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Ratcliff R, Hasegawa YT, Hasegawa RP, Smith PL, Segraves
MA. Dual diffusion model for single-cell recording data from the
superior colliculus in a brightness-discrimination task. J Neuro-
physiol 97: 1756 –1774, 2007. First published November 22, 2006;
doi:10.1152/jn.00393.2006. Monkeys made saccades to one of two
peripheral targets based on the brightness of a central stimulus.
Task difficulty was manipulated by varying the ratio of stimulus
black-and-white pixels. Correct response probability for two mon-
keys varied directly with difficulty. Deep layer SC neurons exhib-
ited robust presaccadic activity the magnitude of which was
unaffected by task difficulty when the stimulus specified a saccade
toward a target within the neuron’s response field. Activity after
stimuli specifying saccades to targets outside the response field
was affected by task difficulty, increasing as the task became more
difficult. A quantitative model derived from studies of human
decision-making was fit to the behavioral data. The model assumes
that information from the stimulus drives two independent diffu-
sion processes. Simulated paths from the model were compared
with neuron activity, assuming that firing rate is linearly related to
position in the accumulation process. The firing rate data show
delayed availability of discriminative information for fast, inter-
mediate, and slow decisions when activity is aligned on the
stimulus and very small differences in discriminative information
when aligned on the saccade. The model produces exactly these
patterns of results. The accumulation process is highly variable,
allowing the process both to make errors, as is the case for the
behavioral performance, and also to account for the firing rate
results. Thus the dual diffusion model provides a quantitative
account for both the behavior in a simple decision-making task as
well as the patterns of activity in competing populations of
neurons.

I N T R O D U C T I O N

Research in neural decision making is at the point of iden-
tifying the mechanisms that implement simple decisions
(Glimcher and Sparks 1992; Gold and Shadlen 2000; Hanes
and Schall 1996; Horwitz and Newsome 1999, 2001; Kim and
Shadlen 1999; Krauzlis and Dill 2002; McPeek and Keller
2002; Ratcliff et al. 2003a; Roitman and Shadlen 2002; Romo
et al. 2002; Sparks 1999). In parallel to this work, psychology
has produced a set of models that describe simple rapid
two-choice decision making (Busemeyer and Townsend 1992,
1993; Diederich 1997; LaBerge 1994; Laming 1968; Link
1975; Link and Heath 1975; Pike 1966, 1973; Ratcliff 1978,
1981, 1988; Ratcliff and Rouder 1998, 2000; Ratcliff and
Smith 2004; Ratcliff et al. 1999; Roe et al. 2001; Smith 1995;

Smith and Ratcliff 2004; Smith and Van Zandt 2000; Stone
1960; Townsend and Ashby 1983). We present a diffusion
model that explicitly relates these two domains in the context
of a single experiment. The model is applied to simple two-
choice decisions and accounts for both behavioral data,
namely, accuracy and correct and error response time (RT)
distributions, and single-cell firing rate data for two competing
populations of neurons. The model assumes that information
from the stimulus drives two accumulators that are independent
diffusion processes. The accumulation rates driving the two
processes sum to a constant so that the more evidence there is
for one response, the greater the accumulation rate in that
accumulator and the smaller the accumulation rate in the other
accumulator. But once these accumulation rates are set for a
particular trial, the two diffusion processes proceed indepen-
dently. The accumulation process is highly variable, and this
allows the process to make errors. The model is fit to the
behavioral data and simulated paths are generated from the
model. The assumption linking the paths to the single-cell
firing data are that firing rate is linearly related to position in
the accumulation process.

In previous work, Ratcliff, Cherian, and Segraves (2003a)
(see also Ratcliff 2001b) collected neural recordings from the
superior colliculus (SC) in a task that required the monkeys to
decide whether the separation between two dots was large or
small. The response was made by a saccade to one of two
target lights to the left and right of the stimulus dots. One target
light was located in the middle of the receptive field of a SC
build-up cell and the other at a mirror image position. Behav-
ioral difficulty was varied by providing variable feedback in
which large and small separations were rewarded for large and
small responses with probability 0.98, but separations in the
middle were rewarded with intermediate probabilities. Ratcliff
and colleagues (2003a) then fit a diffusion model (Ratcliff
1978, 1988, 2002; Ratcliff and Rouder 1998; Ratcliff et al.
1999) to the behavioral data, namely accuracy, and RT distri-
butions for correct and error responses. They then showed that
simulated sample paths of the diffusion model, derived from
fits of the model to behavioral data, were able to predict the
build-up of discriminative information in the neural firing
rates. Unlike the dual diffusion model presented here, however,
the model did not predict firing rates for the populations of
neurons corresponding to the two choices.
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More specifically, the diffusion model used by Ratcliff and
colleagues (2003a) assumes a noisy accumulation process in
which a single accumulator integrates information toward ei-
ther of two decision criteria. The decision process was simu-
lated using the parameters obtained from fits to the behavioral
data and position in the process was used as an analog of firing
rate. The model was able to predict the growth of information
that discriminated between the two decisions, i.e., the differ-
ence in firing rates between the target and competing neurons.
Specifically, the firing rate data were aligned either on the
stimulus onset or on the saccade, and the firing rate data were
divided into three groups depending on the behavioral RT, i.e.,
firing rates for the fastest third, intermediate third, and slowest
third of the responses (cf., Hanes and Schall 1996; Sato et al.
2001). Discriminative information was obtained by subtracting
the firing rate for neurons corresponding to the response and
neurons corresponding to the competitor. The analysis showed
delayed onset of discriminative information among the groups
corresponding to fast, intermediate, and slow responses when
firing rates were aligned on the stimulus, but there was little
difference in the growth of discriminative information for the
three groups when aligned on the saccade.

The diffusion model was able to fit these patterns of data
reasonably well. The intuition behind this is that the model
requires a great deal of variability in the accumulation process
to produce both correct and error responses with a fixed drift
rate driving the process, i.e., there has to be enough noise for
the process to hit the correct boundary on some trials and the
error boundary on other trials. Also when a process approaches
a decision criterion, it is quite likely that it exits the process
because variability is high. This means that processes that
remain in the decision process for a long time have an average
position near the starting point. Thus there is delayed avail-
ability of discriminative information when the process is
aligned on stimulus onset because processes remain on average
near the starting point. Also there is little difference in the
growth of discriminative information when the process is
aligned on the decision.

Despite the ability of the model to fit the growth of discrim-
inative information, it is unable to fit the separate firing rate
functions for the neurons corresponding to the two decisions.
Although the diffusion model might be seen as a model of the
difference between two processes separately accumulating ev-
idence, no analysis that would connect the single diffusion
process to two racing processes was presented.

Our aim in this article is to present a model closely related
to the diffusion model, a dual diffusion model, in which
evidence is accumulated in two separate accumulators. Other
research has found that this model mimics the diffusion model
over a number of sets of experimental data (Ratcliff and Smith
2004; and data from Ratcliff et al. 2004c), but comprehensive
comparisons over a wider range of parameter values than those
obtained in fits to existing data sets have not been carried out.
The aim is to fit the behavioral data and then use the parameters
to generate simulated paths of the processes in the two accu-
mulators. The positions of the processes in the two diffusion
processes are assumed to be the analog of firing rates. The
nearer the position to a decision criterion, the higher the firing
rate.

In a purely behavioral approach to the results we report, any
shortcomings of the model would be supplemented with addi-

tional hypotheses to allow the model to better fit the data. But
because we have both behavioral and neural data, so long as
the model captures many of the phenomena in the data, misses
between the model and data can focus attention on what might
be key aspects of the data that require additional mechanisms
to those already represented in the model. Such additions will
provide a more accurate description of behavior and its neural
substrates.

Preliminary reports of these findings have appeared in ab-
stract form (Hasegawa et al. 2003, 2004).

M E T H O D S

Animals and surgery

Two female adult rhesus monkeys (Macaca mulatta) were used for
these experiments. Northwestern University’s Animal Care and Use
Committee approved all procedures for training, surgery, and exper-
iments performed. Each monkey received preoperative training fol-
lowed by an aseptic surgery to implant a subconjunctival wire search
coil, a plastic cilux recording cylinder aimed at the SC, and a titanium
receptacle to allow the head to be held stationary during behavioral
and neuronal recordings. All of these methods have been described in
detail elsewhere (Dias and Segraves 1999; Helminski and Segraves
2003). Surgical anesthesia was induced with the short-acting barbitu-
ate thiopental (5–7 mg/kg iv) and maintained using isoflurane (1.0–
2.5%) inhaled through an endotracheal tube.

Behavioral task

The behavioral task was designed to satisfy a number of criteria.
First, we wanted to use a different task than that used by Ratcliff and
colleagues (2003a) to determine whether the empirical results ob-
tained in that study replicated across stimuli and tasks and to allow us
to argue that the decision process is not dependent of the specifics of
the stimulus and task. Second, we wanted to use a task that had been
successfully used in the human literature, both experimentally and as
the basis for model fitting. Third, we wanted a task in which the
stimulus did not vary on the same dimension as was used to make the
response. The task we chose was a brightness-discrimination task. In
the majority of earlier studies of decision-making in monkeys, the
stimulus and response often have a strong spatial correspondence. For
example, in a stimulus-detection task, a single light is presented with
the required response an eye movement to it (Hanes and Schall 1996).
The spatial location of the light is the same location as the target of the
saccade. In a visual-search task, several dots are arranged in a circle,
and when one of them changes color, the required response is a
saccade to the location of the dot changing color (Bichot et al. 2001;
Schall et al. 1995; Thompson et al. 1996). In other experiments, some
aspect of the stimulus information physically indicates the response to
be made. For example, in the random dot motion task, stimulus dots
move in the direction of the saccade target (Horwitz and Newsome
2001; Newsome et al. 1989; Roitman and Shadlen 2002; Shadlen and
Newsome 2001). In the task used by Ratcliff and colleagues (2003a),
the separation of the dots was the stimulus dimension that determined
which response was to be rewarded, but the vertical separation did not
point in the direction of the response target. In the brightness-
discrimination task, the brightness of the patch does not contain any
spatial content.

The experiments in which the response is correlated with the
stimulus suggests views of processing in which visual information
flows through the system with little transformation. Thus if cells are
driven by multiple factors, for example, if they are visually responsive
while also increasing their firing rate during the guidance of motor
activity, then based on the decision made about the stimulus, if the
cell’s receptive field contains the target, it may be difficult to identify
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the factor responsible for increasing firing rates. This means that both
sources are potentially telling the system the same thing, and it is hard
to separate decision processes from stimulus information (but see
Basso and Wurtz 1998). Although such cells do not usually fire unless
the stimuli are relevant for planning saccades to a target inside the
response field of the neuron, when the stimuli are relevant, it might be
possible for some leakage to occur. With our paradigms, because
visual information is uncorrelated with the response and visual stim-
ulus information, no part of the differential increase in activity of a
population of cells corresponding to one of the two decisions could be
attributed to such leakage. This means that these paradigms are
capable of providing information about decision processes that are
decoupled from the stimulus information.

In this study, each monkey was trained to make a conditional
saccade based on a brightness discrimination (Fig. 1A). After the
monkey had fixated a small central spot (yellow spot; 0.25° diam) for
500–1,000 ms, two peripheral targets appeared and remained on for
the duration of the trial. The targets were located opposite to one
another with one in the left hemifield, the other in the right hemifield.
After an additional 800 ms of fixation, a brightness stimulus was
presented at the central fixation point. The brightness stimulus con-
sisted of a 2 � 2° square of white and black pixels. The monkey was
free to make a saccade to one of the targets as soon as the stimulus
appeared and was allowed �500 ms after stimulus appearance to
complete the saccade. For the brightness-discrimination task, saccades
to the target in the left hemifield were linked to discrimination of a
bright stimulus and saccades to the target in the right hemifield linked
to discrimination of a dark stimulus. A correct response was rewarded
with a drop of water. Trials with saccades made to either response
target light were scored as valid and included in the data used for this
report, regardless of whether the saccade was rewarded or not. Trials
in which the monkey failed to make a saccade, made a saccade that
did not terminate at either response target, or made a saccade in �120
ms after stimulus appearance were rejected.

For the initial training on the brightness-discrimination task, we
varied the ratio of pixels to create two stimuli with 95% black or white
pixels. The monkeys required seven to nine training sessions to reach
a performance level of �75% on this simplified version of the task.
We then switched their training to the task with full range of difficulty
levels, where the ratio of black and white pixels was adjusted to create
three levels of difficulty for both bright and dark stimuli (easy, middle,
and hard – e.g., 98, 65, 55% white or black pixels; Fig. 1B). The
gray-colored background luminance was set to be the same as would
be achieved with a 50% white pixels stimulus. These conditions were

run in a pseudorandom fashion, using a shuffling algorithm to ensure
that there would be a nearly equal number of trials for each condition.
Unlike the variable reward probability introduced by Ratcliff and
colleagues (2003a) to raise the level of difficulty, reward contingency
remained constant across all brightness levels in the present experi-
ments. As a result, brightness level was the only manipulation affect-
ing task difficulty, and it was possible to achieve a success rate of
100% correct, rewarded trials for all stimulus conditions although the
data show this did not happen.

During training, we presented nine pairs of target locations that
were in three orientations (45° spacing) at three eccentricities (5, 10,
and 15° away from the fixation point) in separate blocks (Fig. 1C). We
used the REX system (Hays et al. 1982) running on a PC computer for
behavioral control and eye-position monitoring. Visual stimuli were
generated by a second PC controlled by the REX machine and
rear-projected onto a tangent screen in front of the monkey by a CRT
video projector (Sony VPH-D50, 75-Hz noninterlaced vertical scan
rate, 1,024 � 768 resolution).

Recording

The location of the SC was confirmed by stereotaxic coordinates,
the response properties of isolated neurons, and the characteristics of
its topographically organized visual/motor map. We recorded from
neurons in the deep layers of the SC. In this report, we define deep
layers as all collicular layers located below the superficial layers
(superficial gray and stratum opticum), including the intermediate and
deep gray layers. Assurance that the neurons included in this study
were confined to the deep layers of the SC is based on the fit of our
electrode penetrations to the highly reproducible map of the SC, the
ability to evoke saccades from our recording sites with current
intensities of �50 �A, and the match of recorded activity to estab-
lished cell activity types in these layers (Cynader and Berman 1972;
Mays and Sparks 1980; Munoz and Wurtz 1995; Robinson 1972). The
recording of single- and multiunit activity was done with tungsten
microelectrodes (A-M Systems) introduced through stainless steel
guide tubes that pierced the dura, using a Crist grid system (Crist et al.
1988). A 16-channel Plexon system was dedicated to on-line spike
discrimination and the generation of pulses marking action potentials,
which were stored by the REX system. The Plexon system could
isolate two neuron waveforms from each electrode. We normally used
one or two electrodes for recording from a maximum of four neurons.
A gap saccade task was used to aid in the classification of neurons
based on established criteria (Munoz and Wurtz 1995). The gap task

FIG. 1. Oculomotor bridghtness-discrimination task. A: rep-
resentative trials of the task for leftward/bright and rightward/
dark responses. Each trial was initiated by fixation of a central
spot (yellow dot) for 500–1,000 ms. Next, 2 peripheral targets
(green dots) appeared, 1 in each hemifield. After continued
fixation of 800 ms, the brightness stimulus (square) was pre-
sented at the fixation point. Beginning with the appearance of
the stimulus, the monkey was required to make a saccade,
within 500 ms, to one of the peripheral targets, based on a
discrimination of the brightness stimulus. For “bright” stimuli,
saccades to the leftward target were rewarded, and for “dark”
stimuli, saccades to the rightward target were reinforced. B:
brightness stimuli. Task difficulty was manipulated by varying
the percentage of white and black pixels. Numbers beneath the
stimuli reflect the percentage of white pixels in the stimulus. C:
pair of peripheral target locations were adjusted to place one
target in a neuron’s response field (RF, shaded). The remaining
target was positioned at a symmetric location in the opposite
hemifield.
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began with a variable period of fixation; after the disappearance of the
fixation light, a gap period of 400 ms was inserted before the
appearance of the peripheral target light. When the peripheral target
appeared, the monkey was required to make a saccade to it within 500
ms and was rewarded after the completion of the correct movement.
The gap task was also used to map the response field (RF), within
which the maximal response was obtained. The neurons included in
this study were all located in the saccade-related region of the SC and
were chosen, in part, based on their exclusion of any responsiveness
to a central visual stimulus. After the RF was defined by checking the
on-line histograms in the REX system, we switched to the brightness-
discrimination task, in which we presented one target in the RF
(preferred location) and the other at a nonpreferred location set to the
same amplitude and rotated 180° from the preferred location (Fig.
1C). Every difficulty condition for both bright and dark stimuli was
tested �30 times.

R E S U L T S

Behavioral results

For all 64 experimental sessions (37 in monkey 11 and 27 in
monkey 12), the monkeys showed a smooth change in behav-
ioral response as a function of stimulus brightness (Fig. 2,
Table 1). The monkeys performed the task at a near perfect
level when the stimulus was very bright (98% of white pixels)
or very dark (2% of white pixels). On the other hand, their
performance was in the range of 60–65% accuracy when the
stimulus was only slightly bright (55%) or slightly dark (45%).

The intermediate stimuli (65 or 35%) were associated with
performance at a level of 80–90% accuracy. These results
convinced us that a monkey’s level of behavioral accuracy was
dependent on the brightness of the central stimulus. The mean
RT (saccadic latency referenced to appearance of the bright-
ness stimulus), however, was fairly stable across the various
difficulty conditions in both monkeys (206 � 33 ms, n �
16,551 correct trials for monkey 11; 239 � 61 ms, n � 8,209
correct trials for monkey 12), suggesting that the monkeys
might have put more emphasis on a rapid response than on
accuracy. Although one-way ANOVA for effect of brightness
on saccadic latency was significant for both monkeys (P �
0.001), the range of this effect was small (monkey 11: 25 ms;
monkey 12: 19 ms).

Effect of task difficulty

We recorded 137 neurons with presaccadic activity in the SC
of the two monkeys (82 neurons from monkey 11; 55 neurons
from monkey 12) while they performed the oculomotor bright-
ness-discrimination task. The analyses included data from all
cells identified as build-up cells by exhibiting build-up activity
in the gap-saccade task. Build-up activity was monitored dur-
ing the final 200 ms of the gap period, before the appearance of
the target light, in a gap saccade task, and compared for
significant increases (Wilcoxon sign-rank test, P � 0.05) above
fixation period activity measured during the final 200 ms
before the disappearance of the fixation light and beginning of
the gap period. Figure 3 illustrates how the activity of a right
SC neuron varied according to task difficulty. In the bright-
ness-discrimination task, the cell exhibited strong activity after
the appearance of “bright” stimuli instructing the monkey to
make a saccade to the leftward target. The level of this activity
for bright stimuli was similar for each of the three levels of
difficulty (Fig. 3, A, C, and E). In contrast, the neuron’s activity
generated after the appearance of “dark” stimuli instructing
rightward saccades appeared to be modulated by task diffi-
culty. The peak and mean frequencies of this activity increased
as the task became more difficult (Fig. 3, B, D, and F). Thus a

FIG. 2. Mean accuracy and response time values for each monkey in the
brightness judgment experiment. �, data; E - E model’s best predictions. Bars
represent �2 SE.

TABLE 1. Effects of stimulus brightness on accuracy
and saccade latency

Trials
Percent
Correct

Saccade
LatencyBrightness Correct Total

Monkey 11
2% 2762 2817 98 208 � 31

35% 2751 3093 89 219 � 34
45% 2746 4308 64 215 � 36
55% 2755 4156 66 198 � 34
65% 2799 3263 86 194 � 32
98% 2738 2781 98 200 � 35
Average 2759 3403 206 � 33

Monkey 12
2% 1363 1472 93 249 � 63

35% 1361 1623 84 242 � 64
45% 1350 2260 60 242 � 64
55% 1364 2091 65 243 � 62
65% 1428 1734 82 230 � 58
98% 1343 1430 94 230 � 56
Average 1368 1768 239 � 61

Values are means � SD.
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manipulation of task difficulty, induced by changing the bright-
ness level of a central stimulus, altered the level of presaccadic
activity for a collicular neuron with a peripheral activity field.

To quantify the magnitude of the activity for the neuron
shown in Fig. 3, we measured activity during a stimulus-
aligned and presaccadic epoch and plotted the average activity
in relation to task difficulty (Fig. 4A). A two-way ANOVA
with respect to decision content (bright/left and dark/right) and
task difficulty (easy, middle, and hard) on activity during
stimulus-aligned and presaccadic periods revealed that for both
periods, there was a significant (P � 0.001) interaction be-
tween those factors; the effect of task difficulty was significant
for dark/nonpreferred direction activity (P � 0.001) but not for
bright/preferred direction activity (P � 0.05). Figure 4B plots
data for another SC neuron that also exhibited a similar
asymmetric modulation of activity. For this neuron, the pre-
ferred direction was rightward and linked to the “dark” stim-
ulus.

It is possible that this asymmetric modulation of activity
could have been related to a selectivity for either the bright or
dark range of brightness stimuli. We found, however, that the
direction associated with modulation of activity was restricted
to the nonpreferred location regardless of whether the trial
included a bright or dark stimulus. We compared the magni-
tude of activity between easy and hard conditions at preferred
and nonpreferred locations (Fig. 5). Our sample included 49
neurons whose preferred direction was to the left (bright
stimulus), and 48 neurons whose preferred direction was to the
right (dark stimulus). We restricted our sample to those neu-
rons with average peak firing rates �100 spike/s to determine
whether firing rates for the nonpreferred direction approached
zero for easy stimuli when the firing rate in the cells were high.
Across the sample, activity during the presaccadic epoch was
significantly greater for hard compared with easy conditions
for the nonpreferred direction (Wilcoxon sign-rank test, P �
0.001). This bias was not seen for the preferred direction. We
obtained similar results for activity measured during the stim-

ulus-aligned epoch. The results of this analysis for the entire
sample also held true in a cell-by-cell analysis. For each cell,
we compared activities between easy and hard conditions.
Although most neurons (94%, 91/97) did not show a significant
(Mann-Whitney U test, P � 0.05) difference for the preferred

FIG. 3. Activity of a superior colliculus (SC) neuron during
the oculomotor brightness-discrimination task. Trials are syn-
chronized to the appearance of the brightness stimulus (left,
vertical line through each histogram) or the saccade onset
(right). For rasters aligned to stimulus appearance, the red
symbol in each trial indicates the beginning of the saccade. A,
C, and E: trials where the monkey correctly identified a bright
stimulus and made a leftward saccade into the neuron’s re-
sponse field. B, D, and F: trials where the monkey identified a
dark stimulus and made a rightward saccade away from the
neuron’s response field. A and B: easy condition. C and D:
middle condition. E and F: hard condition. The spike density
histogram below each raster was generated by first convolving
single trial neuronal activity using a Gaussian kernel with a
sigma of 10 ms (Richmond et al. 1987), then averaging the
spike density profile across trials. The eye position is shown as
blue (horizontal) and green (vertical) traces under each
histogram.

FIG. 4. Two examples of the effect of task difficulty on neuronal activity.
A: averages (�SE) of the activity of the neuron in Fig. 3 during the stimulus
aligned epoch (left; 50 ms interval extending from 150 to 200 ms after the
appearance of the brightness stimulus) and during the presaccadic epoch (right;
50 ms interval extending from 50 to 0 ms before the start of the saccade) are
plotted against the different levels of task difficulty. E and F, brighter and
darker stimuli, respectively. B: another set of averages of activity for a neuron
the response field of which was in the right hemifield. For this neuron, darker
stimuli were linked to its preferred direction.
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direction, 60% (58/97) showed significantly greater activity for
the difficult versus easy conditions in the nonpreferred direc-
tions. The activity for the nonpreferred direction peaked earlier
than for the preferred direction (means of 33 vs. 9 ms prior to
saccade onset). This can be seen for the cell illustrated in Fig.
3, where the saccade-aligned plots show that activity for the
preferred direction sites continued to rise toward its peak after
the activity for the nonpreferred direction had peaked and was
beginning to fall. Across the sample of neurons such relatively
earlier peaks for the nonpreferred direction sites were signifi-
cant (Wilcoxon sign-rank test, P � 0.001).

To summarize the experimental results of this investigation:
1) the behavioral data show that accuracy declines as a function
of difficulty and mean RT varies little as a function of diffi-
culty. 2) Neural firing rates for neurons associated with the
response build up rapidly prior to the saccade at about the same
rate and to the same peak activity for all the conditions. 3)
Neural firing rates for neurons associated with the competing
response vary as a function of difficulty. The firing rate is low
for the easy conditions and the firing rate increases with
difficulty of the decision. This means that peak activity is
correlated with accuracy. 4) The activity of neurons corre-
sponding to the response peaks about 10 ms prior to the start of
the saccade, while the peak activity of neurons corresponding
to the competing response peaks �35 ms prior to the saccade.

Dual diffusion model

Our model assumes that the decision process involves two
racing diffusion processes as shown in Fig. 6. Figure 6 also
shows the equation for the evolution of evidence as a function
of time in the model along with a list of the parameters of the
model. Evidence corresponding to the two decisions is accu-
mulated in two separate accumulators each with a separate
decision criterion (ca and cb). The accumulation process is very
noisy, and noise is assumed to be normally distributed as in the
Wiener diffusion process (e.g., Ratcliff 1978). Because we are
using evidence in the accumulation process to mimic firing
rates, it is assumed that evidence cannot go below zero. If an
update to evidence in the process would have taken it below
zero, it is reset to zero. The rate of accumulation of evidence
varies as a function of difficulty in the task, but it is assumed
that the sum of the rates for the two accumulators is constant

across conditions (i.e., they are negatively correlated), this
means, if one has a high drift rate, the other has a low drift rate.
This assumption means that the total rate of information
accumulation is the same across conditions. This assumption
leads to one parameter for the sum of drift rates and one
parameter for the drift rate for one accumulator for each
condition; the other drift rate is the difference between the sum
and the drift rate for the other accumulator.

An assumption in most of the recent modeling (see Ratcliff
and Smith 2004) is that components of processing vary from
trial to trial. This means that many of the parameters have a
distribution of values associated with them. This trial-to-trial
variability of parameters for some of the models is necessary to
explain complex patterns of error versus correct RTs. Specif-
ically, to produce fast errors, the diffusion model assumes
variability in starting point from trial to trial (Laming 1968;
Ratcliff et al. 1999). The dual diffusion model does not
produce fast errors except in the most accurate conditions even
with variability in starting points. If we assume that the starting
points are negatively correlated, then fast errors that are ob-
tained in some paradigms can be obtained. Negatively corre-
lated starting points means that there is an initial bias toward
one response alternative and a bias against the other. Specifi-
cally, we selected a random number, x, from a uniform distri-
bution with range sx. The one starting point was xa � x � xI
and the other was xb � sx � x � xI, with xI corresponding to
a minimum baseline starting point. The way to interpret this
negative correlation is that prior to the decision process there is
a bias that could be produced by biases in outputs from
upstream processes or biases left over from prior trials. This
assumption allows this dual diffusion model to produce fast

FIG. 5. Effect of task difficulty on activity across the population of neurons.
A pair-wise comparison (easy vs. hard) of average discharge rate in the 50-ms
interval immediately before the saccade onset is shown. Each symbol repre-
sents activity for a single neuron. For the preferred direction (left), activity was
similar for easy and hard conditions. For the nonpreferred direction (right)
activity associated with the hard condition tended to be greater than it was for
the easy condition.

Parameters:
1. Two criteria, ca and cb

2. Leak �
3. Ter (mean nondecision component), with range st

4. Sum of accumulation rates, vsum

5. Accumulation rate for each condition (va � vb � vsum)
6. Range of starting points (negatively correlated: sum � sx)
7. Minimum base starting point (x1): starting point xa � x1 � sx � xb)
Note: The SD in Gaussian noise, �, is scaled to 1
The equation for the update to evidence dxi for evidence xI in accumulator i,
is

dxi � [vi � �xi ]h � �	h

FIG. 6. Illustration of the dual diffusion model and the parameters of the
model. There are 2 accumulators with decision criteria ca and cb, accumulation
rates va and vb (va � vb � vsum), starting points xa and xb (a random number x
is selected from a uniform distribution with range sx and lower limit zero, and
xa � x � xI and xb � sx � x � xI, where xI is a minimum baseline starting
point), and decay rate (��x). The equation for the update of evidence in
accumulator i (dxi) at the bottom of the page has time steps of size h, set to 1
ms in the fits of the model to the behavioral data. Variability in processing
within a trial (Gaussian noise) is normally distributed with SD � � 1. Across
trials, the nondecision components are uniformly distributed with mean Ter and
range st.
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errors and so allows it to mimic Ratcliff’s diffusion model in
application to human data.

To produce slow errors, the diffusion model (Ratcliff et al.
1999) assumes that drift rate is variable from trial to trial.
Initial fits to the behavioral data from this study that included
variability in drift rates produced estimates of variability that
were small and so variability in drift was set to zero for
subsequent fits.

As noted earlier, there is a great deal of variability within
trials due to intrinsic noise in the accumulation process. This
variability is necessary to produce error responses even when
drift rates are high. Figure 7 illustrates variability in processing
by presenting four simulated paths of the two diffusion pro-
cesses. In two cases, the process represented by the black line
wins, whereas in the other two cases, the process represented
by the green line wins. The negative correlation in starting
points can be seen in the initial starting levels: when one is
high, the other is low. To model firing rates after a saccade is
made, we assume when one process terminates, evidence
decays back to the starting level.

For neural plausibility, it is often assumed that there is decay
in evidence so that the amount of evidence is decremented by
an amount in proportion to the evidence in the accumulator.
We allowed decay in this model, but in fits to the data, we were
able to produce the same quality of fits with decay set to zero.
But as we see later, modulation of the size of this decay can
account for some misses in model predictions and can potentially
account for resting levels of evidence in the accumulators.

The nondecision components of processing are combined
into a single parameter Ter which is assumed to be variable from
trial to trial. Ratcliff and Tuerlinckx (2002) assumed a uniform
distribution of variability with range st. A uniform distribution
was assumed because it was simple and because convolution with
a decision time distribution with larger SD produces a distribution
with shape about the same as that of the decision time distribution.
This means that the assumption about the shape of the distribution
of nondecision components does not affect predictions of the
model so long as the SD is three or more times smaller than that
of the decision component.

One key feature of this model that is addressed later is that
the stimulus information that drives the decision process is
stationary. It assumes that prior to the decision process, there is
no evidence accumulation. Then during the decision process,
the mean and variance of the stimulus information driving the
decision process both remain constant during the time taken to
make a decision. For this experiment, it is natural to assume
that the stimulus provides a constant perceptual representation
that drives the decision process. However, in other work in
which a stimulus is presented briefly and masked, we have
conceptualized perceptual processing as producing a short-
term memory representation of the relevant characteristics of
the stimulus that then provides constant drift rate to the
decision process (Ratcliff 2002; Ratcliff and Rouder 2000;
Smith et al. 2004). Thus during the decision process, all the
parameters of the process are constant over time. Then when
one of the processes reaches a decision criterion, the decision
is made (response output processes are initiated), and evidence
decays back to the initial level. The view that perceptual
processing produces a representation in memory that drives the
decision process means that in our conceptualization, the
stimulus is not simply directly tied to the decision process. This
also suggests that issues of how stimuli are represented and
how the representation drives the decision process need to be
understood. Later, we will discuss relaxing some of these
stationarity assumptions to better account for misses between
predictions of the model and firing rate data.

A model very similar to this model is the leaky competing
accumulator model of Usher and McClelland (2001) that has
two accumulators with Gaussian distributed noise (i.e., 2 rac-
ing diffusion processes) and with decay in evidence. However,
each accumulator is assumed to inhibit the other accumulator
by an amount proportional to the evidence in the accumulator.
We also fit this model, but decay and inhibition were modest in
size, and the fits were qualitatively and quantitatively similar to
those presented here. We take up this model in the general
discussion. Also, versions of the dual diffusion model have
been considered by Smith (2000) and by Ratcliff and Smith
(2004).

Behavioral data fits

To generate predictions for fitting the model to data, the dual
diffusion process is simulated with step size 1 ms (see Brown
et al. 2006). To produce a set of accuracy and RT predictions
for one condition and one set of parameter values, 20,000
simulations of the process are performed. This is repeated for
each of the conditions in the experiment (for 6 different drift
rates) to produce a set of predictions to be used to match the
results for the six conditions in the experiment.

We fit the model to the behavioral data using the �2 method
presented in Ratcliff and Tuerlinckx (2002). In this method, a
�2 statistic is computed from both predictions and data to
represent goodness of fit of the model to data. An iterative
nonlinear minimization routine (SIMPLEX) (Nelder and Mead
1965) is used to minimize �2 by adjusting parameter values.
The fitting routine begins with an initial set of parameter values
and a range for each of the parameter values (in our case, 10%
of the parameter value). The algorithm produces n � 1 sets of
parameter values based on the mean and ranges in the param-
eter values and then computes n � 1 �2 values. The largest

FIG. 7. Examples paths of the accumulation of evidence for the same
accumulation rate for each diffusion process. The 2 horizontal lines at the top
of each panel represent the decision criteria (black for the black accumulator
and green for the green accumulator).
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value of �2 is selected, parameter values are adjusted, and the
�2 value is recomputed. The largest value of �2 is again
selected (which may or may not be a different one) and
parameter values again adjusted until the process creeps toward
a minimum �2 value.

The parameter spaces of stochastic models of this kind have
not been explored theoretically. For example, Usher and
McClelland (2001) used a simulated annealing fitting method
to produce fits to the data from a few experiments. This was
done to address two main concerns, namely, that the model
fitting process might fall into local minima or into regions
where changes in parameter values do not change chi-square
values. To allow our fitting program to deal with such prob-
lems, we ran the simplex minimization six times in succession
using the parameters of the previous fit as the starting values
with the original 10% ranges in the values. This was an attempt
to functionally mimic Usher and McClelland’s method.

There was one parameter that was adjusted to attempt to
produce better fits to the neural firing data, and that was the
baseline level of activity in the accumulators. This was ad-
justed in a series of exploratory fits so that the baseline
positions in the accumulators roughly match baseline activity
in the firing rate functions so that the relative size of the
baseline to peak positions matched those for the firing rate
functions.

Figure 2 presents the fits of the model to accuracy and mean
RT. Tables 2 and 3 present the parameter values of the model
for the fits. The top two panels of Fig. 2 present the probability
of the bright response as a function of the proportion of white
pixels in the stimulus display. The model fits the accuracy
values well except for the two dark stimuli for monkey 11 and
the extreme stimuli (2 and 98% white pixels) for monkey 12
(maximum discrepancy of �4–5%). The bottom four panels of
Fig. 2 show mean RT as a function of the proportion of white
or black pixels in the display. The error bars represent �2 SE.
There are significant misses to several of the conditions. Two
of most note are correct responses when the proportion of black
or white pixels is 0.98, i.e., the easiest conditions. The data
from these conditions are quite unlike those we see for human
subjects. Invariably, the conditions with the highest accuracy
are also the fastest. Here we find the most accurate conditions
are a little slower than less accurate conditions. We do not
understand why this might have occurred except to point our
that these two conditions were trained first, for several ses-
sions, before the conditions with the lower proportions of black
or white pixels were introduced later in training. There are also
significant misses in the error RTs in the extreme conditions
(0.02 white or black pixels). Because there are very few of
these errors, a few responses might have been produced by
guesses when attention had wandered, and these would have
been counted as errors that would produce longer RTs.

In the model, each drift rate is assumed to be greater or equal
to zero, and the sum of the drift rates for the two accumulators
is a constant. It may be possible to obtained better fits to

accuracy for the extreme conditions by allowing one of the
drift rates to be negative (with the same constant sum), and we
explore this possibility in the DISCUSSION.

Figure 8 includes quantile probability functions (Ratcliff
2001a; Ratcliff and Smith 2004) that show quantiles of the RT
distributions plotted against the probability that the response is
made to the stimulus. In the quantile probability functions
shown here, data from “bright” and “dark” responses are
plotted separately. Data for each stimulus are used to produce
RT quantiles, and these are plotted vertically on the y axis and
their location on the x axis is the probability of the bright or
dark response. This method of presenting data was developed
by Ratcliff (2001a) to allow response probability and the
shapes of the RT distributions for correct and error responses
to be all displayed in one plot and allow visualization of how
the different dependent variables co-vary. The gray ellipses
around some of the points provide a representative sample of
95% confidence intervals around the data (see Ratcliff et al.
2003a).

To illustrate how the quantiles are related to RT distribution
shape, the bottom two panels show RT distributions from two
single conditions in the quantile probability functions above,
namely, correct dark responses for stimuli with 55% black
pixels. The jagged lines are the histograms and the points
labeled A-E in the middle right panel and on the x axis of the
bottom right panel show the quantile RTs (the 2 extreme points
to the left of A and to the right of E represent the 0.005 and
0.995 quantiles, respectively). Because there is a 0.2 probabil-
ity mass difference between each of the 0.1, 0.3, 0.5, 0.7, and
0.9 quantiles, we can draw equal area rectangles between the
points (the closer the quantiles, the higher the rectangles), and
these are shown in the bottom two panels. They show that the
histogram is well represented by the quantile density functions
composed of the plotted rectangles. Because the pairs A-B and
B-C are closer together than the points D-E and C-D, the
distributions are right skewed as shown in the bottom panels.

Apart from the misses noted earlier, the general shapes of
the RT distributions are captured by the model. In particular,
both the empirical and theoretical RT distributions are skewed
for all the conditions as can be seen by the wider separation of
the 0.7 and 0.9 quantiles relative to the 0.1 and 0.3 quantiles.

In analyzing the data, we found that the monkeys had good
days and bad days, i.e., mean RT could differ by 30–50 ms
between days. We produced two groups of data, one with faster
days, the other with slower days. We fit the model to these two
groups for the two monkeys and found that in each case, the
only parameters that varied systematically were boundary set-
ting, for the slower days it was 6% larger than for the faster
days, and the sum of drift rates, which was 16% smaller for
slow days than fast days. These two parameters do not trade off
against each other because changes in boundary position pro-
duce changes in the leading edge of the distribution while
changes in the sum of drift rates affects skew with only a very

TABLE 3. Relative drift rates

Monkey v1 v2 v3 v4 v5 v6

11 0.997 0.909 0.714 0.450 0.229 0.011
12 0.999 0.893 0.623 0.360 0.107 0.010

TABLE 2. Parameters of the dual diffusion model

Monkey ca cb sx x1 Ter st � vsum

11 0.442 0.563 0.195 0.052 156.3 50.2 4.459 10.10
12 0.535 0.557 0.231 0.028 143.7 50.6 2.097 5.11
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small effect on leading edge. Thus the model based interpre-
tation is that on bad days, the monkeys get poorer information
from the stimulus than on good days and adopt more conser-
vative decision criteria than on good days.

It is possible to directly compare performance on human and
monkey data on this brightness-discrimination task. In human
data, accuracy is higher than for the monkey data. The human
experiment (Ratcliff 2002; Ratcliff et al. 2003b) uses a presen-
tation-time manipulation and a brightness manipulation as well
as a speed-accuracy instruction manipulation. Presentation
time does not have a large effect on performance, but as for the
monkey data presented here, brightness has a large effect. The
experiment here has the most difficult conditions with 0.45 and
0.55 white pixels, but in the human experiments, the conditions
closest to these are 0.425, 0.475, 0.525, and 0.575 white pixels.
Accuracy for the average of the 0.45 and 0.55 conditions for
the monkey data are 0.65 and accuracy for the human data in
the speed instruction condition is 0.75, and for the accuracy
instruction condition, 0.80. We have fit the dual diffusion
model to the human data, and the decision criteria are set to
much larger values than for the fits to the monkey data (about
double). If we increase the monkey decision criteria to the
human speed instruction value, keeping all other parameters
constant, the predicted accuracy value increased from 0.65 to
0.77, i.e., quite close to the human accuracy value.

Although the fits shown in Figs. 2 and 8 are not as good as
those obtained for behavioral data for human subjects, they do
capture most of the main features of the data. We now use them
to produce predicted paths for the build up in evidence for the
two accumulators.

Decision process paths and neural firing rates

To relate the dual diffusion model to the neural firing rate
data, we make the simplest assumption: collicular build-up
activity for the target and nontarget receptive fields correspond
to the evidence in the two accumulators. The nearer the process
is to the criterion, the higher the firing rate. The firing rate data
presented are aggregates over trials for a single neuron and
over sessions for different neurons. Thus the firing rate data are
assumed to represent the behavior of the population of cells
with build-up activity that are proposed to implement the
decision.

To generate predicted average evidence in each accumulator
(the analog of firing rates), we used the parameters of the
model in Tables 2 and 3 to generate 2,000 simulated processes.
These processes provide the amount of evidence in each
accumulator as a function of time. The only parameter that was
adjusted in fitting the behavioral data to accommodate the
firing rate data is the initial level of evidence. This was

FIG. 8. Quantile probability functions for each monkey (top
4 panels). The diffusion model (fitted values are E, connected
by —) were fit to the behavioral data (�). The 5 crosses in each
column represent the 0.1, 0.3, 0.5 (median), 0.7, and 0.9
quantile response times for a particular condition. Their loca-
tion on the x axis represents the probability that the response is
made to the stimulus. The top 2 panels represent “bright”
responses for stimuli with 2, 35, 45, 55, 65, and 98% white
pixels moving from left to right across the figure. There are
very few responses for the extreme error quantiles. To illustrate
how the quantiles are related to RT distribution shape, the
bottom 2 panels show RT distributions from 2 single conditions
in the quantile probability functions above (see text for detailed
description). The gray ellipses in the top four panels represent
95% confidence intervals on the quantile RTs and accuracy
values. The SE is computed from the means across RTs and
accuracy values across trials.
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adjusted manually in the process of fitting the behavioral data
to produce initial levels of evidence that match the initial firing
rates so that the relative differences between peak activity and
baselines are similar to the firing rate data. Once one of the
processes reaches a decision criterion, both processes are
assumed to exponentially decay (with noise turned off) to the
resting level with decay rates selected by eye to match the data
(with exponential time constants 45 and 20 ms for monkeys 11
and 12, respectively). The other alignments that allow the
model to predict the neural firing rate data involve aligning the
functions on the time axis. Because the behavioral model
combines encoding and response output (and other nondecision
processes) into one parameter, this has to be divided up into a
component prior to the decision process and a component after.
This was done by eye, and for monkey 11, the estimate of the
component of the nondecision component occurring after the
presaccadic peak activity is 14 ms and for monkey 12, it is 10
ms. The other adjustment is vertical scaling from evidence to
firing rate.

Firing rate data for RT tasks are typically plotted two ways
(e.g., Hanes and Schall 1996; Roitman and Shadlen 2002),
aligned on stimulus onset and aligned on the saccade (response
initiation). There are small differences in mean RT across
conditions and there are small differences in the initial onset of
firing rates of neurons corresponding to the two decisions for
both ways of plotting the firing rate data. In Ratcliff, Cherian,
and Segraves (2003a), peak firing rates were about the same
height across conditions in neurons corresponding to the deci-
sion made, but the peak firing rate in the neurons correspond-
ing to the competing alternative becomes larger as the condi-
tion becomes more difficult [e.g., compare Fig. 8 of Ratcliff
and colleagues (2003a) to Fig. 3 of this report].

Hanes and Schall (1996) grouped firing rate functions de-
pending on the RT of the trial. This allowed the rate of growth
of firing rates to be examined as a function of speed of the
response. The patterns of results they obtained allowed more
detailed qualitative tests of models of the growth of firing rate
with time. Ratcliff, Cherian, and Segraves (2003a) found that
when firing rates were aligned on the stimulus, firing rates for
the fastest responses rose early in neurons corresponding to
both the response made and the competing neurons. The initial
rise was slower for slower responses. But the difference in the
firing rates for neurons corresponding to the decision made and
the competitor (the difference corresponding to discriminative
information) was delayed for slower responses by as much as
80 ms (see also Sato and Schall 2001). For firing rates aligned
on the saccade, there were differences in onset of firing rate
functions prior to the saccade as large as 50 ms. But the growth
of discriminative information (the difference in firing rates)
was almost identical for firing rates corresponding to faster
versus slower trials.

For data from this brightness-discrimination task, for firing
rates aligned on stimulus onset, the functions for the fastest,
middle, and slowest terciles rise at close to the same point in
time but at different rates for both the target and competing
neuron. Firing rates for the difference between the target and
competitor represent the growth in discriminative information
(both populations of neurons become active after stimulus
onset, but information that discriminates between them can
become available later), and this shows delays in onset for the
slowest tercile relative to the middle tercile and the middle

tercile relative to the fastest tercile. For data aligned on the
saccade, the functions for the three terciles are similar. Only for
the slowest tercile does the rise in activity begin a little earlier
relative to the saccade and rise at a slower rate. The rise in
discriminative information shows almost no difference be-
tween terciles.

This pattern of data suggests that on average, a successful
model has to accumulate relatively little information prior to
�75–100 ms before the saccade initiation followed by a rapid
build up, and this has to occur whether the stimulus to response
duration is short or long. In the brightness-discrimination data
presented in the following text, stimulus onset can be between
300 and 180 ms before the saccade for the first and third tercile,
but the difference in the rise in discriminative information may
only differ in onset by �20 ms.

We now show that the model fits the patterns of activity
recorded in the brightness-discrimination experiment. After
presenting the correspondence between the model predictions
and neural firing rate data, we focus on the main misses
between theory and data and how the model could be aug-
mented to deal with these misses. As noted earlier, the model
is stationary, that is, it assumes that the instant the decision
process begins, the mean and variance of the stimulus infor-
mation are both constant until the process hits a decision
criterion at which point the decision process is over, that is,
none of the parameters of the decision process change during
the decision process. Augmentation focuses on how we might
allow processes to be nonstationary which might better match
what is known about the neurophysiology of this system.

Firing rates aligned on the stimulus

Figure 9 shows firing rate functions aligned on the stimulus
for target and nontarget for correct responses (dark responses)
for the 98% black pixel condition and 55% black pixel. The
plots are for terciles of the data, that is, firing rate functions for
the fastest third of the behavioral responses, the intermediate
third, and the slowest third. For the activity for the target, the
functions grow from �100 ms after stimulus onset to peaks at
�180 and 200 ms for the first tercile to 220 and 270 ms for the
longest tercile for monkeys 11 and 12, respectively. The pre-
dicted functions show about the correct relative heights and
they decay at about the same rate as the data. But the functions
miss in the initial rise, especially for monkey 12. For the
activity for the nontarget, the peak activity levels for monkey
11 match, but for monkey 12, the peak is a little too high for the
55% black pixel condition and in all cases, the firing rates fall
more quickly than the predictions. The results for the 65%
black pixel condition fall between these shown here.

There are other misses in the tail of the firing rate functions
for monkey 12. A factor that is likely to contribute to this
problem is that when the monkey moves its eyes to a target,
there is no longer a target in the receptive field for the target
neuron so activity will drop. Also, for the competing neuron,
there is a large target (the stimulus) in its receptive field so
activity can increase as is shown beginning at about 350 ms
after stimulus onset (Fig. 9, bottom row).

Firing rates aligned on the saccade

Figure 10 shows the same firing rate data but aligned on the
saccade. The predicted initial rises and peaks for correct
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responses to the targets match the data reasonably well, and the
decay matches well. There are some misses in the initial rises
on the order of tens of milliseconds, but overall the match
between the empirical and theoretical shapes are reasonably
good. The firing rate functions for the nontargets show a large
and systematic miss. For the data, the competing functions
produce bimodal functions (that appear in all the conditions)
that rise to a peak and then dip �20 ms prior to the saccade
(dips marked by b in Fig. 10) and then rise again at the saccade
to produce a second peak. The model can only produce a single
peaked function. This dip also occurs in the data of Ratcliff,
Cherian, and Segraves (2003a) (Fig. 10).

To illustrate the quality of the fit for firing rates aligned on
stimulus and saccade, Fig. 11 provides 90% confidence inter-
vals around the firing rate functions for the middle condition
for the 55% black pixel conditions in Figs. 9 and 10. These

confidence intervals were constructed using a bootstrap
method. One hundred sets of firing rate functions were com-
puted in the same way as in the preceding text except the data
used to generate them were the same number of cells as the
original sample; but these were randomly selected with re-
placement from the cells in the data. Thus in any set of
bootstrap data, the data from a particular cell could occur zero,
once, twice, or even more. This provides an estimate of
variability that would occur if a new sample of cells were used
to produce a new set of neural firing rate data.

Both the main two misses in Figs. 9 and 10, namely in the
initial rise in many of the functions and the dip in the firing
rates for competing neurons just prior to the saccade, seem to
indicate nonstationarity in processing. The initial rise can be
modeled by a ramp up of stimulus information or a release of
inhibition (say from cells in the substantia nigra) and the dip
prior to the saccade can be modeled by a sudden increase in
global inhibition except in cells corresponding to the saccade.
We discussed these possibilities shortly.

FIG. 10. Neural firing rates averaged over cells and aligned on the saccade.
Zero time is the median point at which the saccade begins and the vertical line
to the right of 0 is the median point at which the saccade terminates on the
choice target. Vertical lines to the left of 0 represent onset of the brightness
stimulus. For monkey 12, stimulus onset for the slowest group of responses
occurred before the earliest time represented by the x axis of these plots. The
points “b” represent the points at which activity in the competing neurons dips
just prior to the saccade initiation (see the text).

FIG. 9. Neural firing rates averaged over cells and aligned on the stimulus.
The firing rates are divided into thirds as a function the behavioral response
(fastest third, middle third, and slowest third). Left: easy conditions, dark
responses to 98% black pixels; right: difficult conditions, dark responses to
55% black pixels. First and 3rd rows: firing rates for cells the receptive field
of which contained the target for the correct response when a correct response
is made (target cell). Second and 4th rows: firing rates for cells the receptive
field of which contained the target for the incorrect response when a correct
response is made (nontarget cell). The solid lines are the data and the green
lines are predictions from the dual diffusion model. The points marked “a”
show what appears to be a suppression prior to the rise in activity leading to
a decision. The vertical lines represent the median saccade initiation times for
the 3 conditions.
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Difference in firing rates

Figure 12 shows the difference in firing rates and the
differences in the amounts of evidence from the theoretical
predictions for the functions shown in Figs. 9 and 10. These
functions show the growth of discriminative information for
fast, intermediate, and slow responses and as a function of two
levels of stimulus intensity. The results show for functions
aligned on the stimulus, discriminative information is delayed
for slow versus fast responses both in the data and in the model
predictions. The mismatch between the model and data was
much less than in the individual functions (Fig. 9); this sug-
gests that the misses in the initial growth were not the result of
growth of information that discriminates between the two
choices in the decision process. For functions aligned on the
saccade, the growth of discriminative information began to rise
50–80 ms before the saccade and showed little difference for
fast, intermediate, or slow responses. The predictions and the
data match quite well (better than the individual functions in
Fig. 10) except for a miss of 10–20 ms in some initial rises.
Some of the tails fall to asymptotes that are lower than the
starting level for the reasons discussed in the preceding text.

We can also look to see if the relative heights of the firing
rate functions for the data and model match each other. Figure
13 shows the peak activity for the stimulus-aligned data minus
the baseline activity (the baselines used are the empirical firing
rate functions at the highest activity prior to a dip, before the
functions start to rise, i.e., prior to points marked “a” in Fig. 9)
for the targets and nontargets averaged over monkeys and
averaged over stimuli. We also average firing rate functions for
bright responses to stimuli with 0.98 white pixels with firing
rate functions for dark responses to stimuli with 0.98 black
pixels (averaging 65% black pixel data with 65% white pixel
data and well as 55% black pixel data with 55% white pixel
data). The peak activities match quite well, but this is only to
be expected given that the peak activities are about constant
over conditions and the model predicts constant peaks. The
peak activities for the competing response both show increas-
ing functions, but the rise in the peak for the data is from a
higher baseline and is slower than for the model. But the trend
is in the right direction with a more difficult choice leading to
a higher peak activity in the competing neurons. Note that the
conditions with proportions of pixels 0.45 and 0.35 are error
responses (where 0.55 and 0.65 provide the corresponding
correct responses).

We noted earlier that the competing activity shows a dip
around the saccade (“b” in Fig. 10), and this reduces the height

FIG. 11. Quality of the fit for firing rates aligned on stimulus and saccade.
A plot of the middle tercile of the firing rate functions shown in Figs. 9 and 10
for the 55% black pixel condition for alignment on the stimulus and saccade
for the target and competitor cells. One hundred bootstrap samples were
generate by randomly sampling with replacement from the data. Thus the data
from a cell might be included 0 times, once, twice, or so on. The functions
were sorted into order from highest to lowest based on the average firing rate
for 50 ms around the peak. The 5th, middle, and 95th functions are plotted (���,
—, and - - -, respectively). These represent 90% confidence intervals around
the firing rates that would be obtained if different random samples of cells were
selected.

FIG. 12. Firing rates for the growth of discriminative information. The
functions are obtained by subtracting the target cell firing rates and competitor
cell firing rates shown in Figs. 9 and 10.
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of the peak that would have been attained if there were no dip.
With no dip, the empirical function would have been steeper
and would have qualitatively matched the model better.

Variability in processing and delayed
discriminative information

The ability of the model to predict delayed onset of discrim-
inative information depends on the moment-by-moment vari-
ability in the sample paths of the diffusion process in an
essential way. If the model was deterministic with stimulus
information growing smoothly after stimulus onset, it would be
unable to predict this finding.

The reason that the model is able to produce this pattern of
delayed onset is that it has a high degree of variability in
processing within a trial. The primary need for this high
amount of variability is for the process to produce errors,
especially in conditions where drift rate toward one alternative
is high. The effect of high variability is to make processes that
get near a decision criterion exit the process with relatively
high probability. In contrast, if a process is not near the
decision criterion, it is much less likely to exit quickly. It turns
out that with the parameter values from the fit to the behavioral
data, for a process that terminates relatively late in processing,
the average position of a process early in processing is close to
the starting position.

The predictions for this model for the availability of dis-
criminative information are qualitatively the same as that for
the two-boundary diffusion model (e.g., see predictions in
Ratcliff 1988; Ratcliff et al. 2003a) (Fig. 11A). For the two
boundary diffusion model, at some point in the process, either
processes will have exited the process (terminated) or will still
be in the process. Because of the relatively high amount of
variability in processing, processes that have not terminated
late in processing will have an average position earlier in
processing that is relatively far away from the boundary (or
else they would have exited).

The same factors were important in fitting data from a
deadline task used by Meyer and colleagues (1988) using the
diffusion model (Ratcliff 1988). In the experiment (using
human subjects), a simple mixture model was used to extract
the amount of partial information available at various points in
time, and the results showed that partial information was
available quickly and at a much lower accuracy level for
processes that had terminated. The high degree of variability in
processing required in the diffusion model to produce the
correct patterns of accuracy and RT distributions also automat-
ically produces predictions that match the data for average
paths in the current study and partial information in the Meyer
et al. paradigm.

D I S C U S S I O N

Sequential sampling models have been proposed as a general
decision mechanism for a range of different tasks (Busemeyer
and Townsend 1993; Ratcliff 1978, 1981, 1988, 2002; Ratcliff
and Rouder 1998, 2000; Ratcliff and Smith 2004; Ratcliff et al.
1999, 2001, 2003b, 2004a,b; Roe et al. 2001; Smith 1995;
Thapar et al. 2003).

For the current experiment, the dual diffusion model fits the
behavioral data moderately well, capturing the shape of the
skewed RT distributions and accounting for the relationship
between accuracy and RT. Under the assumption that paths in
the dual diffusion process represent firing rates in the collicular
build-up cells, the model predicted many of the major features
of the neural firing rate data including the relative positions,
onsets, and peak activity levels of the firing rate functions. But
the model failed in important ways, and we argue that these
misses can point to neurophysiological processes that are not
captured by the model and that would need to be added to
provide a more comprehensive account of the behavioral and
neural data.

The results here and the results in Ratcliff, Cherian, and
Segraves (2003a) show extraordinarily similar outcomes in
both behavioral and neural processes for two quite different
stimulus displays and different kinds of judgments. Further-
more, the dual diffusion model can fit both sets of data (data
from Ratcliff et al. 2004c). This suggests a working hypothesis
or view of processing that assumes that different sources of
information from processing streams (e.g., different kinds of
visual information such as brightness, color, motion, etc., and
even auditory information) are combined just prior to the
processes that implement the behavioral response.

Misses between theory and data

The details of the fits presented in Figs. 9 and 10 and the
misses between theory and data (indicated by “a” and “b” in
the figures) suggest that there are dynamical changes that are
not captured in the stationary model. There are two aspects of
the results that show systematic mismatches between the model
and data. First, the initial rise in activity mismatches, and
second, when firing rates are aligned on the saccade, there is a
dip in activity in the competing neuron. Both of these effects
can be at least qualitatively explained by changes in inhibition
during the course of the decision process. First we examine the
effect of ramping on the stimulus information to address the
first miss, and then we turn to an inhibition interpretation.

FIG. 13. Empirical and predicted peak firing rates as a function of the
proportion of black or white pixels. The nearly horizontal distribution of peak
firing rates at the top of the plot are for activity when a cell’s response field
contained the target for the correct response (target cell). The distribution with
increasing slope at the bottom of the plot is for activity when a cell’s response
field contained the target for the incorrect response (nontarget cell). Firing rates
are for data aligned to stimulus onset.
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As pointed out earlier, the dual diffusion model is a station-
ary one, i.e., one in which none of the processes or parameters
change over time during the time course of the decision
process. The issue of stationarity in the decision process has
been addressed by Ratcliff and Rouder (2000), Ratcliff (2002),
and Smith and colleagues (2004). They provided evidence that
the stimulus representation of a briefly presented visual stim-
ulus is the integrated representation of the stimulus in a visual
short-term memory. This representation provides the drift rate
that drives the accumulation process. The build-up of this
representation has to be quite rapid because experimentally, a
stimulus duration much �80 ms increases the drift rate little.
Ratcliff (2002) examined the effect of ramping up drift rate to
mimic the growth of the visual short-term memory represen-
tation and found that the ramped process could not be discrim-
inated from an unramped one based on behavioral data. Pre-
dictions from ramped process with four different values of drift
rate were fit with the unramped model, and the unramped
model produced slightly different parameter values to accom-
modate the differences. The effect of a ramped onset was to
increase variability in starting point, to increase the variability
in the nondecision components of processing, and to increase
the mean nondecision time. The other parameters such as drift
rates and boundary separation changed by �3%. Thus at the
behavioral level, the ramped and unramped models of these
kinds will not be discriminable. But the growth of evidence in
the process for the ramped process (the analog of firing rate)
will have a more gradual rise than for the unramped process.

An alternative way to plausibly add a ramping up of the
stimulus is to use inhibition. Experimentally, just before the
firing rate functions begin to rise, there is a dip in activity (Li
et al. 2006; Ratcliff et al. 2003a; Roitman and Shadlen 2002;
Sato and Schall 2001; Segraves et al. 1999). This dip could be
seen as a sharp increase in inhibition followed by a release.
Even with a constant drift rate, a large release of inhibition
over tens of milliseconds would mimic a ramping up of drift
rate.

A dip in build-up cell activity after a cue and preceding a
behavioral response has been examined closely by Li and
colleagues (2006). The sources for inhibitory input that might
cause this dip for a cell with an extra-foveal receptive field
include collicular inputs from the foveal representation as well
as from competing collicular sites representing other available
targets (Basso and Wurtz 1998; Behan and Kime 1996;
McPeek and Keller 2002; Mize et al. 1991; Munoz and Istvan
1998). This inhibition might also be attributed to inputs from
other components of the oculomotor system, including the
substantia nigra (Appell and Behan 1990; Arai and Keller
2005; Hikosaka and Wurtz 1983, 1985).

Simulating inhibition

To examine the effects of dynamic changes in inhibition, we
chose to implement inhibition as modulating decay rate in the
dual diffusion model. The initial rise in activity in both target
and nontarget neurons begins between 20 and 40 ms prior to
the predictions from the dual diffusion model. If we assume
that initially the decay rate is very high (e.g., 50 compared with
2 and 4 for fits to the behavioral data for the 2 monkeys), then
it is reduced linearly, we get a more gradual ramp up in activity
in the target and competing accumulators. This produces a

more gradual rise and accommodates about half the miss
between the stationary model and data (in Figs. 9 and 10). If
the ramp up was made nonlinear, then more of the difference
might be accommodated. Or if the stimulus was ramped on
along with the decrease in inhibition, then again more of the
difference might be accommodated.

The suppression in activity in the competing neurons seen
when the firing rates are aligned on the saccade (Fig. 10) can
likewise be accommodated by an increase in decay in the
process. If we assume that when activity in the accumulators
corresponding to the decision reaches a certain level (e.g., 95%
of the way toward threshold), decay in all competing accumu-
lators is turned up to a high value (e.g., 25 times higher than
that estimated in the fits to the data here, Table 2). Because the
accumulators are independent, this change in inhibition hardly
affects either the predictions for the behavioral data or the
predictions for activity in the accumulator that reaches criterion
because the process is highly likely to terminate once it is this
close to the criterion. However, it does produce a lower peak
and a dip in activity for the competing accumulator that
matches the data.

Converging evidence for the involvement of general inhibi-
tion of this kind would come from a study in which recordings
were made from sites away from the sites corresponding to
both target and test alternatives. If this shows modulation
corresponding to the initial drop and the inhibition just before
saccade, then this will be evidence that the system is globally
inhibiting, first everything, and second, neurons corresponding
to every location except the target.

Altering assumptions about drift rates and noise

Variations on the early diffusion model have been proposed
recently. These new models are couched in terms of neuro-
physiological plausibility, but as yet there is not enough neu-
rophysiological data to discriminate them. They all have the
advantage of fitting the behavioral data more or less well. And
they have the potential to fit the neurophysiological data. The
current state of this enterprise is that there have been relatively
few comprehensive comparisons of models across data sets
(e.g., see Ratcliff et al. 2004c), whereas at the same time there
has been a lot of theoretical comparisons of the various variants
of the models. One way to develop this research domain will
involve comprehensive competitive testing of the models using
real data, and the models will need to be evaluated using
neurophysiological data (soon it will not be enough for a model
to be vaguely “consistent with” neurophysiological data).

In an attempt to improve the fits of our model to the data, we
first relaxed the assumption that neither drift rate for the
accumulators can become negative, and second, we examined
the effect of allowing the noise to be negatively correlated.
Both of these assumptions are plausible. In the fits to data,
noise is a major determinant of when the process crosses a
decision criterion (e.g., Fig. 7), and there are neurophysiolog-
ical data that suggest that neural firing rates are correlated.

When the drift rate in one accumulator is negative, the
sample paths of the process will tend to remain in the vicinity
of the lower bound at zero. Although such paths may cross the
criterion because of the effects of noise alone, the probability
of this occurring is less than if the drift is positive. The other
accumulator will have a higher drift rate than the sum of the
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two, and this will make responses for the condition more
accurate. This might allow the model to fit the data in Fig. 8
better by making the predicted accuracy values higher and so
better match the data for the most accurate conditions.

We fit the dual diffusion model relaxing the assumption that
both drift rates are positive and produced modestly better fits in
�2 terms (7.7% lower �2 for monkey 11 and 5.2% lower �2 for
monkey 12). The reason the fits were better is that accuracy was
increased a little for the extreme conditions that the model
mispredicted. However, the improvement is only modestly
better and the predicted and empirical accuracy values for the
extreme conditions match only a little better. This is because
the fit is a compromise between fitting the accuracy values
(horizontal displacement between predictions and data) and
quantile RTs (vertical displacement between predictions and
data). For example, if the quantile functions in Fig. 8 are
extended in the far right of the two middle panels so that the
accuracy values line up with the data, the quantile RTs would
have lower values than are displayed in the plot and the quality
of the fit would be reduced. For monkey 12, Fig. 8, middle
right, if the theoretical quantile functions were extended to the
right for the extreme dark stimulus to align with the response
proportions, then instead of the 0.9 quantile RT missing by
�30 ms (the vertical miss in the figure), it would miss by �60
ms.

The assumption that noise in the neural processing system is
correlated is an assumption that has been discussed and tested
in the neurophysiological literature (e.g., Mazurek and Shadlen
2002; Zohary et al. 1994). The assumption that pools of
neurons representing competing decisions have negatively cor-
related noise is an assumption that has been implemented in
some recent modeling (Ditterich 2006). The idea is that in a
particular time interval, if noise drives one process toward its
criterion, it drives the other process away from its criterion.
The correlation could vary from 0 to �1. If perfectly anti-
correlated noise is implemented in a model with two accumu-
lators, then this model has many of the features of the single
diffusion process model (Ratcliff 1978; Ratcliff and Smith
2004). If, in addition, the decision rule is changed to a relative
criterion (terminate the decision process when one accumulator
gets more than a criterial amount greater than the other accu-
mulator), then this two-accumulator model is equivalent to the
traditional diffusion process (so long as evidence is allowed to
go negative). However, if evidence is not allowed to go below
zero, then the model will only approximate a diffusion process,
and even when one accumulator gets little or no positive
evidence, it will have a mean value above zero. Also a model
with uncorrelated noise, no lower bound on evidence, and a
relative criterion is formally identical to a diffusion process.
This is because the difference between a pair of Gaussian
processes is also a Gaussian process.

So there is a reasonably large set of possible models for a
two-choice task. 1) The model can have two accumulators or
one, 2) there can be decay in the accumulator or not, 3)
accumulators can inhibit each other either pair wise, or from a
pool of inhibition representing the sum of all activity, 4) the
accumulation rates can be independent or negatively corre-
lated, and 5) noise in the two accumulators can be negatively
correlated to a greater or lesser degree. Some of these possi-
bilities cannot be used together, e.g., the single diffusion
process only has one sources of noise and so noise is implicitly

anti-correlated. Various versions of these models have been
examined in Bogacz et al. (2006), Ditterich (2006), and Rat-
cliff and Smith (2004). But there has been no comprehensive
study of all the plausible combinations.

Here we examined the effect of assuming anti-correlated
noise instead of uncorrelated noise in the dual diffusion model.
We fit the model assuming that noise was negatively correlated
�0.5 or �1. For a correlation of �1, a random number from
a Gaussian distribution was generated on each time step, and
this was added to one accumulator and subtracted from the
other.

We fit the behavioral data with the dual diffusion model with
anti-correlated noise (either �0.5 or �1). The effect of increas-
ing the correlation in noise between the two accumulators is to
increase error RTs relative to correct RTs. This is contrary to
what is found in the data: errors are slightly faster than correct
responses for monkey 11 and appreciably faster for monkey 12.
Increasing the correlation in noise worsened the fits a little for
monkey 11 and a lot for monkey 12. The result was that as the
correlation increased in size from 0 to �0.5 to �1, the �2

values worsened: for monkey 11, the increase in �2 was
modest, a 10% increase going from 0 to �0.5 correlation, and
24% from 0 to �1 correlation, and for monkey 12, the increase
was much larger, 80% from 0 to �0.5 correlation, and 177%
from 0 to �1 correlation. The reason for this is that error
response times are modestly faster than correct responses for
monkey 11, but are much faster for error responses than correct
responses for monkey 12.

Anti-correlated noise also has an effect on the predicted
firing rate functions for the competing accumulator; it makes
the activity peak earlier than the time at which the target
terminates. This occurs because a large proportion of termina-
tions will involve a positive noise increment which correspond
to a negative increment in the other accumulator. For monkey
11, the competitor activity peak is �30 ms before the target
peak. Even though this captures the position of the peak
activity better than the dual diffusion model, other aspects of
the predictions diverge from the experimental data. If we
divide the responses into fast, intermediate, and slow, we find
that the activity in the target and competitor rise at the same
rate to half the peak activity beginning at �150 ms before the
decision. The activity in the competitor for the fastest third of
responses does not rise above baseline and dips below baseline
at the time of the decision (see Fig. 14). This suggests that the
assumption of anti-correlated noise does not provide a better
account of the earlier peak activity in the competing accumu-
lator.

A possible interpretation of the suppression and recovery of
the firing rate at point “b” in Fig. 10 is that the SC neuron firing
rates are being driven by earlier systems. The suppression
reflects a local brief burst of inhibition acting on the SC, which,
when removed, allows the firing rate in the competing neurons
to recover. If activity in the whole processing stream was
totally suppressed (and so was not being supported by other
inputs), then there would be no recovery after point “b.”

Although we did not find that correlated noise between the
accumulators helped produce better fits to our experimental
data, as Ditterich (2006) shows, it is certainly worth examining
further.
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Other accumulator models

Another model of the class of dual diffusion models is the
“leaky competing accumulator model” (Usher and McClelland
2001). Evidence is continuously distributed, accumulates in
continuous time, just as in other diffusion process models, and
is accumulated in separate accumulators for the different re-
sponses. The rate at which evidence accumulates in each
accumulator, that is, drift rate of the diffusion process, is a
combination of the quality of the information from the stimulus
and two other components. The first component is decay in the
amount of accumulated evidence (as in the dual diffusion
model), and the other is inhibition from the other accumulator
with the amount of inhibition growing as the amount of
evidence in the other accumulator grows. If inhibition is large,
the model exhibits features similar to the random walk and
diffusion models because an increase in evidence for one
alternative produces a decrease in evidence for the other
alternative. In its assumption of cross-coupling between
counters, the model also resembles an earlier, discrete-time
model proposed by Heuer (1987).

We fit this model to the behavioral data in the same way as
the dual diffusion model in the preceding text and found that it
produced fits about as good as the dual diffusion model. This
is not surprising because the dual diffusion model is almost
nested in the leaky competing accumulator model (apart from
negatively correlated starting points). In the fits of the leaky
competing accumulator model, the amount of leakage and
inhibition were modest: leakage or decay was 1.2 and 2.5 times
larger for monkeys 11 and 12, respectively, relative to the
values in Table 2 for the dual diffusion model, and decay had
a value of about 1. As we noted earlier, removing both decay
and inhibition produces fits of about the same quality. In
particular, the inhibition was much too small (by 1–2 orders of

magnitude) to produce the dip in processing in firing rates just
prior to the saccade for the nontarget when firing rates are
aligned on the saccade.

A more neurobiologically inspired model that is similar to
the dual diffusion model is that of Mazurek and colleagues
(2003) designed to account for performance in the random dot
motion-discrimination task (e.g., Roitman and Shadlen 2002;
Shadlen et al. 1996). The model is applied to data from a
two-choice task, and it assumes that information about motion
strength enters area MT and produces stimulation in direction
sensitive neurons corresponding to the two choices. Activity
from these populations is subtracted, and this value is used to
drive two separate LIP processes corresponding to the two
decisions, for example, right MT activity minus left MT
activity drives right LIP activity and left MT activity minus
right MT activity drives left LIP activity. The activity in the
two LIP populations race to threshold to produce the decision.

In contrast to the dual diffusion model, the Mazurek and
colleagues’ model is based on neurophysiology. It assumes
delays between MT and LIP (as well as evidence entering MT
from the stimulus), known correlations in firing rates among
neurons in the populations, and noise (variability in process-
ing) are produced by assumptions about spiking in the neural
populations. However, this model does not go as far in ac-
counting for data as does the dual diffusion model. It badly
misses RTs for error responses and almost certainly would not
predict the observed roughly symmetric RT distributions (Dit-
terich 2006). This is because models that assume accumulation
to criterion will predict skewed distributions with increasing
spread in the tail and mean RT increases (see Ratcliff and
Smith 2004). Also, the behavior of the observed and predicted
LIP physiology are only shown to be qualitatively similar
rather than quantitatively matching (though the matches are
reasonably good). In a recent report, Ditterich (2006) presents
a diffusion model that includes the addition of a time-variant
gain of the incoming visual motion signals with the result that
it provides a closer fit between the model predictions and both
the behavioral and firing rate data than was provided by the
original model of Mazurek and colleagues.

The main problem with application of these models to the
data from our experiment is that they are specific to MT and
LIP and motion stimuli. However, despite these limitations, the
model of Mazurek and colleagues (2003) and Ditterich (2006)
articulate some of the features of modeling to which we should
all aspire. They take the neurophysiological basis of processing
seriously and attempt to model physiology and behavior in
terms of known physiology of single cells and aggregates of
single cells.

Neural plausibility of decay and inhibition in
decision models

There have been justifications in terms of neural plausibility
for various design characteristics in some stochastic accumu-
lation models. In particular, Usher and McClelland (2001) have
most strongly argued for a correspondence between the psy-
chological and neural levels, a view that this paper endorses.
But, whether a design feature actually implements the function
as claimed is partially an empirical question. The specific
issues concern Usher and McClelland’s discussion of decay in
an accumulator and inhibition between accumulators. It has

FIG. 14. Effect of allowing noise to be negatively correlated. Predictions
from the dual diffusion model with anti-correlated noise (top). The predictions
are generated from the best fitting model to the behavioral data, and the
predicted firing rate functions are plotted for the fastest, intermediate, and
slowest third of responses. Bottom: neuron firing data used for this analysis
along with the original dual diffusion model fits reproduced from Fig. 10, 2nd
row, right panel.
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been argued that leakage or decay is required because neural
firing rates are limited and have a maximum. Likewise, lateral
inhibition is argued to be a mechanism used within a brain
region to select the representation most consistent with the
input, i.e., contrast enhancement.

For decay to be able to limit the predicted size of the firing
rate to match the data, it would have to be of a size that was
plausible. Likewise, for lateral inhibition to be plausible, it
would have to be large enough to have a significant suppressive
effect on firing rates, as is observed in the firing rate data just
prior to the eye movement for cells corresponding to compet-
ing decision when aligned on the saccade.

For the dual diffusion model, we can compute the theoretical
maximum average firing rate based on the transformation from
position in the diffusion process to firing rates (shown in Figs.
9, 10, and 12) with decision criteria removed. The average
asymptotic position with decision criteria removed is obtained
if dx in the equation at the bottom of Fig. 6 is equal to 0. This
occurs when (v � �x) � 0, so x � v/�. For the maximum value
of drift, for monkeys 11 and 12, respectively, x � 2.5 and x �
2.4. For a middle value of drift (half the sum of drift rates), the
values are 1.3 and 1.2. For the scaling in the experiments
presented earlier, for monkey 11, evidence of 0.5 (average
criterion setting) corresponds to a firing rate of 150 spike/s and
for monkey 12, evidence of 0.54 correspond to a firing rate of
200 spike/s. Thus the theoretical asymptotic levels for the high
drift conditions would be 750 and 880 spike/s for monkeys 11
and 12, respectively. These would be halved for drift rates of
half these values. We feel that these theoretical asymptotic
levels are too high for decay to be serving the purpose of
limiting firing rates.

For the fits of the Usher and McClelland model to the
behavioral data, the asymptotic levels are much higher because
decay is lower, the asymptotic levels for high drift rates are
1,400 and 12,80 spike/s for monkeys 11 and 12, respectively.
Inhibition is even lower than decay in the fits. For middle drift
values, when one accumulator is near its maximum, inhibition
on the other accumulator is �10% of the drift term. With the
variability in processing needed in the model, this amount of
inhibition could not be discriminated empirically from a model
without inhibition. Furthermore, this degree of inhibition is
between 50 and 200 times too small to account for the dip in
activity of competitor neurons prior to the saccade.

This discussion suggests that providing a mechanism in a
model that is neurally plausible is not enough. It is necessary to
make sure that the size of the effect produced by this mecha-
nism is large enough to provide the function that is proposed.
The preceding arguments about the size of the decay and
leakage apply only to our fits to this data set. For other
experiments, the calculation needs to be carried out to examine
the size of the effects, which may in other cases provide
exactly the effect sizes needed for the proposed processes.

Generality of the dual diffusion model

In other work to be submitted, we have found that the dual
diffusion model fits human data almost as well as the original
diffusion model, but this work is preliminary and firm conclu-
sions have not yet been reached. It might be tempting to argue
that the dual diffusion model should replace the original
diffusion model, but it is not necessary that the same model

should account for both human and monkey decision making.
Probably the main conclusion that should be drawn is that
models of the same sequential sampling class are capable of
accounting quantitatively for much of the behavioral data and
neural firing rate data in simple decision making.

The model as it is fit to the behavioral data is moderately
complex and a simpler model might be able to provide about
the same quality of fit. We prefer to present the full model so
that components do not have to be added later to deal with
different paradigms. As noted earlier, leakage could be elimi-
nated from the model, and it would fit the data presented in this
article. In some applications of the diffusion model (e.g.,
Ratcliff 2002; Ratcliff et al. 2003b), boundaries for the two
choice could be set equal because response times and accuracy
values are symmetric in the data. But in the data presented
here, they are not symmetric. Similarly, in the same applica-
tions (Ratcliff 2002; Ratcliff et al. 2003b), drift rates for bright
stimuli are the same numerical size as those for dark stimuli.
However, again, this is not the case for these data. The starting
points and variability in starting point could probably be set to
zero and adequate fits to the behavioral data produced. How-
ever, this would produce the need for arbitrary assumptions
about the base activity levels in the predicted neural firing rate
functions.

Neurophysiological evidence for implementation of the
decision process

A central question in any study like this is: where in the
processing stream is the decision made? We believe that the
decisions specified by different behavioral responses (e.g.,
manual, saccade, vocal) are implemented by different but
similar neural systems. The decision process is likely distrib-
uted over several different sites with the particular combination
for a task depending on the modalities of the stimulus and
response. For eye-movement responses based on visual dis-
criminations, cells in the lateral intraparietal cortex (LIP),
frontal eye field (FEF), and SC all seem to exhibit activities
that can be interpreted as being involved in decision making.
These similarities might be expected given the anatomical
connections of these three regions. The LIP and FEF are
reciprocally interconnected, both cortical areas project to the
SC, and the SC projects back to both the FEF and LIP
(Andersen et al. 1990; Astruc 1971; Barbas and Mesulam
1981; Clower et al. 2001; Huerta et al. 1986, 1987; Komatsu
and Suzuki 1985; Kunzle and Akert 1977; Kunzle et al. 1976;
Lynch et al. 1994; Petrides and Pandya 1984; Sommer and
Wurtz 2004; Stanton et al. 1988, 1995). Nevertheless, one
might expect that there should be a progression in the decision-
making processing stream from cortex to midbrain. Interac-
tions between LIP and FEF appear to be more closely related
to visual processing, whereas both LIP to SC and FEF to SC
pathways are more directly involved in saccade generation
(Ferraina et al. 2002; Segraves and Goldberg 1987; Sommer
and Wurtz 2000). In comparing activity in LIP and SC in
similar visuomotor tasks, Paré and Wurtz (2001) found neu-
rons in LIP that projected to the SC to be more strongly
dependent on visual stimulation, whereas SC neurons were
more closely coupled to the oculomotor response. In addition,
there is a convincing demonstration that the most significant
contribution of the FEF to oculomotor processing is effected by
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means of its strong projection to the SC (Hanes and Wurtz
2001). We think that the SC is a good candidate for the location
at which the decision is implemented in the saccadic system for
two reasons. First, build-up cells in the SC seem to be the last
place in the processing stream in which competition is ob-
served. Second, the system seems to exhibit the right kinds of
inhibitory processes that modulate processing prior to the
decision process and in the competing build-up cells just prior
to a saccade. However, this is little more than a guess and any
part of the system including FEF, LIP, and SC could imple-
ment the decision or computations could be carried out that
involve some or all of these regions.
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