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Theoretical Note

A Note on Mimicking Additive Reaction Time Models
ROGER RATCLIFF

Northwestern University

Ashby (1982a) and Ashby and Townsend (1980) have developed a series of tests of pure
insertion based on the reaction time distribution. One of these tests allows one to determine
whether an experimental task has inserted into its processing a component that is exponen-
tially distributed. In this note, the test is applied to predictions from the diffusion model of
Ratcliff (1978) and to data from two experiments (Ratcliff, 1978, Experiment 2; Hockley,
1984, Experiment 1) that were fitted by the diffusion model. It is found that both the predic-
tions from the diffusion model and the experimental data pass tests for inserted stages at a
statistical level (i.e., the analyses provide results that are within the range of the null
hypothesis established by Ashby and Townsend (1980)). However, it is shown that the dif-
fusion model does not mimic insertion theoretically. These results demonstrate nonintuitive
mimicking that should serve as a warning in the use of such tests for insertion, and the results
suggest that the power of tests for pure insertion could be profitably examined using pre-
dictions from the diffusion and possibly other sequential sampling models.  © 1988 Academic

Press, Inc.

It is generally assumed that the processing of information proceeds through a
number of stages from encoding through storage and retrieval. One class of models
that has been developed to represent this view is the class of discrete stage models,
including both parallel and serial models. Much is known about the conditions
under which mimicking between serial and parallel models takes place (Townsend
& Ashby, 1983) and this work has been advanced recently by the development of
tests based on the reaction time distribution that provide evidence for pure inser-
tion of stages.

In this note, I describe a class of nonintuitive mimicking problems that appear at
the level of reaction time distributions. The motivation comes from an attempt to
evaluate data presented in Ratcliff (1978), data that were used to support the
diffusion model for recognition. The data were obtained from a standard Sternberg
paradigm (Sternberg, 1966), and accuracy, reaction time, and reaction time
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distribution shape were well described by the diffusion model. Thus, three questions
arise: First, do the data pass the tests for pure insertion? Second, do predictions of
the diffusion model also pass the tests for pure insertion? (If the fits of diffusion
model to the data are very good, then we would expect the same answer to these
questions.) Third, if the diffusion model passes the test for pure insertion, is the
result analytic (exact) or statistical (within confidence limits derived to test the null
hypothesis)? To give these analyses more generality, they were also applied to data
and fits of the diffusion model from a study by Hockley (1984). (While it would
have been nice to use the Townsend and Roos (1973) data used in the Ashby and
Townsend (1980) article, this would have involved typing the raw data into my
computer system, so I used the data of Hockley who had histograms for the reac-
tion time distributions already available.)

The tests developed by Ashby (1982a) and Ashby and Townsend (1980) evaluate
the assumption that an inserted stage is serial (or parallel of a form that mimics
serial processing). Some of the tests concern a stronger assumption and that is that
the inserted stage is exponentially distributed. Both of these classes of tests will be
examined below. The first test considered (Ashby and Townsend, 1980) is based on
a simple relationship between the exponential time constant of the proposed stage
and the distribution and density functions of the observed distributions. Suppose
that a process has k — 1 stages with some distribution function, and then another
stage with exponential finishing time is added. Then,

gty =g, ()= (/t) e """ (1)

for +>0, where 7 is the time constant of the exponential stage (equal to 1/V, in
Ashby and Townsend’s notation) and * represents convolution (i.e., a reaction time
from g, _ (¢) is added to a reaction time from the exponential). Since 7 is the mean
of the exponential stage, then t would be expected to equal RT,— RT,_,.
However, this estimate does not allow one to argue that the distribution of the
added stage is exponential. Ashby and Townsend (1980) showed that

Ut =gu(0)/(Gy_ (1) — G(1)) (2)

for any 7> 0, using the method of Laplace transforms (Ashby and Townsend, 1980,
Theorem 1). Thus, the expression on the right hand side of Eq. (2) is constant for
all values of ¢, so that a plot of the right hand side of Eq. (2) as a function of time
should produce a line with slope zero. Such a plot provides a test of the assumption
of an inserted exponential stage. If the line has zero slope, then a model with an
inserted exponential stage is implied. It is possible to examine insertion of several
stages if one has a range of experimental conditions corresponding to a range of
values of k.

Given this result, Ashby and Townsend (1980) proceeded to evaluate data from a
standard Sternberg procedure by Townsend and Roos (1973). They used the slope
of the regression line from Eq. (2) as an index of goodness-of-fit and found that the
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slopes for most of the conditions were close to zero and within confidence intervals
they derived for the experiment. Thus, the data meet the criteria for insertion of
exponentially distributed stages.

In order to examine the possibility of mimicking in this test (Eq. (2)), I perfor-
med two sets of studies. First I applied the test to two sets of Sternberg paradigm
data from Ratcliff (1978) and Hockley (1984) and second I applied the test to
theoretical predictions from the diffusion model (Ratcliff, 1978) for both sets of the
data. The diffusion model was found to fit the reaction time distributions for the
two experiments, so it was expected that to the extent that the data passed the tests
for serial insertion, so would the theoretical predictions for the diffusion model.

DirrusioN MODEL

The diffusion model uses a continuous version of the random walk as the
decision component. It is assumed that items are encoded into memory and at test
time, the test item is compared with each item in memory in parallel. Each parallel
comparison is carried out by a diffusion process: the greater the match between the
test item and a memory item, the faster and more accurate are positive decisions.
The smaller the match between the test item and a study item, the faster and more
accurate are negative decisions. A positive response is generated when one diffusion
process terminates with a match and a negative response requires all processes to
terminate with nonmatches. For further details see Ratcliff (1978).

The mathematics needed to obtain predictions from the diffusion model are out-
lined in Ratcliff (1978). Some of the main equations relevant to the analyses carried
out in this note are presented here. For a single diffusion process terminating in a
nonmatch, the finishing time density function is given by

2 2 21,22

s 2 - . [(nzk 1[u* n°k’s
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where zero is the nonmatch boundary of the diffusion process, z is the starting
point, a is the match boundary, u is the drift rate, and s? is the variance in drift. The
model of Ratcliff (1978) makes the additional assumptions that drift is distributed
over nominally identical comparisons (ie., items encoded into memory have
variable strength), and comparisons are parallel: self-terminating on matches,
exhaustive on nonmatches. To derive the predictions for the Sternberg data, it is
necessary to integrate over the distribution of drift rates and to find the maximum
of several of these processes for negative responses. For these latter two
calculations, numerical solutions are obtained (Eq. (3) represents an infinite sum
and numerical methods are necessary to obtain solutions). Further details are
presented in Ratcliff (1978). In the experimental data presented below for
Experiment 2 in Ratcliff (1978), the negative responses only are considered because
positive responses vary as a function of serial position as well as set size and so
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have fewer observations per condition. In addition, it would be necessary to argue
that positive responses were the result of exhaustive processing, and this seems
unlikely in view of the strong serial position effects in accuracy and reaction time.

Applications of the Tests: Experiment 2, Ratcliff (1978)

Ratcliff’s experiment used two subjects who performed eight experimental
gessions. Each session used three set sizes (3, 4, or 5) and there were 480 trials per
gession. Thus, the number of negative trials per set size was 1280. Thus, sample sizes
on which the following tests are based are around 1200 (once errors are removed).

Before presenting results of the applications of the tests to both the data and the
theoretical predictions, it should be noted that all the parameters of the diffusion
model used here are those presented in (Ratcliff, 1978). Thus, nothing about the
theoretical fits has been changed since then in applying the tests. The probability
density function was obtained from (Ratcliff, 1978, Fig. 15). The group distribution
method allows group quantiles to be obtained and between each quantile, there is
aqual probability density. Equal area rectangles are constructed to give the density
function and the heights of these rectangles provide the probability densities at the
midpoint of the range. I decided to present just the raw data and not perform
smoothing such as that performed in Ashby (1982a). Figures 1 and 2 show results
of applying the method to both the data from Ratcliff’s (1978) Experiment 2 and
also to the predictions from the diffusion model with parameter values used in
fitting the model to that data. There are two things to note from these figures. First,
the plots of ¥V, are not completely flat both for the data and for the diffusion model.
Second, the fits of the diffusion model to the data miss by a significant amount.
Both these points show that the method is quite sensitive. Suppose that the
diffusion model density function is a reasonable approximation to the observed
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FiG. 1. Application of the test for an exponential inserted process (Eq. (2)) for data from the )
Sternberg paradigm from Rateliff (1978, Expériment 2) and for the fit of the diffusion model to that data
for set sizes 3 and 4. ¥, is-in units of (s)~ ..
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density function. Then empirically, the quantiles for the % and % — | distributions
differ in this example by as little as 20 ms. Thus, .if the empirical distribution is
shifted by a small amount relative to the theoretical prediction (e.g, 10 ms), the
deviations between theory and data found in Figs. 1 and 2 will be seen. Thus, the
test is extremely sensitive to the relative locations of the reaction tire distributions.

The important question concerns the power of the test. Ashby and Townsend
(1980) addressed this by performing a series of Monte Carlo simulations in order to
find a typical range of values of the slope for the number of observations they used
in the simulations. They performed the simulations first with an exponentially dis-
tributed stage and then with several kinds of nonexponential distributions inserted.
They then chose values of the slope that separated these two sets of simulations
(e.g., a value above which the nonexponential distributions produced rejection ).
For sample sizes of 1000 pseudo-observations and an exponential parameter (and
mean) of 25ms, a slope of +10~* in the rate constant (1 divided by the time
constant = 25 ms) was chosen. : : : :

I performed linear regression fits to the data in Figs. 1 and 2 (inverting the
ordinate to produce estimates of the rate constant). For the theoretical predictions,
the slope and intercept for set sizes 3 and 4 are —0.65x 10~*and 0.011 for a range
of 300-1100 ms. The equivalent slope and intercept for set sizes 4 and 5 are
—0.46 x 10~* and 0.014 for the same range. Thus, the distributions provided by the
diffusion model are consistent with a model that assumes an exponential inserted
process. Thus with only 1000 observations, it is unlikely that the diffusion model
can be discriminated from a model that assumes an exponential inserted process.
This can be considered another case of statistical mimicking in the context of this
test. The data also slow slopes consistent with exponential pure insertion. The
slopes and intercepts were, for set sizes 3 and 4, —0.74 x 10~* and 0.021. A test for
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FiG. 2. Application of the test for an exponential inserted process (Eq. (2)) for data from the
Sternberg paradigm from Ratcliff, (1978, Experiment 2) and for the fit of the diffusion model to that data
for set sizes 4 and 5. ¥, is in units of (s)~L.



MIMICKING OF REACTION TIME MODELS 197

linearity provided F=6.4, with 1, 13 degrees of freedom which was" significant
P:<0.05. With the last point removed, which is based on sparse data at the long
reaction times, F=2.1, with df =1, 12, and this is not significant. For set sizes 4 and
5, the slope and intercept were —0.74 x 10~ % and 0.019 and the linear- trends were
108, df =1, 13, P <0.05, and with the last data point removed, F=4.6, df=1, 12,
not significant. Both the slopes and the tests for linearity squeak by the tests for an
exponentlally inserted process. Thus the data satisfy the assumptmn ‘of pure
expanential insertion. At least for the diffusion model and the data from ‘Ratcliff
(4978, Experiment 2), the test produced by Ashby and Townsend is not able to dis-
griminate statistically between the diffusion model and a modcl w1th exponentlally
inserted stages. '
Ashby (1982a) developed these methods further and provided two additional
tests, one for an exponential inserted stage and one for insertion of a stage that is
nat necessarily exponential. He showed that if a process has an inserted exponential
stage, then the density function of the base process intersects the density function of
tQhe combined process at the - mode of the latter. This is easily derived from Eq (2)
as follows. Rewriting Eq. (2) gives

Gy (1) — Gi(t) = t84(2).
ﬁiﬂerentiating both sides gives
8 1(t) — glt) =tdg,(1)/dlL.

The left hand side is zero when the density functiofis intersect and the right hand
side is zero at the mode of the combined distribution. Figures presented in Ashby
(1982a) indicate that when the data of Townsend and Roos (1973) are smoothed,
this property is obtained. The data from Ratcliff (1978, Experiment 2) are more
noisy and it is hard to tell if this property obtains or not. However, it is possible to
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. «F1G. 3. Theoretical probability density functions for the fits of the diffusion model to data from the
e§ternberg paradigm (Ratcliff; 1978, Experiment 2).
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examine the predictions from the diffusion model using the parameter values from
fits to the data, and these are shown in Fig. 3. The theoretical density functions do
not appear to- satisfy the condition that the curves cross at the mode of the slower
condition; there-is a 20-ms difference for set sizes 3 and 4 and a 30-ms difference for
set sizes 4 and 5 (approximately). These differences are certainly in the range of dif-
ferences found by Ashby (1982a, Fig. 3} in his examination of the Townsend and
Roos (1973) data. But, it is unlikely that experimental data will be reliable enough
to detect such small differences (see Ashby, 1982a, footnote 4, for statistical tests)
unless an extremely large experiment is performed. Thus, for the fits of the diffusion
model to the data examined here, the diffusion model again produces predictions
consistent with pure insertion within the range of statistical mimicking, but not
analytic mimicking.

The next property concerns ordering of the distribution and hazard functions.
Dropping the requirement that the inserted stage is exponential, Townsend and
Ashby (1978) showed that the distribution with the inserted stage must have a
cumulative distribution function that is always greater than that for the distribution
without the inserted stage. Thus, G,_,(t) > G,(¢) for all +>0. This property is
satisfied by the predictions from the diffusion model. A stronger condition is that
the hazard function obeys this inequality: A, _,(t) > h,(¢) for all >0 (the hazard
function condition implies the cumulative distribution condition but not vice versa).
However, this latter ordering only holds when &, _ () is nondecreasing in k. Figure
4 presents data from Ratcliff’s (1978) Experiment 2 showing noisy hazard functions
and Figs. 5 and 6 show two predictions from the diffusion model. Because the
hazard functions are not strictly increasing, the ordering property cannot be tested.

Despite the hazard functions’ being noisy, they are all nonmonotonic as a
function of time (see also examples in Luce, 1986, Chap. 4). For the"diffusion
model, I considered two cases, one in which the drift rate changed (with parameter
values typical of fits to perceptual matching data (Ratcliff, 1981)) and one in which

Empirical Hazard Function
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FiG. 4. Empirical hazard functions for the Sternberg paradigm data (Ratcliff, 1978, Experiment 2).
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FIG 5. Theoretical hazard functions from the fits of the diffusion model to the Sternberg paradlgm
da.ta (Ratchff 1978, Experiment 2).

the number of parallel diffusion processes changed as in the fits to the Sternberg
data noted above (with parameters from those fits to the Sternberg data). All these
functions (both theory and data) show nonmonotonic hazard functions so that the
conditions for Ashby’s test are not met. However, the theoretical hazard function
mimics gross properties of the empirical hazard function for Ratcliff’s data. For
example, for the three theoretical hazard functions for different set sizes, each rises
to the same height of the empirical function at the mode and falls to about the same
‘height in the tail as the empirical hazard function.
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HF{G 6. Theoretical hazard functions for one diffusion process as a function of drift rate (parameter
Eglues are set to be typical of those from the perceptual matching paradigm ‘(Rateliff, 1981)).
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Application of the Tests: Experiment 1, Hockley (1984 )

To demonstrate the generality of the ability of the diffusion model to mimic
exponential insertion, I fitted the diffusion model to data presented by Hockley
(1984, Experiment 1, Sternberg paradigm data) and used the obtained parameter
values to generate tests as in Eq. (2). The method of fitting involves several steps in
which summaries of reaction time distribution shape are used to eventually fit both
distributions and accuracy. The first step involves fitting a summary distribution to
the empirical reaction time distribution. The distribution used was the convolution
of normal and exponential distributions (see Ratcliff, 1978; 1979; Ratcliff and Mur-
dock, 1976). This distribution has parameters u and o for the mean and standard
deviation of the normal, and 7 for the mean and parameter of the exponential. The
next step involves generating predictions from the diffusion model for accuracy and
reaction time distributions. To the predictions for the reaction time distribution, the
convolution model is fitted. The diffusion model is then fitted by minimizing the
squared differences (weighted by standard errors) between the theoretical and the
empirical values of accuracy and the convolution model parameters and 7. This is
done using the SIMPLEX minimization routine (Nelder and Mead, 1965). It

TABLE 1
Fits of the Diffusion Model to the Data of Hockley (1984)

Set size
Parameter
theory 3 4 5 6
a 0.186 0.186 0.174 0.184
z 0.087 0.084 0.070 0.070
u 0.405 0.331 0.325 0.294
v —0453 —0.447 —0.403 —0.387
T, 0.340 0.336 0.349 0.346
Predictions
CR accuracy 0976 0.967 0.930 0.906
CRyu 0.496 0.509 0.517 0.536
CR <t 0.182 0.204 0.242 0.293
H accuracy 0.982 0.956 0.947 0.927
Hyu 0.449 0.458 0.475 0.493
Hr 0.153 0.203 0.210 0.259
Data
CR accuracy 0.982 0.975 0.948 0.933
CRpu 0.495 0.510 0.520 0.535
CR<t 0.185 0.220 0.255 0.295
H accuracy 0.974 0.970 0.965 0919
Hyu 0.450 0.445 0.460 0.470

Hr 0.150 0.210 0.225 0.280

Note. H, hits; CR, correct rejections.
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should be noted that.the diffusion model approximates the convolution model very
well (see Ratcliff, 1978, Fig. 7).

Hockley’s analysis .of his reaction time data involved an analysns of the reaction
time distributions using fits of the convolution model ‘to the empirical data. He
found that 2 out of 48 fits were significant by the x? test at the 0.05 level; thus the
empirical distribution provided an excellent summary of shape. I fitted the diffusion
model to the data for correct negative responses for each set size. Table I contains
e values of the parameters of the diffusion model and the theoretical and
empirical values of accuracy, g, and t. In the fits I chose to let the parameters
shown vary freely. The major trend is a fall in » and v as a function of set size. It
should be noted that adequate fits could have been obtained: by ﬁxmg parameters
such as T,,, a, and z at constant values across set sizes.

- Figure 7 shows the value of the estimate of V as a function of time for the three
dlﬁercnces (set sizes 3-4, 4-5, and 5-6) for the predicted distributions for the dif-
fusion model. These replicate the functions shown above for the theoretical predic-
tions of the diffusion model for the experiment of Ratcliff (1978). Straight lines were
fitted to the functions and the slopes again lay inside the confidence intervals
established by Ashby and Townsend (1980). The slopes and intercepts were
—3.60 x 105, 0.0599; —3.04 x 10, 0.0506; and —2.38 x 107>, 0.0400 for set sizes
34, 4-5, and 5—6 respectively. These slopes all have absolute valucs less than 1074,
the confidence interval established by Ashby and Townsend for. somple size 1000
The sample size in the Hockley experiment is about 200 observations per subject
per condition, so with six subjects, the theory is fitted to data of equivalent sample

size as in the Ratcliff (1978) example.

To obtain the values of ¥, for the data, the reaction time dlstnbutlons must. be
combined across subjects. The method used for this involves computing quantiles
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FIG 7. Application of the test for an exponential inserted process for predictions of the diffusion
i ﬁl for fits to the data from the Sternberg paradigm from Hockley (1984, Expenment 1). ¥, is'in units
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for each set size for each subject. These: quantiles are then averaged across the six
subjects leading to group quantiles that can be used to calculate values of V (see
Ratcliff, 1978, 1979). This is the method that was used above for: Experiment 2
(Ratcliff, 1978). Figure 8 shows the values of V, as a function of time and the slopes
and intercepts are as follows: —3.9x 10-5, 0.055; —89x1077% 0.106; and
—6.0x 105, 0.083 for set sizes 3-4; 4-5, and 5-6, respectively. As above all these
have absolute values of slopes: less than 10~ 4. The test for linearity gave F values as
follows: F=3.5, df=1,6, not significant; F=48, df=1,6, not significant; and
F=1323, df=1, 6, not significant for set sizes 3—4, 4-5, and 5-6, respectively.

These two analyses show that both theory and data pass statistical tests for pure
insertion of exponentially distributed processes. The figures show. that both the data
and theory provide V, versus time functions that are initially high and then- fall.
These are consistent with the functions shown in Figs. 1 and 2. While both sets of
data pass the tests for serial insertion of exponential processes, the data-are well fit-
ted by the diffusion model. ’ s :

One more comparison between statistical and analytic mimicking can be made
using the analyses of Ashby (1982b) as applied to the cascade model of McClelland
(1979). Ashby derived - predictions for the right hand side of Eq. (2) and showed
that the functions were not flat so the cascade model did not mimic exponential
insertion. 1 fitted the results shown in Fig. 3 of Ashby (1982b) with a straight line
and obtained a slope of 7.4Xx 10—% and intercept of 0:0144 for a range -of
2001000 ms (scaling the processing rate to be (50 ms)~!). The slope lies within the
range that would not allow rejection of the null hypothesis for the number of obser-
vations that Ashby and Townsend used to set their confidence interval. This again
illustrates the difference between analytic and statistical mimicking.

Vi, for the exporential test

o L S | ! L
200 400 600 800 000 12006 1400 1600 1800

Time (ms)

Fic. 8. Application of the ‘test for an “exponential inserted process for data from the Sternberg
paradigm from Hockley (1984, Experiment 1). ¥, is in units of (s)~ .
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DiscussioN

The explorations presented in this article demonstrate the difficulty that can be
encountered in testing assumptions about pure insertion in information processing
models. The tests proposed by Ashby (1982a) and Ashby and Townsend (1980) are
satisfied by predictions from the diffusion model within statistical limits for large
numbers of observations. The basis for the predictions of the diffusion model
involve no pure insertion. One way to view these results is that the data are
relatively consistent with pure exponential insertion. Thus, any model consistent
with the data will produce predictions that are consistent with pure exponential
insertion at least at the level of statistical mimicking. In the case of the diffusion
model, these predictions are surprisingly consistent with the tests of Ashby, and
Ashby and Townsend.

These mimicking results should also serve as a warning in the application of
methods to extract component processes of proposed serial models. While the
results presented here are specific to a particular set of tests and particular
paradigm (and just two published experiments), the results do suggest that the
wider problem of mimicking should be considered. Specifically, the methods
examined here provide an interpretable decomposition into inserted exponential
processes for the experiments examined; however, they provide no guarantee that
there is an inserted exponential process. More generally, several impressive methods
have been developed that allow the distribution of a component serial process to be
extracted given the empirical distribution for all the component processes and the
empirical distribution of the processes without that serial component. For example,
Green and Luce (1971) have used Fourier transform methods, Bloxom (1979) has
used spline methods, and Kohfeld, Santee, and Wallace (1981) have used a linear
systems approach. All these methods extract the component serial process, but none
provides further validation that the serial process model is in fact correct. The work
presented in this article warns that other competing explanations should be
considered because application of the techniques to theoretical predictions from
other nonserial models may provide incorrect, but interpretable, serial process
decompositions.

It is my belief that the best way to address such mimicking problems within the
class of these reaction time models is to apply the models to a wider range of data
and experimental paradigms such as accuracy (after all, focusing on the dependent
variable reaction time and not accuracy is simply selecting one aspect of a whole
when the ultimate aim is to model both variables) and data from deadline or
response signal procedures. It is likely that the models will cease to mimic each
other when the full range of dependent variables and tasks is examined (even within
one experimental paradigm). When the models are then compared across
experimental paradigms, the models will be able to be compared on other grounds
such as the scope of application and parameter invariance across experiments.

These results also raise the issue of strategy in evaluating mathematical models.
Within the domain of reaction time, I argued for more comprehensive evaluations
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of models using all dependent variables and other tasks within the same experimen-
tal paradigm. The alternate view is that we should be both developing these tests
for insertion further and perhaps performing experiments with more power that will
allow accurate evaluations of the notion of inserted stages. As a general strategy,
both approaches need to be followed. The contribution of this paper is to raise
questions about the power of current tests of insertion and to show that another
well developed model that does not assume insertion passes those tests within
statistical limits. These results cannot be generalized to other kinds of tests of this
nature, but the results should serve as a serious warning that power cannot be
ignored.
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