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Categorization is thought to be fundamental to informa-
tion processing (Ashby, Boynton, & Lee, 1994), as well as 
behaviorally adaptive (Anderson, 1991). It has therefore 
been given extensive empirical treatment in the human 
cognition literature (see, e.g., Erickson & Kruschke, 1998; 
Maddox & Ashby, 1993, 1996; Maddox & Bohil, 2001; 
Medin & Schaffer, 1978; Nosofsky, 1986, 1991), and 
several well-formulated models have been proposed to 
explain processes underlying categorization (Anderson, 
1991; Ashby, 2000; Ashby & Townsend, 1986; Busemeyer 
& Myung, 1992; Erickson & Kruschke, 1998; Kruschke, 
1992; Nosofsky, 1986; Nosofsky & Palmeri, 1997; see 
also Ashby, 1992a).

A body of recent research has complemented these 
developments by focusing on categorization behavior in 
animals. Although animal categorization has not enjoyed 
the extensive theoretical development witnessed in human 
categorization (Shimp, Long, & Fremouw, 1996), some 

recent research has taken advantage of the advanced state 
of theory in the human literature by focusing on examin-
ing animals’ categorization under conditions previously 
examined in humans (Fagot, Kruschke, Dépy, & Vauclair, 
1998; Herbranson, Fremouw, & Shimp, 1999; Medin 
& Dewey, 1984; Sigala, Gabbiani, & Logothetis, 2002; 
Sigala & Logothetis, 2002; Smith, Minda, & Washburn, 
2004). In several cases, this work has been complemented 
by application of well-developed quantitative theories of 
human categorization to the behavior of animals (Fagot 
et al., 1998; Herbranson et al., 1999; Sigala et al., 2002).

Our article contributes to this theoretical development by 
applying three popular models of human  categorization—
a decision bound model (Ashby & Townsend, 1986) and 
two versions of exemplar theory (Ashby & Maddox, 1993; 
Nosofsky, 1986)—to the performance of rhesus monkeys 
on a probabilistic perceptual categorization task. We relate 
contemporary models of human categorization to research 
in animal categorization and examine the categorization 
behavior of monkeys using an experimental paradigm re-
cently found to be useful for distinguishing between differ-
ent accounts of human categorization (Rouder & Ratcliff, 
2004). We then present simulations comparing the quan-
titative accounts of exemplar and decision bound models, 
and the results suggest that monkeys’ performance can be 
explained with reference to a single boundary in decision 
bound theory. The experiment and simulations give further 
insight into the representations and decision processes un-
derlying simple probabilistic perceptual categorization.
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Comparing Models of Categorization
Three general principles have been posited to underlie 

categorization abilities in humans. These form the basis 
of prototype, exemplar, and decision bound models (see 
also Anderson, 1991; Gluck & Bower, 1988). Prototype 
theories (e.g., Reed, 1972) hold that when presented with 
members from categories, people form a representation 
of the central tendency for each category (i.e., a proto-
type). People are then thought to respond to a new stimu-
lus based on its similarity to each category’s prototype 
(Ashby & Maddox, 1993; Reed, 1972, 1978). In exem-
plar models, exposure to a category member results in 
the storage of a representation of that stimulus and its cat-
egory (Kruschke, 1992; Medin & Schaffer, 1978; Nosof-
sky, 1986, 1992). Categorization of a new item occurs by 
matching the item to all of the stored exemplars in each 
category (Nosofsky, 1986). The probability of making the 
response for a particular category is generally determined 
by use of a normalized choice probability rule (Nosofsky, 
1986), although several authors have noted that a deter-
ministic rule may also be used in these models (Nosofsky, 
1991; Ashby & Maddox, 1993). Finally, decision bound 
models, which are grounded in signal detection theory 
(Green & Swets, 1966), assume that the stimulus space is 
partitioned into separate regions by decision boundaries 
(Ashby, 2000; Ashby & Gott, 1988; Ashby & Townsend, 
1986). New stimuli are categorized according to the re-
gion of stimulus space in which they fall. Variability in 
the encoding of stimuli and the placement of boundaries 
(Ashby & Maddox, 1993) results in miscategorization of 
stimuli (and hence probabilistic responding) as a function 
of their distance from the boundaries.

Although a number of studies have provided varying 
support for all three theories, and particularly for exemplar 
and decision bound theories (see, e.g., Ashby et al., 1994; 
Ashby & Maddox, 1993; Erickson & Kruschke, 1998; 
Maddox & Ashby, 1996; Maddox, Ashby, & Gottlob, 1998; 
Maddox & Bohil, 2001; Medin & Schaffer, 1978; Nosofsky, 

1991; Nosofsky & Alfonso-Reese, 1999), it has been ar-
gued that exemplar and decision bound models can closely 
mimic each other’s behavior, thus compromising attempts 
to quantitatively distinguish the models (Estes, 1992; Kalish 
& Kruschke, 1997; Rouder & Ratcliff, 2004). Recognizing 
the methodological difficulties involved in distinguishing 
decision bound and exemplar models, Rouder and Ratcliff 
(2004; see also Kalish & Kruschke, 1997) addressed this 
mimicking problem in a probabilistic, unidimensional cat-
egorization task by using irregular mappings of stimulus 
values along a single perceptual dimension to categorical 
responses (see also Espinoza-Varas & Watson, 1994; Rat-
cliff & Rouder, 1998; Ratcliff, Thapar, & McKoon, 2001). 
Rouder and Ratcliff used probabilistic feedback, in which 
the probability of a response being designated as correct 
was nonmonotonically related to the single stimulus dimen-
sion, thus providing a qualitative test of exemplar models, 
which predict that response probabilities should follow the 
reinforcement probabilities in functional form (Nosofsky 
& Palmeri, 1997). Consider, for example, the middle panel 
of Figure 1 (labeled Dip). The probability that a particular 
response is reinforced (in this case, a rightward saccade) 
is plotted in crosses as a function of the value of a stimulus 
along a single perceptual dimension (in this case, the sepa-
ration between two lights). Notice that on the left of the 
graph, as the distance between the two lights decreases, 
the probability of reinforcement drops from .95 to .65. 
Exemplar theory (the predictions of which are illustrated 
by a dashed line) predicts that the probability of respond-
ing will also drop; although the response probabilities do 
not exactly match the reinforcement probabilities, over the 
stimulus values they do have a functional change similar 
to that of the reinforcement probabilities. Conversely, de-
cision bound models predict that the response probability 
function will be monotonic as long as there is only one 
boundary; if boundaries are placed optimally, this should 
be the case if (in a two-choice task) the reinforcement 
probabilities for a particular response cross .5 only at one 

Figure 1. Qualitative predictions from exemplar theory and decision bound theory for three reinforcement probability 
functions (quasi-linear, dip, and crossover conditions). The crosses give the probability that a right saccade was reinforced 
at each light separation value. Qualitative predictions (the probability of a right saccade) from the exemplar and decision 
bound models are represented as dashed and solid lines, respectively.
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point along the stimulus dimension (see, e.g., the left and 
middle panels of Figure 1). For the example in the middle 
panel of Figure 1, this prediction is illustrated by the solid 
line. Although the reinforcement probabilities drop as the 
stimulus values decrease, decision bound theory predicts 
a monotonic increase in the probability of responding as 
stimuli move away from the boundary (here assumed to be 
placed optimally between light separations 6 and 7).

By examining the behavior of human participants cat-
egorizing unidimensional stimuli under such reinforce-
ment functions, Rouder and Ratcliff (2004) found overall 
support for decision bound theory; however, they also 
discovered that support for decision bound or exemplar 
models depended upon the discriminability of the stimuli. 
For example, in their Experiment 2, square size consti-
tuted the single stimulus dimension. When the increment 
in size between successive squares was small, results sup-
ported a decision bound model. However, when the step 
size was large, and stimuli were thus highly discriminable, 
the patterns of performance were more in line with ex-
emplar models. Rouder and Ratcliff concluded that the 
data were consistent with a “hybrid” model in which both 
exemplar- and rule-based mechanisms could be used, and 
they suggested that rules are used for less discriminable 
stimuli because of the difficulty of accurately identifying 
and matching exemplars in such cases.

The paradigm employed by Rouder and Ratcliff (2004) 
closely parallels research in animal learning, in which the 
reinforcement of responses has often been probabilistic 
rather than deterministic, resulting in various qualita-
tive patterns of behavior (e.g., Estes, Burke, Atkinson, 
& Frankmann, 1957; Graf, Bullock, & Bitterman, 1964; 
Meyer, 1960; Shimp, 1973; Wilson, Oscar, & Bitterman, 
1964a, 1964b). In some cases, “maximizing” behavior has 
been observed, with an animal responding in a determin-
istic manner; thus, if the probability of reinforcement of a 
response given a stimulus is above chance (e.g., above .5 in 
a two-choice situation), that response will nearly always be 
given to the stimulus (see, e.g., Estes et al., 1957; Meyer, 
1960; Treichler, Conner, & Ricciardi, 1970; Wilson et al., 
1964b). This behavior has been named maximizing be-
cause it achieves the maximal reinforcement probability, 
and it is consistent with the processes of decision bound 
theory discussed above. In other cases, probability match-
ing has been witnessed, with an animal’s response prob-
abilities approximating the reinforcement probabilities, 
so that the same stimulus does not always evoke the same 
response (e.g., Robbins & Warner, 1973; Wilson & Oscar, 
1966; Wilson et al., 1964a). It has been noted that findings 
of probability matching or maximizing have implications 
for stochastic learning theory (see, e.g., Estes, 1950) and 
questions of optimality in animal discrimination.

Building on this animal learning research, investiga-
tions have focused on more complex categorization in 
animals (see Astley, Peissig, & Wasserman, 2001; Astley 
& Wasserman, 1992, 1999; Bhatt, Wasserman, Reynolds, 
& Knauss, 1988; Dépy, Fagot, & Vauclair, 1997; Fagot 
et al., 1998; Herrnstein, Loveland, & Cable, 1976; Medin 
& Dewey, 1984; Shimp et al., 1996; Smith et al., 2004; 

Spinozzi, 1996). Notably, several of these animal categori-
zation studies have explicitly focused on models of human 
categorization. Shimp et al. (1996) exposed pigeons to bi-
nomial samples representing the repeated tossing of one 
of two biased “coins.” In their experiment, a green light 
flash represented “heads” and a red light flash indicated 
“tails,” and pigeons were reinforced for correctly indicat-
ing from which binomial generator a sequence of lights 
had come. Shimp et al. found that the pigeons’ response 
probabilities exceeded the binomial probabilities for small 
sample sizes (number of observations of the “coin”) and 
undermatched them for large sample sizes. Furthermore, 
Shimp et al. found a nonlinear relationship between the 
likelihood that a sample was generated by a particular coin 
and the probability of responding in favor of that coin, in-
dicating that the pigeons did not simply match probabili-
ties. In a similar vein, Herbranson et al. (1999) tested pi-
geons on a multidimensional categorization task in which 
the members of each category, rectangles, were normally 
distributed along two stimulus dimensions, width and 
height. This experiment was a replication of tasks previ-
ously employed to examine decision bound accounts of 
human perceptual categorization (Ashby & Gott, 1988; 
Ashby & Maddox, 1992). Herbranson et al. found that the 
boundaries estimated from the pigeons’ performance ap-
proximated the boundaries necessary to perform the task 
optimally, a result previously found with humans (Ashby 
& Gott, 1988; Ashby & Maddox, 1992; Maddox & Ashby, 
1993). Surprisingly, this was the case even when the op-
timal boundary was nonlinear (see, e.g., Figure 10 of 
Herbranson et al., 1999). Although the experiment was 
not intended to test any particular model, the patterns of 
boundary use suggest that complex representations may 
underlie the categorization behavior of animals, repre-
sentations that perhaps approach the complexity of those 
underlying humans’ performance on such perceptual tasks 
(Herbranson et al., 1999).

Sigala et al. (2002) conducted a study that explicitly 
compared models of categorization. They compared seven 
computational models of categorization using data gathered 
from rhesus monkeys and humans on a “subordinate” cat-
egorization task, in which categories were distinguished by 
small changes in stimulus elements. Two classes of stimuli 
were used: line drawings of faces and of fish. Each class 
consisted of four dimensions along which stimuli could 
vary; for example, in the case of faces, the varying dimen-
sions were eye height, eye separation, mouth height, and 
nose length (see also Nosofsky, 1991; Reed, 1972). Sigala 
et al. found that for both monkeys and humans, exemplar 
and decision bound models gave better accounts of the ob-
served response probabilities than did a prototype model 
and probability-based models. The exemplar and decision 
bound models, however, could not be distinguished on the 
basis of their fit, reflecting the mimicking observed by 
Rouder and Ratcliff (2004) in human categorization.

Both the theoretical and empirical inquiries motivating 
these efforts point to the likelihood that common repre-
sentations and processes underlie perceptual categoriza-
tion in humans and animals and that general theories may 
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be applied to different species. In light of this research, 
we were interested in examining the performance of ani-
mals in a task that could dissociate exemplar and decision 
bound models. Accordingly, an experiment was run on 
monkeys using the two-alternative probabilistic unidi-
mensional categorization paradigm of Rouder and Ratcliff 
(2004). The data obtained using this procedure allowed 
exemplar and decision bound models to be quantitatively 
evaluated in order to determine the processes underlying 
the monkeys’ behavior.

The Present Experiment
The experiment was run as part of a larger project aimed 

at determining the neural correlates of choice probabilities 
and decision times in monkeys (see Ratcliff, Cherian, & 
Segraves, 2003). The subjects performed a simple visual 
categorization task in which the monkeys were to respond 
by making a saccade to the left or right depending on the 
displacement of a target light from a fixation point (see the 
Method section). There were nine values of displacement, 
ranging between 2º and 10º of visual arc in steps of 1º.

Three different reinforcement functions were employed, 
as shown in Figure 1. The three reinforcement functions 
(the “�” symbols in Figure 1) give the probability that a 
right saccade was reinforced for increasing light displace-
ment (in degrees). Along with these functions, Figure 1 
contains schematic depictions of the predictions of deci-
sion bound and exemplar theories.

The first reinforcement function, the quasi-linear con-
dition shown in the first panel of Figure 1, was a linear 
function with negative slope that flattened out at the ends 
to allow probabilistic reinforcement at the extreme values. 
As shown in Figure 1, exemplar and decision bound mod-
els are expected to make indistinguishable predictions for 
this reinforcement structure.

The second reinforcement function, in the second panel 
of Figure 1, was named the dip condition. The dip referred 
to occurs at the left of the panel, where (heading toward 
the left) the probability of reinforcement drops from .95 at 
a light displacement of 4º to .65 at a light displacement of 
3º. For our purposes, this region will be referred to as the 
critical region, since the predicted differences between the 
models are expected to be focused here. Figure 1 shows 
that decision bound models predict consistent responding 
in the critical region, whereas exemplar models predict 
that the response function will follow the reinforcement 
function in form.

The third reinforcement structure, shown in the right 
panel of Figure 1 and called the crossover condition, is 
similar to that of the dip condition in the middle panel, 
with the important difference that the reinforcement 
probabilities for a right saccade response drop to .35 (i.e., 
below .5) at displacements of 2º and 3º. The predictions of 
exemplar theory should be qualitatively similar to the pre-
dictions for the dip condition. Specifically, the probability 
of responding as light separation decreases in the critical 
region is expected to be nonmonotonic, because many ex-
emplars in this region will be associated with reinforce-
ment for a left saccade response. Decision bound models 

may predict one of two patterns, in this case. If monkeys 
use a single boundary to perform the task, predictions 
should be very similar to those in the dip condition. That 
is, the response probability should continue to monotoni-
cally increase as stimulus separation decreases. However, 
if a second boundary is introduced to allow more accurate 
responding, then nonmonotonicity should occur, leading 
to predictions similar to those of exemplar theory.

METHOD

Subjects
The experiment was conducted on 3 female rhesus monkeys 

(Macaca mulatta) weighing 6–9 kg and identified here as MK03, 
MK05, and MK07. The procedures used in training, surgery, and 
experiments with the monkeys were all approved by Northwestern 
University’s Animal Care and Use Committee. Each monkey re-
ceived preoperative training followed by an aseptic surgery to im-
plant a subconjunctival wire search coil and a stainless steel recep-
tacle to allow the head to be held still during behavioral paradigms. 
As preparation for neural recordings conducted in parallel for an-
other project, one or two stainless steel recording cylinders were 
fixed to the skull surface during this surgery. Surgical anesthesia 
was induced with the short-acting barbiturate Brevital (11 mg/kg), 
injected through an IV line, and maintained using halothane (1%) 
inhaled through an endotracheal tube. All of these methods have 
been described in detail elsewhere (Dias & Segraves, 1999; Seg-
raves, 1992).

Apparatus and Procedure
We used a two-choice task in which the monkey decided to sac-

cade left or right according to the displacement of a test stimulus 
light from a fixation light (Figure 2). To indicate their responses, 
the monkeys were trained to make a saccade to one of two response 
target lights, one in the left visual hemifield and the other in the 
right hemifield. The response target lights were kept on throughout 
the running of the task. The fixation light was always presented at 
the center of the display screen. The moveable test stimulus light 

Figure 2. Schematic depiction of the experiment setup and pro-
cedure. The top part of the figure shows the experimental array; 
the horizontal array presents the response targets and fixation 
point (FP), and the vertical lights are the stimuli, which varied 
from 2º to 10º of separation from FP. The bottom part of the fig-
ure shows the temporal structure of the trial.
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was positioned vertically above the fixation light by a mirror gal-
vanometer (General Scanning, Inc.; www.gsig.com), and its dis-
tance from the fixation light varied randomly from trial to trial over 
a range of 2º–10º, in 1º increments. The fixation point appeared at 
the beginning of each trial, and after the monkey achieved fixation, 
the fixation point remained illuminated for a randomly varied inter-
val of 500–1,500 msec. At the end of this interval, the test stimulus 
light was turned on. The test stimulus light and fixation point then 
remained on for up to 5,000 msec while the monkey was given the 
opportunity to make a saccade to one of the response target lights.

Feedback varied as a function of displacement according to the 
reinforcement functions in Figure 1. Since reinforcement was proba-
bilistic, before each trial the experimental program quasi-randomly 
determined which response would be reinforced, according to the 
functions in Figure 1. If the monkeys made the selected response, 
they were given a sip of juice as a reward. In line with similar experi-
ments (Fagot et al., 1998; Smith et al., 2004), and following proce-
dures employed with human participants, a noncorrection procedure 
was used, meaning that if the selected response was not made, no 
opportunity was then given to make the selected response.

The monkeys first received training on the quasi-linear condition 
shown in the first panel of Figure 1. They then completed blocks of 
each of the conditions in Figure 1, with the order of blocks and the 
number of sessions per block different for each monkey. Generally, 
the condition for a monkey was changed when its behavior in a con-
dition had stabilized, at which point the monkey would be switched 
to a new reinforcement condition.

The number of trials within each session varied according to the 
behavior of a monkey (i.e., whether it was making a large proportion 
of responses that were not unambiguously left or right saccades). On 
average, each daily session contained approximately 1,200–1,800 
trials and lasted for 60–120 min.

RESULTS

Trials with saccades made to either response target light 
were scored as valid and included in the data used for this 
report, regardless of whether the saccade was rewarded 
or not. Trials on which the monkey failed to make a sac-
cade, or made a saccade that did not terminate at either 
response target, were rejected. Responses were also ex-

cluded from analysis if a complete saccade was not made 
within 600 msec or if the saccade began within 160 msec 
after the onset of a test stimulus (these being defined as 
anticipatory responses). With the exclusion of these trials, 
the figures presented throughout give the probability of 
a definite right saccade (the alternative being a definite 
left saccade).

Session-to-session performance of the monkeys was 
quite variable, especially after a switch in reinforcement 
function (see also Treichler et al., 1970; Wilson et al., 
1964a). Since we were not interested in learning curves, 
in order to obtain stable data for model fitting, a subset of 
the sessions was selected for analysis and model fitting. 
Three sessions were selected for each monkey in each con-
dition according to two criteria. One criterion was that per-
formance for the session should be near asymptote for the 
condition associated with that session; that is, the session 
should come close to the end of a block of sessions, after 
performance had stabilized. The second, related, criterion 
was that the performance in that session should be similar 
to performance in the other sessions selected for that mon-
key. Both of these conditions were satisfied by calculating 
response probabilities for each session and finding the three 
sessions whose mutual residuals were the lowest.1

Figures 3–5 give the average right saccade probabilities 
for each condition; each figure gives the results under the 
three conditions for a particular monkey. The empirical re-
sults, as a function of light displacement, are depicted as 
unconnected open circles. Also shown are standard error 
bars, which were estimated from the observed response 
proportions, assuming a binomial distribution. Finally, the 
lines in each panel are the predictions of the models, which 
will be discussed after presentation of each of the models.

The results for the quasi-linear condition (first panel 
in Figures 3–5) are consistent with findings in the dis-
crimination literature, where the relationship between re-
inforcement probability and response probability is typi-

Figure 3. Proportion of right saccades at each light separation for Subject MK03, along with the maximum likelihood predictions 
of general recognition theory (GRT), the generalized context model (GCM), and the deterministic exemplar model (DEM). Data 
are represented by unconnected circles, and the predictions of GRT, GCM, and DEM are shown by solid, dotted, and dashed lines, 
respectively.
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cally an ogival function (see, e.g., Shimp, 1973; recall that 
reinforcement probability was related to light separation 
by an approximately linear function, flattening at the ends, 
in the quasi-linear condition). Although this condition 
could not discriminate between exemplar and decision 
bound models, the results do confirm that the monkeys 
could perform the task, and they replicated findings from 
previous discrimination learning experiments of nonde-
terministic responding (Ratcliff et al., 2003; Shimp, 1973; 
Shimp et al., 1996; Wilson et al., 1964a).

The results in the dip condition (second panel in Fig-
ures 3–5) are much the same as those from the quasi-linear 
condition. In particular, whereas the reinforcement prob-
abilities bend down from near 1.0 to .65 with decreas-
ing light displacement in the critical region, the response 
probabilities show no such pattern and remain at ceiling 
for the low values of light separation. Although no dip in 
response probabilities in the critical region is predicted 

by decision bound models, this result is inconsistent with 
the qualitative predictions of exemplar theory discussed 
earlier. The only noticeable departure from the results of 
the quasi-linear condition is that the response function 
appears to have shifted to the right by around 1º of light 
displacement. In fact, right saccade probabilities for light 
displacement of 7º were above .5, even though the objec-
tive reinforcement probability for this stimulus value was 
.2. Note, however, that the monkeys were sensitive to the 
change in reinforcement probabilities; this is reflected in 
an overall shift of the response function to the right.

Surprisingly, this monotonicity in the response function 
in the critical region was also apparent in the results for 
the crossover condition (see last panels in Figures 3–5). 
Even when the probability of being rewarded for a right 
saccade dropped below .5 in the critical region, the mon-
keys’ right saccade probabilities remained at ceiling. This 
finding was unexpected for both the exemplar and deci-
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Figure 4. Proportion of right saccades at each light separation for Subject MK05, along with the maximum likelihood predictions 
of GRT, GCM, and DEM.

Figure 5. Proportion of right saccades at each light separation for Subject MK07, along with the maximum likelihood predictions 
of GRT, GCM, and DEM.

2 4 6 8 10

0

.2

.4

.6

.8

1.0

Quasi-Linear

Light Separation (degrees of arc)

p(
R

ig
ht

 S
ac

ca
de

)

0

.2

.4

.6

.8

1.0

p(
R

ig
ht

 S
ac

ca
de

)

0

.2

.4

.6

.8

1.0

p(
R

ig
ht

 S
ac

ca
de

)

Data

GCM
DEM

GRT

2 4 6 8 10

Dip

Light Separation (degrees of arc)

2 4 6 8 10

Crossover

Light Separation (degrees of arc)



92    FARRELL, RATCLIFF, CHERIAN, AND SEGRAVES

sion bound theories. Exemplar theory predicts that perfor-
mance in this condition should be nonmonotonic and drop 
to some extent with decreasing light displacement. Deci-
sion bound theory, based on optimal boundary placement 
(Herbranson et al., 1999), predicts that a second bound-
ary will be placed somewhere between light separations 
3 and 4, so in that model response probabilities would 
also be expected to decrease with decreasing light separa-
tion. However, these results are consistent with the use of 
a single boundary placed as in the quasi-linear and dip 
conditions.

One possible explanation for the monotonicity in the 
critical region in the crossover condition is that the mon-
keys had overlearned the quasi-linear and dip conditions, 
and that this prevented the monkey from learning a quali-
tatively different task. To check this possibility, the mon-
keys were also trained under a fourth, probability reversal 
condition (see, e.g., Treichler et al., 1970), in which the 
quasi-linear reinforcement function shown in Figure 1 
was flipped along the abscissa around a light displace-
ment of 6º. Notably, the monkeys learned this reverse rule 
quite quickly: Performance in this condition generally sta-
bilized in three or four sessions. The observation that the 
monkeys were able to switch to the new reversed rule in 
two or three sessions mitigates against perseverative re-
sponding as an explanation for the monotonic responding 
in the critical region in the crossover condition.

Finally, there is little evidence of any substantial in-
dividual differences in behavior among the 3 monkeys. 
Although there were slight deviations in quantitative re-
sults (for example, the response functions of MK05 and 
MK07 appear slightly flatter than those for MK03), the 
general pattern of results was very consistent across the 
3 monkeys.

In general, these results appear to run contrary to the 
qualitative predictions of exemplar theories and provide 
support for single-boundary versions of decision bound 
theory. The results in the crossover condition imply that if 
monkeys were using boundaries to perform the task, only 
a single boundary was used even in cases in which the use 
of two boundaries was required for optimal performance.

Model Fits
Three models—namely general recognition theory (GRT; 

see, e.g., Ashby & Maddox, 1993; Ashby & Townsend, 
1986); the exemplar-based generalized context model 
(GCM) of Nosofsky (1986, 1991); and a deterministic ver-
sion of GCM, the deterministic exemplar model (DEM; 
Ashby & Maddox, 1993)—were fit to the experimental 
data in order to substantiate our conclusions about the su-
periority of decision bound models. A strength of using 
quantitative models is that models can be fit (using an 
objective minimization algorithm) to ensure that verbally 
derived predictions are consistent with the actual best-
fitting performance of the models. We introduce the mod-
els in turn, and then evaluate their fits.

GRT. GRT (Ashby & Gott, 1988; Ashby & Maddox, 
1993; Ashby & Townsend, 1986), a decision bound model, 
assumes that a stimulus is represented as a point in a 

multidimensional stimulus space. The space can be parti-
tioned by boundaries so that regions of space correspond 
to particular categories or responses. A stimulus is cat-
egorized by determining in which region it lies. Although 
GRT uses nonlinear boundaries if these are optimal for a 
category structure (Ashby & Maddox, 1992), in the case 
of the unidimensional categorization task a boundary is a 
single point on the stimulus dimension. GRT assumes that 
stimulus processing is contaminated by perceptual noise; 
although the same physical stimulus might be presented 
several times during an experiment, it will result in a dif-
ferent perceptual state each time because of noise in the 
perceptual system.

GRT was applied as it was by Rouder and Ratcliff 
(2004). A stimulus on a particular trial was assumed to 
be sampled from a normal distribution with mean equal 
to the true value of light displacement and standard de-
viation σ representing the amount of perceptual noise. If 
the sampled value was higher than the boundary value, a 
left saccade was recorded; otherwise, a right saccade was 
identified. The probability of categorizing a light separa-
tion li as Category B (a right saccade) was given by

 
p B f x l dxi( ) , , ,= ( )

−
∫ σ
δ

2

�  
(1)

where δ is the position of the boundary, f is the normal 
probability density function, x is the stimulus space (i.e., 
the dimension of light separation), and σ2 is the variance of 
perceptual noise, which was assumed to be constant across 
stimuli and conditions (see Rouder & Ratcliff, 2004).

One important factor that may have affected performance 
in these choice tasks is systematic bias not attributable to 
the stimuli. For example, in choice situations, animals may 
often develop response or position habits, preferring one 
spatial response over the other (see, e.g., Nash, 1970). Ani-
mals might also show bias due to the overall reinforcement 
probability for each response independent of the presented 
stimulus, or due to sensitivity to feedback in previous trials 
(see below). To enable GRT to naturally capture these pos-
sible sources of systematic responding, the boundary δ was 
allowed to be a free parameter.

GCM. GCM (Nosofsky, 1986, 1991), an exemplar model, 
also represents the stimulus as a point in multidimensional 
space (which is usually derived from the physical stimulus 
space using multidimensional scaling [MDS]; Maddox & 
Ashby, 1993; Nosofsky, 1986, 1991). The model makes 
three key assumptions. First, learning involves the storage 
of exemplars in memory, where each exemplar is associ-
ated with a category or response. Second, categorization 
of a new stimulus is based on its similarity to all exemplars 
in memory. Similarity is computed using an exponential 
gradient (Shepard, 1987): sij, the similarity between the 
stimulus li and exemplar yj, is given by

 
s dij ij= −( ) >exp , ,λ λ 0

 
(2)

where dij is the geometric distance between exemplar yj 
and the stimulus. In the unidimensional paradigm used 
here, dij � | li � yj |, the absolute difference between the 
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stimulus li and the exemplar (see also Rouder & Ratcliff, 
2004). The third assumption is that response probabilities 
are given by a choice rule based on the sums of the simi-
larities of exemplars in each category. The sum of similari-
ties for a left saccade is given by

 
a sj

j A

=
∈
∑ ,

 
(3)

and for a right saccade

 
b sj

j B

=
∈
∑ ,

 
(4)

where the sum is over exemplars sj that belong to either 
category. The summed similarities a and b are transformed 
to response probabilities using the Luce–Shepard choice 
rule (Luce, 1963; Shepard, 1957). By this rule, the prob-
ability of Response B is given by

 
p B b

a b
( ) .=

+  
(5)

As mentioned in the discussion of GRT, the monkeys 
might be expected to show some bias in responses from 
condition to condition. To enable GCM to capture these 
effects, a bias parameter, β, was incorporated into GCM, 
in keeping with Nosofsky (1986). The probability of a 
right saccade, p(B), was given by
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(6)

Examination of Equations 2–6 suggests how GCM 
might accommodate the data. The parameter λ in Equa-
tion 2 scales the gradient of similarity. If this parameter 
is large, similarity will fall off quickly with increasing 
distance dij, and if it is small, the similarity gradient will 
be roughly flat. This component will be especially impor-
tant for determining performance in the critical region in 
the present experiments. If the parameter is set to a high 
value, stimuli will only bear strong similarity to their own 
exemplars (keeping in mind that the dimension is discrete, 
so each stimulus will correspond to one of the nine exem-
plars), and responding will tend to track the reinforcement 
function (Figure 1). If this parameter has a low value, then 
the exemplars in the critical region will also be similar 
to the adjacent exemplars from the other category (light 
separation values 4 and 5), increasing the probability of a 
right saccade for light separations of 2 and 3.

DEM. The final model examined was a deterministic 
exemplar model (DEM; Ashby & Maddox, 1993; Maddox 
& Ashby, 1993). Nosofsky (1991) used a deterministic deci-
sion process with GCM in relating classification and recog-
nition, whereby a response was made depending on whether 
the difference in summed similarities exceeded a criterion. 
Ashby and Maddox (1993) pointed out that this model did 
not formally relate to the standard GCM (e.g., Nosofsky, 
1986), which uses the similarity choice rule (Equation 5), 
and so they introduced a generalization of the decision rule 
in GCM that is identical to a deterministic model. Specifi-
cally, they showed that using the decision rule

Respond B if log(b) � log(a) � δ

(where a and b are from Equations 3 and 4 and δ is a cutoff 
value) is equivalent to using a probabilistic rule:
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The parameter γ in Equation 7 scales the consistency of 
responding in the model. If γ � 1, the model will tend to 
respond consistently (i.e., always give the same response 
to a stimulus), but as γ approaches 1 the model will ap-
proach probability matching—that is, it will display vari-
ability in responding. As γ moves from 1 to 0, the model’s 
predictions will approach chance (.5 for the two-choice 
task). Nosofsky and Palmeri (1997) recently showed that 
an exemplar-based random-walk model could respond 
deterministically; in fact, the decision rule resulting from 
Nosofsky and Palmeri’s model is formally identical to 
Equation 7. We used DEM to model consistency of re-
sponding in exemplar theory because of its simplicity of 
application and because the model has performed well 
with this paradigm in previous applications (Rouder & 
Ratcliff, 2004).

Details of Fitting
The models were fit to the data using maximum like-

lihood estimation; details of the model fitting appear in 
Appendix A. One assumption made in fitting the mod-
els to the data was that the psychological stimulus scale 
was identical to the physical stimulus scale. That is, light 
displacement, in degrees, was directly used as x in Equa-
tion 1 and d in Equation 2. As noted above, GCM typically 
takes MDS-transformed stimuli as input. MDS is a pro-
cedure that maps physical stimuli onto dimensions more 
closely reflecting the hidden structure underlying the data 
(Young & Hamer, 1987). However, an MDS solution was 
not possible in this case, because similarity ratings could 
not easily be obtained from the monkeys. Nevertheless, it 
is worth noting that Sigala et al. (2002), who used mul-
tidimensionally varying stimuli, found that an exemplar 
model based on physical dimensions was as successful in 
accounting for their results as was the MDS-based GCM.

Another assumption made in the model fitting related 
to sequential dependencies in the data. Previous work has 
shown that examination of sequential effects in choice 
tasks may reveal data patterns that can discriminate be-
tween quantitative models better than examination of 
average unconditionalized performance can (see, e.g., 
Ratcliff, Van Zandt, & McKoon, 1999; Stewart, Brown, 
& Chater, 2002). Findings of sequential dependencies in 
discrimination (Overall & Brown, 1963; Robbins & War-
ner, 1973; Steiner, 1970; Wilson et al., 1964b) suggest that 
such dependencies might exist in the performance of the 
monkeys here, and that the models, particularly GCM and 
DEM, might be distinguished on the basis of these depen-
dencies. Analysis of sequential dependencies did indeed 
reveal that the monkeys’ responses on a trial depended 
in part on events in the preceding trial (see Appendix B, 
which presents the results of these analyses). Here, we con-
sidered crossing the response on trial n�1 with reinforce-
ment on trial n�1. The response on the previous trial could 
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have been a left or right saccade, and reinforcement might 
or might not have been presented, leading to a 2 � 2 facto-
rial upon which performance on trial n could be condition-
alized. Sequential dependencies were modeled by allowing 
the bias term in each model (δ in GRT and β in GCM and 
DEM) to vary. Thus, each model incorporated 12 bias pa-
rameters (2 possible previous responses � 2 previous rein-
forcement outcomes � 3 experimental conditions).

Simulation Results
For GRT, the maximum likelihood parameter estimates 

for the global parameter σ were 1.277, 1.466, and 1.804 
for Subjects MK03, MK05, and MK07, respectively. With 
GCM, values of 1.657, 1.409, and 1.147 were estimated 
for λ. For DEM, λ took on values of 0.162, 0.094, and 
0.054, and γ was estimated at 10.72, 14.68, and 22.94 for 
the respective monkeys. Bias parameters are presented in 
Tables B1–B3 and discussed in Appendix B. Here, it is 
sufficient to make two observations. First, it was found 
that the bias parameters tended to be above their neutral 
values (i.e., β � .5 for GCM and DEM, and δ � 6 for 
GRT). This indicates that there was an overall response 
bias toward right responding, regardless of events on the 
previous trial or the stimulus presented on the current trial. 
This is not surprising, since the global reinforcement prob-
ability for right saccades (i.e., regardless of the stimulus) 
was above .5 for the dip and crossover conditions. Second, 
the bias parameters, though variable, reflected the sequen-
tial dependencies observed in the monkeys’ behavior. For 
example, in the crossover condition, a tendency was ob-
served for MK07 to respond using the same response that 
was made in the previous trial; this is reflected in the bias 
parameter values for all of the models for MK07 in this 
condition.

The predictions of the models from these parameter val-
ues, averaging across sequential dependencies, are shown 
in Figures 3–5. The quantitative predictions of the models 
conform with the qualitative predictions illustrated in Fig-
ure 1. GCM gave a relatively poor fit of the data. Notably, 
GCM was unable to produce the monotonicity observed 
in the lower light separations. It predicted an extensive dip 
in response probabilities for the dip and crossover condi-
tions and also tended to predict overly shallow response 
functions for the quasi-linear condition. DEM produced 
the same qualitative trends as GCM, but gave noticeably 
better fits of the data. This model did show roughly mono-
tonic responding at lower light separations in the dip con-
dition, but at the expense of an overestimation of response 
probabilities for higher light separations. Also, DEM pre-
dicted nonmonotonicity in responding at the lower light 
separations for the crossover condition. In contrast, GRT 
produced sigmoid-shaped response functions for all mon-
keys and conditions, and thus captured the monotonicity 
apparent in the monkeys’ saccade probabilities at lower 
light separations.

Visual inspection of the model fitting results provides 
convincing support for GRT. This support is confirmed by 
examination of the goodness-of-fit values for the 3 mon-
keys under the four sequential dependencies. Table 1 pre-

sents log likelihood estimates for all of the models, which 
were converted to Akaike information criterion (AIC; 
Akaike, 1973, 1974) scores; such scores trade off quan-
titative fit against the number of parameters to select the 
best and simplest model. To measure the relative goodness 
of fit of each model, the rightmost column of Table 1 gives 
the difference in AIC (ΔAIC) between each model and 
the best-fitting model for a particular condition (a value 
of 0 indicates that a model was the best-fitting model for 
that condition). Although AIC scores can be open to mis-
interpretation (see Wagenmakers & Farrell, 2004, for a 
discussion), these AIC differences are large enough to be 
considered nonarbitrary (see, e.g., Burnham & Anderson, 
2002, p. 70). In all cases, the GRT model gave a superior 
account of the data over both GCM and DEM. Thus, the 
modeling results provide unequivocal support for the GRT 
model.

DISCUSSION

Model fitting revealed that overall, the GRT model of 
perceptual categorization outperformed both exemplar 
models examined. However, before accepting these re-
sults as convincing evidence for GRT, several potential 
objections regarding the quantitative fits need to be ad-
dressed. One is that when fitting the exemplar models, 
each experimental condition was treated as separate and 
independent. That is, it was assumed that exposure to each 
new condition resulted in the accumulation of a new set 
of exemplars in GCM and DEM, so that exemplars were 
not retained between conditions. This is not a major con-
sideration, however, since we were concerned with steady-
state behavior in each condition and generally focused on 
behavior at the end of a block of sessions for a particular 
condition.

Nonetheless, it might still be argued that if carryover 
of exemplars were taken into account, the exemplar 
models, particularly GCM, would give a better fit in the 

Table 1
Goodness-of-Fit Table for General Recognition Theory (GRT), 
the Generalized Context Model (GCM), and the Deterministic 

Exemplar Model (DEM)

  ln L  AIC  ΔAIC

GRT (n � 13)
 MK03 �2,095.51 4,217.02 0.00
 MK05 �3,187.37 6,400.74 0.00
 MK07 �3,067.69 6,161.38 0.00

GCM (n � 13)
 MK03 �4,034.05 8,094.10 3,877.08
 MK05 �4,159.63 8,345.26 1,944.52
 MK07 �3,694.21 7,414.42 1,253.04

DEM (n � 14)
 MK03 �2,878.19 5,784.38 1,567.36
 MK05 �3,342.64 6,713.28 312.54
 MK07  �3,096.37 6,220.74 59.36

Note—n for each model indicates the total number of free parameters. 
The last column gives the difference in Akaike information criterion 
(AIC) between each model and the best-fitting model. ln L, log maxi-
mum likelihood.
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crossover condition, because the exemplars in the criti-
cal region from the earlier conditions would add to the 
similarity value for the right saccade response (b in Equa-
tions 6 and 7) and increase right saccade responding in the 
critical region in these conditions. However, examination 
of performance in the later sessions of the experiment ar-
gues against this possibility. As mentioned earlier, later 
sessions also involved a fourth training rule in which the 
monkeys were trained on a reversed quasi-linear condi-
tion. The monkeys’ ability to learn this new function ar-
gues against overlearning of the quasi-linear and dip func-
tions as an explanation for the monotonic performance in 
the crossover condition. More telling for the possibility of 
exemplar carryover is the performance of the monkeys on 
sessions involving the crossover reinforcement function 
that immediately followed sessions with the reversed rule. 
In these cases, the exemplars from the reverse condition 
would be expected to be strong because of their recent pre-
sentation, so exemplars from the reverse condition should 
give a boost to the summed similarity for a left saccade in 
Equations 6 and 7. However, even under this sequence of 
trials, the monkeys still showed no lowering of response 
probabilities in the critical region. Together, these results 
suggest that carryover effects due to trial ordering cannot 
be the sole mechanism for the behavior we witnessed in 
the monkeys.

A final possibility is that exemplar models with learned 
attentional shifting, such as ALCOVE (Kruschke, 1992), 
might give a better account of the data here, given previ-
ous investigations of attentional shifting in animal dis-
crimination and categorization (Fagot et al., 1998). The 
attentional learning in ALCOVE, however, is irrelevant 
here; since stimuli varied along only a single dimension, 
shifting of attention between dimensions could have no 
role. However, Kalish and Kruschke (2000) recently ex-
plored an extension of ALCOVE, called CORNER, in 
which attention was shifted between stimulus values along 
a particular dimension, as well as between dimensions. 
CORNER offers the possibility of handling the present re-
sults, since it includes learning to shift attention to or from 
exemplars surrounding the critical region in order to in-
crease maximizing in all conditions. However, exploratory 
simulations revealed that this model also made predictions 
that were not consistent with the data from the monkeys; in 
fact, CORNER predicted sharpening of the response func-
tion at points along the stimulus dimension where the prob-
abilities rose or dropped. For example, in the dip condition, 
where the reinforcement probabilities dropped from near 
1.0 to .65, the CORNER model predicted that probabilities 
would drop from .9 to .4, which is clearly not consistent 
with the performance of the monkeys.

We now turn to the implications of the modeling results 
for the theoretical issues we have been addressing. One 
obvious conclusion is that given the superior fits from 
GRT, the monkeys appear to have partitioned the stimulus 
space into equivalence classes and responded to the stim-
uli on the basis of their position with respect to the bound-
ary. This is not a trivial implication, since it indicates that 
verbal formulation of rules is not necessary for acquisition 

of perceptual categories to take place (cf. Ashby, Alfonso-
Reese, Turken, & Waldron, 1998). As Herbranson et al. 
(1999) pointed out, the finding that even pigeons can use 
nonlinear boundaries in a multidimensional categoriza-
tion task supports the idea that the nature of the rules in 
theories such as GRT is basic and perceptual. However, 
there do appear to be limits to such learning. Smith et al. 
(2004), in a recent replication of Shepard, Hovland, and 
Jenkins’s (1961) well-known category learning experi-
ment, observed that rhesus monkeys could not learn an 
exclusive-or (xor) category membership rule. Under such 
conditions, monkeys’ performance appeared to be con-
sistent with cue-conditioning and stimulus-generalization 
theories, but humans appeared to make use of explicit 
verbal rules.

Another outcome relates to the impressive fits of DEM. 
It is not immediately apparent how the addition of the sin-
gle parameter γ should lead to extensively better fits for 
DEM over GCM. Inspection of the maximum likelihood 
parameter estimates for DEM reveals that the estimated 
value of γ was quite large for all 3 monkeys, with a maxi-
mum of 22.94 for MK07. This indicates that the process-
ing in the model approximated deterministic rule-based 
use (see Ashby & Maddox, 1993), which led to consistent 
responding in the model. That is, whenever the summed 
similarity for a right saccade was higher than that for a left 
saccade, the model showed a strong tendency to respond 
with a right saccade. However, this does not explain why 
DEM did not respond in the wrong direction in the criti-
cal region for the crossover condition: The reinforcement 
probabilities here were below .5, so left saccade summed 
similarities should have been greater than those of the 
right saccade, and consistency in responding should have 
led to right saccade probabilities being near 0. An expla-
nation lies in the fitted values of λ for DEM; these were 
small relative to those for GCM, meaning that the similar-
ity gradients for DEM were very flat in comparison with 
the gradients for GCM. Because of this, in DEM there 
was some similarity between a stimulus and even distant 
exemplars. Thus, for the crossover condition, the model 
could actually get a greater summed similarity for a right 
saccade in the critical region because of the contribution 
of exemplars of light separations 4, 5, and 6, which pro-
vided support for a right saccade. Note, however, that this 
improved fit in the critical region came at a cost for the 
model. In particular, it led the model to overpredict right 
saccade probabilities at the highest light separation val-
ues, since those stimuli overlapped highly with the right 
saccade exemplars at light separations 4–6.

In summary, GRT gave superior fits for all 3 monkeys. 
The large disparity in fit between GCM and DEM also 
suggests that a large contributor to performance of the 
models was the extent to which they incorporated consis-
tency in responding.

GENERAL DISCUSSION

The performance of 3 monkeys was examined on a one-
dimensional categorization task in which popular theories 
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of categorization predicted either deterministic or more 
variable responding. The results of the experiment were 
consistent with the qualitative predictions from decision 
bound theories of categorization and did not display the 
variability in responding that was qualitatively predicted 
by exemplar theory. Quantitative application of a decision 
bound theory, GRT (Ashby, 2000; Ashby & Gott, 1988), 
and of two exemplar theories, GCM (Nosofsky, 1986) and 
DEM (Ashby & Maddox, 1993; see also Nosofsky, 1991; 
Nosofsky & Palmeri, 1997), gave overall support to GRT.

One interesting result is that the boundary-based solution 
found by the monkeys cannot achieve maximal accuracy. 
There are two likely reasons for this outcome. A method-
ological reason relates to the fact that the monkeys received 
some training on sessions for which a single boundary was 
sufficient before being trained on the crossover condition. 
Although we argued that there was little retention of exem-
plars between conditions, the monkeys may have developed 
some qualitative rigidity in their approach to the task by 
continuing to use only a single boundary. It is possible that 
the costs of learning an additional boundary did not war-
rant the small increase in probability of reinforcements that 
would have resulted. From the perspective of optimality, an 
additional factor not considered here was the payoff matrix 
for the task. In this task, a sip of juice was the reward for a 
“correct” response (i.e., a response probabilistically deter-
mined to be correct on that trial). It might be that making 
the reward greater, or making the consequences of an incor-
rect response aversive, could induce use of a second rule in 
the monkeys.

Another possibility is that this result reflects basic 
limits in the capacity of the monkeys to learn the task. 
However, there is reason to doubt this explanation. Her-
branson et al. (1999) showed that pigeons were able to 
learn nonlinear boundaries in a multidimensional catego-
rization task, closely approximating the rule use found in 
humans (Ashby & Lee, 1992; Ashby & Maddox, 1992). 
On this basis, we would expect higher order animals such 
as monkeys to be able to learn more than one of the simple 
rules in order to perform optimally. Given the exploratory 
nature of the present experiment, this question is left as 
an open one.

Relation to Previous Animal Studies
As mentioned previously, several studies have consid-

ered application of theories of human categorization to 
animals. One conclusion from these previous studies was 
that monkeys and baboons appear not to rely on prototypes 
when performing typical categorization tasks (Dépy et al., 
1997; Sigala et al., 2002). Although we did not examine 
prototype models here, such models would be expected 
to perform more poorly than GCM. Both exemplar and 
decision bound theories have found support in previous 
animal studies (Dépy et al., 1997; Medin & Dewey, 1984; 
Shimp et al., 1996; Sigala et al., 2002); in particular, Si-
gala et al. (2002), who directly compared the fits of exem-
plar and decision bound models to monkeys’ categoriza-
tion of two-dimensional stimuli, found that categorization 
was performed both on the basis of similarity of stimuli to 

exemplars and with respect to distance of the stimuli from 
a putative objective boundary. Sigala et al. examined in 
detail the performance of only 1 monkey, and their data 
indicated the use of both exemplars and boundaries within 
the monkey. Although it might be that monkeys can use 
both exemplars and decision boundaries, the mimicking 
observed between exemplar and decision bound theories 
prevents firm conclusions from being drawn.

Relation to Human Studies
Rouder and Ratcliff (2004) applied an experimental par-

adigm very similar to the one employed here to examining 
the performance of humans on a light/dark discrimination 
task with probabilistic feedback, and they found evidence 
supporting both exemplar and decision bound models. Al-
though in general GRT gave a better fit across their experi-
ments, Rouder and Ratcliff found that DEM appeared to be 
superior in cases in which the stimuli were not confusable. 
On this basis, Rouder and Ratcliff suggested that humans 
might alternate in their use of exemplars or decision bounds 
to perform a categorization task, depending on the discrim-
inability of stimuli (and thus the usefulness of individual 
exemplars); such a possibility has been considered in other 
models of human categorization (Erickson & Kruschke, 
1998; Nosofsky, Palmeri, & McKinley, 1994). Although 
application of a hybrid exemplar–decision bound model 
might be possible with the present results, such models 
have not received a great deal of theoretical develop-
ment and suffer from problems of parameter identifiabil-
ity (Bamber & van Santen, 2000); given the mimicking 
problem that motivated the use of our paradigm, fitting 
a hybrid model would not have allowed us to accurately 
identify the contribution of individual components in such 
a model. We therefore chose to restrict our attention to 
simple, interpretable models. The validity of our modeling 
results is highlighted by the consistency of their superior 
fit of decision bound theory with the modeling results of 
Rouder and Ratcliff.

Theoretical Implications
The main conclusion from the experiment and the mod-

eling results is that monkeys partition perceptual space in 
order to perform perceptual categorization tasks of the 
type discussed here. However, the large disparity in fit 
between GCM and DEM is also highly suggestive. In par-
ticular, it implies consistency in responding, regardless of 
the underlying representations employed; the determinis-
tic responding in GRT was likely a major contributor to 
the relative success of that model. Other researchers have 
drawn similar conclusions when quantitatively comparing 
this set of models with respect to human categorization 
performance (Maddox & Ashby, 1993).

Conclusions
The experiment and model fitting presented in this ar-

ticle demonstrate that quantitative modeling of perceptual 
categorization by animals can complement research in 
human categorization. This research also offers extensions 
to a domain wider than categorization probabilities. Along 
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with research on response times in categorization (Ashby, 
2000; Lamberts, 1998; Nosofsky & Palmeri, 1997; Ratcliff 
et al., 2003) and investigations relating categorization per-
formance and neural activity (Ashby & Ell, 2001; Ratcliff 
et al., 2003; Sigala & Logothetis, 2002), the present study 
suggests the potential for theoretically meaningful inte-
gration and extension of research on the processes under-
lying categorization.
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NOTE

1. This selection procedure was employed, rather than simply examin-
ing terminal performance, because the monkeys were variable in their 
behavior from session to session. Even close to the end of a condition 
block, in some sessions monkeys still showed close-to-chance perfor-
mance or made large numbers of ambiguous responses. Our selection 
procedure produced data representative of terminal performance with 
controlled variability.
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APPENDIX A
Details of Model Fitting

Models were fit to the data using maximum likelihood estimation. Maximum likelihood estimation is a powerful 
method for parameter estimation (Maddox & Ashby, 1993) because it produces estimators that are consistent (meaning 
that the probability of the difference between the estimator and the real parameter value being above some small value 
is 0 in the limit of sample size). Estimators that are asymptotically efficient (i.e., that have the smallest variance) will 
also be found if they exist (Eliason, 1993; Wickens, 1982). The likelihood for a series of responses given a model for 
a particular condition c is
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where lt denotes the stimulus presented on trial t and rt denotes the response made on trial t; rt � 0 if Response A was 
made and rt � 1 if Response B was made (see, e.g., Ashby, 1992b; Maddox & Ashby, 1993). The total likelihood across 
the conditions is given by multiplying together the likelihoods for each condition. For the simulations, Equation A1 was 
adapted to give the log likelihood for condition c as

 
ln exp | ln | expL F A l p A lc i

i

k

i= ( )⎡⎣ ⎤⎦ − ( )⎡⎣ ⎤⎦ +
=
∑

1
1 FF B l p B li i| ln | ,( )⎡⎣ ⎤⎦ ( )

 
(A2)

where F(A | li) and F(B | li) are the respective empirical frequencies of left or right saccades given in response to stimu-
lus li across all three conditions (quasi-linear, dip, and crossover).A1

An advantage of using maximum likelihood is that it is possible to compare models on goodness of fit while correct-
ing for differences in number of free parameters used to fit the data. Akaike (1973, 1974) related maximum likelihood 
to a measure of information, the Kullback–Leibler distance (Kullback & Leibler, 1951), which measures the informa-
tion lost when one model is used to approximate another; in this case, the model being approximated is the unknown 
process underlying the monkeys’ data. Akaike (1973) showed that an unbiased estimate of maximum likelihood should 
take into account the number of parameters between models. This corrected measure, known as the Akaike information 
criterion, is given by
 AICi � �2ln Li � 2Ki, (A3)

where Ki is the number of parameters in the model and ln Li is the log maximum likelihood obtained by summing the 
log likelihoods.

The simplex minimization algorithm of Nelder and Mead (1965) was used for each model to find the parameter 
values that maximized the likelihood of obtaining the data from that model. To ensure that a global maximum was 
found, the simplex routine was run 100 times per model, each run using a different vector of starting parameters, and 
the highest maximum likelihood across the runs was taken as the best solution.

NOTE

A1. In cases where the models predicted that response proportions were at zero or unity, these proportions were arbitrarily set to 
10�8 and (1 � 10�8), respectively, to allow the log transform in Equation A2.

APPENDIX B
Sequential Dependencies in Data and Models

The empirical results of the sequential effect analyses for all monkeys are presented in Figures B1–B3. Each panel 
shows four right saccade probability functions, each curve being the response function conditionalized on some com-
bination of (1) the response on the previous trial and (2) whether or not reinforcement was received on the previous 
trial. It is evident from visual inspection that the monkeys do not all display the same sequential dependencies. The 
four response functions are mostly indistinguishable in MK03 (Figure B1), indicating that this monkey’s responses 
were not systematically affected by the response or reinforcement on the previous trial, but were only dependent on the 
stimuli on the current trial. MK05 (Figure B2) displays clearer sequential dependencies: Reinforcement of the previ-
ous response appears to decrease the probability of a right saccade on the following trial in the quasi-linear condition. 
MK05 also shows some evidence of sequential dependencies in the dip and crossover conditions, but these effects are 
not consistent across all light separations. For MK07 (Figure B3), there is clear evidence of sequential dependencies in 
the crossover condition. For this condition, MK07 appears to perseverate responses, so that a right saccade was more 
likely to be followed by another right saccade. For the other two experimental conditions, however, this subject displays 
no systematic effects across stimulus level.

(Continued on next page)
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APPENDIX B (Continued)

Figure B1. Proportion of right saccades for Subject MK03, conditionalized on the response and reinforcement for 
the previous trial. The first letter in the figure legend indicates the previous response (L, left saccade; R, right saccade), 
and the second letter indicates whether the previous response was reinforced (Y [yes], response was reinforced; N [no], 
response was not reinforced).

Figure B2. Proportion of right saccades for Subject MK05, conditionalized on the response and reinforcement for the 
previous trial. For an explanation of the figure legend, see the caption to Figure B1.

Figure B3. Proportion of right saccades for Subject MK07, conditionalized on the response and reinforcement for the 
previous trial. For an explanation of the figure legend, see the caption to Figure B1.
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APPENDIX B (Continued) 

Tables B1, B2, and B3 present the estimated bias parameters for MK03, MK05, and MK07, respectively. A higher 
bias parameter corresponds to a bias to respond with a right saccade. Overall, the patterns of bias parameters confirm 
the sequential dependencies identified visually from Figures B1–B3. In the quasi-linear condition, the bias parameters 
for GCM and GRT show no systematic pattern (see the first column of each table), but the parameters for DEM suggest 
a switching strategy in which the monkey alternated responses, since a right response was more likely if the previous 
response had been a left saccade. The results from the three models for the dip condition reveal some interesting pat-
terns. For GRT, it appears that right saccade probabilities were increased following reinforcement of a right saccade or 
nonreinforcement of a left saccade. For GCM, there were no real differences in bias parameters between conditional-
izations. However, for DEM there were clear effects of conditionalization on bias, since reinforcement of any response 
appears to have decreased right saccade probabilities on the following trial. Finally, for the crossover condition, all 
three models suggest that the monkeys (particularly MK05 and MK07) perseverated responding, so that they repeated 
responses regardless of whether or not they were reinforced.

Table B2
Bias Parameter Values for Each Model for Fits to Sequential 

Dependencies in Subject MK05

Quasi-Linear Dip Crossover

Reinforced?  Left  Right  Left  Right  Left  Right

GRT
 Yes 6.50 6.29 7.14 6.29 6.91 7.25
 No 6.74 6.75 6.74 7.42 7.17 7.25

GCM
 Yes 0.584 0.585 0.688 0.668 0.701 0.713
 No 0.596 0.614 0.705 0.656 0.674 0.730

DEM
 Yes 0.695 0.588 0.324 0.304 0.764 0.799
 No  0.695 0.203 0.855 0.798 0.319 0.880

Table B3
Bias Parameter Values for Each Model for Fits to Sequential 

Dependencies in Subject MK07

Quasi-Linear Dip Crossover

Reinforced? Left  Right  Left  Right  Left  Right

GRT
 Yes 6.62 6.49 6.95 7.21 5.97 7.01
 No 6.93 6.75 7.24 6.84 5.87 7.28

GCM
 Yes 0.606 0.602 0.648 0.646 0.580 0.645
 No 0.626 0.582 0.716 0.589 0.443 0.718

DEM
 Yes 0.719 0.625 0.123 0.134 0.752 0.836
 No  0.818 0.094 0.849 0.814 0.036 0.861

Table B1
Bias Parameter Values for Each Model for Fits to Sequential 

Dependencies in Subject MK03

Quasi-Linear Dip Crossover

Reinforced?  Left  Right  Left  Right  Left  Right

GRT
 Yes 6.11 6.35 6.77 7.04 7.12 7.30
 No 6.38 6.25 7.07 6.97 7.20 6.84

GCM
 Yes 0.506 0.599 0.674 0.662 0.684 0.720
 No 0.538 0.527 0.738 0.588 0.664 0.664

DEM
 Yes 0.626 0.655 0.379 0.444 0.741 0.772
 No  0.548 0.162 0.904 0.699 0.487 0.832


