects. But we could not do this for other parameters because only one value
was computed. There were no significant differences in drift rates between the
older and young subjects. The difference for masked letter discrimination
was significant (#(3) = 6.84, p < 0.05 for all #-tests reported in this chapter
unless otherwise stated). For lexical decision with nonwords random letter
strings, accuracy rates were very high so drift rates we high and quite variable.

Speed criteria Accuracy criteria

SDT Letter Bright Recog SDT Letter Bright Recog lex-p lex-rnd

Drift/accumulation rate

3
’
FER)
[y

[

(%]

o
1

100 4

Difference between older and younger subjects

50 =77 -2 2
y 1 —— Diffusion
4 2 e Accumulator
3 LCA

0 E
SDT Letter Bright Recog lex-p lex-rnd SDT Letter Bright Recog lex-p lex-rnd

Fig. 1.6 Differences in parameter values between older and young subjects. SDT
represents the signal detection task, “letter” represents the letter discrimination task
with masking, “bright” represents the brightness discrimination task with masking,
“recog” represents the recognition memory task, and “lex” represents the lexical
decision task where “lex-p” is the experiment with pseudoword nonwords and
“lex-rnd" is the experiment with random letter string nonwords.
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Thus, although the difference was close to two in Figure 1.6, it was not
significant. For the LCA model, the results were the same (#3) = 7.41 for the
letter discrimination task). For the accumulator model, the results were also
the same except that the rate of accumulation was larger in the lexical decision
task for the older than the young subjects (#(7) = 4.82 for lexical decision,
#(3) = 2.71,p = 0.073, significant by 1-tailed test for masked letter discrimina-
tion). However, the accumulator model did not fit the lexical decision
experiments particularly well because it was unable to accommodate errQr
response times shorter than correct response times.

Response criteria

Figure 1.6 (top two panels) shows the differences in response criteria between
older and young subjects with speed instructions in the left-hand panel and
accuracy instructions in the right-hand panel. There were both speed and
accuracy instructions in the first four expérifnénts. The criteria for the last
two experiments, lexical decision experiments, are shown on the right-hand
panel along with accuracy criteria for the other experiments because subjects
tend to more conservative criteria in the lexical decision task without speed
instructions.

For the diffusion model, boundary separation was larger for older than
young subjects except with both speed and accuracy instructions in the
brightness discrimination task and accuracy instructions in the recognition
memory task. For the accumulator model, the decision criteria were higher
for older than young subjects with both speed and accuracy instructions in
the signal detection, letter discrimination, and brightness discrimination
experiments, and with speed instructions in the recognition memory experi-
ment. With accuracy instructions in the recognition memory experiment, the
decision criteria were lower for older than young subjects. The differences
in criteria were small for the lexical decision experiments, with the older
subjects criteria higher in one experiment and lower in the other than the
young subjects.

For the LCA model, the decision criteria behaved similarly to the criteria for
the diffusion model. The only exceptions were a small difference between the
two models for the recognition memory task with accuracy instructions and
the much higher criteria for older compared to young subjects in the lexical
decision experiment with random letter strings as the nonwords.

Nondecision component of RT

The bottom left panel of Figure 1.6 shows how much slower older subjects
were than young subjects in the nondecision components of RT. The estimates
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of T,, averaged 69, 91, and 78 ms longer for older subjects for the diffusion,
accumulator, and LCA models, respectively. The estimate of the nondecision
components is a measure of the same quantity for each of the models (unlike
the estimates of decision criteria and drift or accumulation rates), and
correlations between the models’ estimates across the six experiments
can show the extent to which a large value of T,, for one model corresponds to
a large value of T,, for another model. Tables 1.1, 1.3, and 1.5 provide the
results that were used to compute the correlations. The correlation between
the T,, values for the diffusion and accumulator models was 0.96, between the
d1ffus10n and LCA models 0.88, and between the accumulator and LCA
models, 0.84. Correlations were also computed between the ranges of the
nondecision component (s,); they were 0.81, 0.77, and 0.59, for the three com-
parisons, respectively. Larger values of T,, would be expected to have larger
values of s, and hence larger correlations, so the correlations between s, and T,
were also computed; they were 0.62, 0.52, and 0.72 for the diffusion, accumu-
lator, and LCA models, respectively. Thus, the models produce qualitatively
similar accounts of the duration of the nondecision components of processing
(and therefore the duration of the decision process) across experiments.

Summary

Within the frameworks of the models, the main effects of aging on cognitive
processes were that decision criteria were higher for older subjects in most
experiments and that the nondecision components of RT were somewhat
longer. However, despite the more conservative decision criteria and slower
nondecision processes, there was little difference between the older and young
subjects in the rate of accumulation of information, that is, little difference in
the quality of information available from the stimuli, except with masked letter
stimuli that contain high spatial frequency information. Although there were
differences in the parameter values that represent the components of proces-
sing across the three models, the differences occurred in only a few cases and
they were only minor. In general, the behavioral differences in RT and accuracy
between young and older adults had the same sources in all three models.

Goodness of fit

When the models were fit to the experimental data, the chi-square values used
as the criteria for goodness of fit used the same welghts for each experimental
condition because the data were averaged over experlments (see above and
Ratcliff & Smith, 2004). The minimum X? values are shown in Table 1.7 for
each model for each experiment. To more easily compare the models across
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experiments, the X2 values in Table 1.7 were divided by the number of
conditions in an experiment so that they were adjusted to approximately the
same range (Experiment 1: 8; Experiment 2: 8; Experiment 3: 18; Experiment 4:
18; Experiment 5: 4; Experiment 6: 4) and the results are shown in Figure 1.7.
The means of the adjusted X? values in Figure 1.7 are 2.95, 3.94, and 3.91, for
the diffusion, accumulator, and LCA models, respectively. The diffusion model
fit 7 of the 12 data sets best, the accumulator model fit 1 best, and the LCA
model fit 4 best (see Table 1.7 and Figure 1.7). As mentioned above, no one
model fit the data best in every case and every model fit the data best in at least
one case.

To show samples of the qualities of the fits, Figure 1.4 shows fits of all three
models to the QPFs for young subjects for the letter discrimination experi-
ment and Figure 1.5 shows fits for older subjects for the recognition memory
experiment.

For the letter discrimination experiment with speed instructions, each of
the models fit well with the accumulator model missing a little in the 0.9
quantile for correct responses and the LCA model missing a little for error RTs
for the 0.9 quantile. For accuracy instructions, the diffusion model fit the
error RT distributions better than the other models and it fit the RT distribu-
tions for correct responses in the 0.9 quantiles a little worse than the other
models. The accumulator model missed the 0.9 quantile RTs for both errors
and correct responses, and the LCA model fit correct response RTs better than
the diffusion model but fit error RTs worse than either of the other models.

For the recognition memory experiment, the diffusion model captures the
leading edges of the RT distributions (the 0.1 quantile RTs) and misses only in
the 0.9 quantiles for “new” responses. The accumulator model misses all the
quantiles for “new” responses with accuracy instructions, especially the 0.1
quantile. The LCA model misses the 0.1 quantiles for “new” responses (and for :
“old” responses to a lesser extent) with accuracy instructions, and the model

Table 1.7 X2 values for diffusion, accumulator, and leaky competing accumulator models
for signal detection, letter discrimination, brightness discrimination, recognition memory,
and lexical decision experiments for older and young subjects

SDT SDT  lLetter Letter Bright Bright Recogn Recogn Lex Lex Lex Llex
young older young older young older young older pseud pseud rand rand
young older young older

Diffusion 13.70 1328 7.47 534 8433 119.14 8525 64.90 16.66 11.59 7.94 6.81

LCA 9.25 17.09 1570 13.59 59.98 55.12 150.44 151.90 13.91 20.09 14.15 18.96




AGING AND RESPONSE TIMES

g 1 — Diffusion
2R Accumulator

(=)}
|

Relative X2

Y O Y OY OY OY OYO
SDT  Letter Bright Recog lex-p lex-rnd
Experiment

Fig. 1.7 Relative X? values for the accumulator, LCA, and diffusion models. The X2
values in Table 7 were divided by the number of conditions in each experiment and
plotted as a function of experiment. Y = young subjects, O = older subjects, and
SDT represents the signal detection task, “letter” represents the letter discrimination
task with masking, “bright” represents the brightness discrimination task with
masking, “recog” represents the recognition memory task, and “lex” represents

the lexical decision task where “lex-p” is the experiment with pseudoword
nonwords and “lex-rnd” is the experiment with random letter string nonwords.

fits the higher quantiles for “new” responses but misses them for “old”
responses.

Ratcliff and Smith (2004) provided similar comparisons across three
experiments using young subjects only. One was Experiment 1 from this
chapter (signal detection for young subjects), the second was a lexical
decision experiment with speed and accuracy instructions, and the third was
a recognition memory experiment that manipulated the proportion of old
and new items. They found similar results: the diffusion model fit somewhat
better on average than the accumulator and LCA models.

General discussion

Theoretical development in the domain of models for two-choice decisions has
matured over the last few years. Existing models have been augmented so that
they can now overcome some of the seemingly insurmountable theoretical

27
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problems of the past. Also, new models have been developed. In parallel with
theoretical development, large data sets have become available against which
the models can be tested. In this chapter, we applied three models to 12 sets of
data from five different tasks, the first comparison of sequential sampling
models for two-choice decisions with such a large number of data sets. In past
studies, usually only a single model has been evaluated, fit to only one or two
sets of data.

What we found is that the diffusion model gave the best overall account of
the data. The LCA and accumulator models fit the data about equally well,
about 30% worse than the diffusion model (in terms of the y? measure we
used). Even though the accumulator model fit about as well as the LCA model,
no way has yet been found to allow it to predict RTs for errors shorter than RTs
for correct responses. Based on this qualitative problem, it can be rejected. In
contrast, even though the LCA model fit worse on average than the diffusion
model, there are no qualitative grounds for choosing one over the other.

One concern that might have been raised about the application of the
diffusion model to aging data is that any conclusions about the effects of aging
on cognitive processes might be specific to the diffusion model. By fitting all
three models, we have shown that the general conclusions are the same from
all three. For all three models, in five of the six experiments, there was no
difference in the rate of accumulation of evidence from the stimuli between
young and older subjects. In most cases, the decision criteria were set more
conservatively by the older subjects than the young subjects, and this was
largely responsible for the longer RTs for the older subjects. There was also an
increase in the duration of the nondecision component of processing for older
subjects that was quite consistent across the models.

Models for simple two choice decisions have reached a degree of maturity
that is rare in modeling in cognitive psychology. The models address most of
the phenomena within their domains of study and they fit the phenomena
quite accurately. It is now possible to critically test them against each other
(Ratcliff & Smith, 2004) and they can be used to interpret the effects of
aging, as studied here, and the effects of head injury on cognitive processes
(e.g. Ratcliff, Perea, Coleangelo & Buchanan, 2004). In addition to these psy-
chological investigations, the models are also being tested in computational
neuroscience as simultaneous accounts of neural processes and behavioral
data (e.g. Glimcher, 2003; Gold & Shadlen, 2001; Platt, 2002; Ratcliff, Segraves, &
Cherian, 2003; Roitman & Shadlen, 2002; Smith & Ratcliff, 2004 ). At this
point in the evolution of the models, they offer an explanation of processing
that encompasses applications to group and individual differences as well as to
the neurophysiological underpinnings of cognition.
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