Reprinted from JOURNAL OF MATHEMATICAL PSYCHOLOGY Vol. 21, No. 2, April 1980
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Note

A Note on Modeling Accumulation of Information
When the Rate of Accumulation Changes over Time

ROGER RATCLIFF

Dartmouth College, Hanover, New Hampshire 03755

This note presents the mathematics necessary to deal with accumulation of evidence
when the rate of evidence accumulation changes during the course of processing. Ac-
cumulation of evidence is modeled by a diffusion process, the continuous analog of the
random walk. The diffusion process has the advantage that a great deal of theory has
been developed for continuous variables, e.g., differential equations and integration as
opposed to difference equations and summation for discrete processes.

One psychological application is the recognition process (Ratcliff, 1978). In a typical
paradigm, subjects study a list of items and then are tested with single probe items to
which they must respond “old” if a probe was in the study list and “new” if it was not.
The diffusion process represents the accumulation of evidence (goodness-of-match) that
results from the comparison between a probe item and an item in memory. The drift
rate of the diffusion process represents the relatedness between the probe and a memory
item. To model the usual reaction time situation (information-controlled processing),
two absorbing boundaries are placed -2 units and z units of distance, respectively, from
the starting point of the walk. If the process reaches the upper boundary (at a, if z is the
starting point and 0 the lower boundary), then the process terminates with a match, If
the process reaches the lower boundary, then the process terminates with a nonmatch.
To model the response signal or deadline procedure (time-controlled processing), in
which subjects respond at an experimenter-determined time, evidence is accumulated
until the signal to respond is given. If the process is at a point above the starting point
of the process when the signal is given, then a match is produced; if the process is below
the starting point, then a nonmatch is produced.

The problem addressed in this note is what happens if the drift rate of the diffusion
process changes. There are two cases: First, if the drift rate remains constant up to some
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time ¢, and then changes to some new value at t; . Psychologically, this corresponds to
the situation in which different evidence becomes available at t; and the rate of accumula-
tion of evidence changes. Second, if the drift rate changes continuously as a function
of time. McClelland (1979) has recently presented a model of processes in cascade. In
this model, evidence can begin accumulating at stage  in the processing system before
stage 7 — 1 has terminated; thus it is usual for the rate of accumulation of evidence to
change as a function of time. This situation can be modeled using the diffusion process.

TIME-CONTROLLED PROCESSING: DISCRETE CHANGE IN DRIFT

In time-controlled processing, we make the assumptions that the diffusion process
is unrestricted and that the decision criterion is to respond “match” if the process is
above the starting point z at evaluation time and “nonmatch” otherwise. In an un-
restricted diffusion process, the probability density function h(x, ¢) at position x at time ¢
with drift £ and diffusion coefficient (variance in drift) s? is given by:

W, 1) = (“2#)1/2 exp(—H(x — = — £)21) (1)

given that the process started at position z at ¢ — 0 (initial condition A(x, 0) = §(x — 2)).
It is necessary to assume that the drift rate € has a distribution (i.e., there is a distribution
of probe-memory item relatedness (Ratcliff, 1978)). Assuming ¢ has a normal probability
density function n(x, ), the evidence, x, is distributed as

¥ 1) = [ b, 0) ntu, ) dg

@
= n(ut, (1(*t + H)72).

1
i

Let us assume that at time ¢, relatedness changes from u, to u, . There are two ways
this can happen: first, comparisons in the distribution can maintain their relative drifts,
for example, comparison with drift u, — 7 will have a new drift u, — n; or second,
comparisons can be randomly assigned new drift rates. For consistent drifts:

Y, 1) = n(ut, (t(t + s))1/2) 0<t<hy

= nlut + (0 — w) 0, (Pt + ) 1.

)

For nonconsistent drifts, we have to integrate over a starting value distribution of z
values, n(uyt; , (2,(n%; + $2))1/2) from (2), ie.,

3 t) = [ [ nts Pty + 0 e, 0] g, ), 1>,

4
= nugt + (uy — up) ty, (2% + (s2 — 2tP)t + 29712)172), @
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Consider two comparison processes, one matching with relatedness n(u, , 7), t < t; and
n(uy ,m), ¢ > t, and one nonmatching with relatedness 7(7, n). Then, using (3), we can
calculate a d’ measure of discriminability:

d' = u,t — vt
" (variance)!/?
— asy1
R
and ' ©)
g = %t + (y — )ty — 02
(variance)'/2
_ dasys + (disys — dasy) 1/t >4

(T -+ PO

where dggyy = (4, — v)mand dygys = (up — )/n. Practically there is often little difference
between the variance term for nonconsistent drifts [see Eq. (4)] and the variance term
for consistent drifts [see Eq. (3)], but this has to be determined for the parameter values
for the particular set of data to be fitted.

The formulas above allow nonmonotonic d’ response signal curves to be fitted and
parameters to be estimated for the time at which new information is available and for the
relative asymptotic d’ values for the two sets of information. The above formulas can be
easily extended to case where more than two sets of relatedness are involved (with more
than one discontinuity).

INFORMATION-CONTROLLED PROCESSING
As in the case of time-controlled processing, we assume that at time ¢, , relatedness

changes from #, to u, . The solution hinges on finding the distribution of nonterminated
processes at time ¢, p(x, t). Now, p(x, t) must satisfy the forward diffusion equation:

o _1.0p %
a =3 e ta (©)
subject to the boundary conditions
p(x, 0) = 3(x — 2) (M
and
pat)=p0,1)=0 t>0. ®)

To solve (6) we use the separation of variables technique by setting p(x, t) = X(x) T(t)
(see Cox & Miller, 1965, pp. 222-223). Thus

270 228 _ 1) 228D,

oT(t) _ 1

X(#) ot 2
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therefore,

1 oT@) _ 1 [l ,8X() ,oX(x) _
@) ot X(w) [i“ FIER ]‘ — ©)

Each side of the expression in (9) must equal a constant (chosen to be —\) because the
left-hand side is a function of ¢ alone and the right-hand side is a function of x alone
and the two sides must be equal for all values of ¢ and x. We find that using boundary
condition (8),

p(x, 1) = ¥ @, Mt sin T8 (10)
n=1 a
is a solution of (6) with
¢ 1,2 ninls
ke ad =5 (4 2T )- (11)

All that is required now is to find the coefficient a, using boundary condition (7). Equa-
tion (10) can be rewritten as a Fourier series for ¢ = 0

plx, 0) ek = i a, sin ( an )

n=1

Then by the Fourier inversion formula

a, = % f: e~ gin (—?) 8(x — 2) dx
(Churchill, 1963).
Thus
a, = %e"“ sin ( iidad )
and
B, 1) = e/t Y %sin( "ZE ) sin ( M) exp (— % (% + —”2;':82 ) ). (12)

n=1

An alternative to (12) can be obtained using the method of images (Cox & Miller,
1967, pp. 221-222). This method is often used in the solution of problems in electro-
magnetic theory. For example, in finding the electric field in a system consisting of an
electrical charge +-g at a point 4 with a conducting plane at position zero, the system
can be replaced by a system of two electrical charges, 4-gat a and —q at —a. The solution
to this new system is also a solution to the old system (see Reitz & Milford, 1962). By
analogy, it is possible to replace the system of a diffusion process, starting point (i.e.,
probability source at z) and one absorbing barrier at position a with a process with a
probability source at z and a probability sink at 2a — z. For the diffusion process with
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two absorbing barriers, sources are placed at points x, = 2na(n =0, £1, +2,...) with
strengths exp(£x/,/s%) and sinks at points %l = 2a — 2z — &, with strengths —exp(£xy/s?).
The required solution is given by:

1 e A — & — %, — &)’
s = g 5 [owe (B - 7255

X (0 —x—xp — ft)z)].

e (g 2 13

Equations (12) and (13) are alternate representations of the same function. Equation (12)
converges quickly for large values of and (13) converges quickly for small values of t.

Equations (12) and (13) were checked by comparing computed values with other
explicitly known values. For example, if @ becomes very large, the result approximates
that of the one-boundary diffusion process and if both boundaries are moved far away
from the starting point, the result approximates the unrestricted diffusion process (1).
Calculated numerical values were in close agreement with exact values.

To model processes in which the rate of evidence accumulation changes at some time
t;, (12) or (13) can be used as the starting distribution for a second diffusion process
with a new value of drift (see Fig. 1). For example, Ratcliff (1978, Eq. A12) provides an
expression for the first passage time distribution function, G(t, £), where ¢ is drift in
the diffusion process and G'is a function of the starting point = (as well as other parameters).
The first part of the distribution function for the overall two-component process (for
t < t,) can be found from G(t, £). The second part of the distribution function (for
t > t;) can be found using

Gt—ty,8) = f: Gt — 1y, H P, t)d  t>1

! Density of
1 terminated
processess

Density of non-

terminated
processess

Uy at ty

Fic. 1. An illustration of information-controlled processing in which the drift rate changes
at time ¢; .
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where z in the expression for G(t — ¢, , £) is replaced by 2'. In other words, the starting
value " in G(t — t,) is a distribution p(2’, t;) and by integrating over 2/, the first passage
time distribution G'(2 — ¢, , £) can be obtained for ¢ > t; (see Fig. 1).

T1iME-CONTROLLED PROCESSING: CONTINUOUS CHANGE IN DRIFT

The more general form of the diffusion equation, with drift and diffusion coefficient
functions of both position and time, is called the Kolmogorov equation. In a more
restricted case, if drift and the diffusion coefficient are functions of time alone, then a
solution for the unrestricted diffusion process can be obtained (Gnedenko, 1967, p. 368).
The Kolmogorov equation can be written as:

op(x, t) - op(x, 1) 1, . 0%(x,1)
o = _E(t)—ém—+§s(t)_53ﬂ—' (14)

If we make the change of variable:

x':x——ftf(k)dk
and

= [ sr) an

t fos() R

then (14) reduces to

P, 1) 18, t)
ot T2 ox?

Solving for p(x’, ¢') with the boundary condition P(x,0) = 8(x — 2) we find

P, t) = (ZT—ulTZjl—Eexp (_%(L_ZT*A)‘?‘)’ (15)

where A = f:, £(k) dk and w? = f(t, s%(k) dk. Equation (15) can be used instead of (1) to
derive d’ as a function of time as in (5) (for t < t;). Reed (1973) has used a very similar
model, with drift a negative exponential function of time to provide some impressive
fits to forgetting functions for response signal data from a recognition memory task.

It seems that information-controlled processing (with absorbing barriers) with time
variable drift parameters is intractable mathematically. Thus to model information-
controlled processes we should use approximations based on the discrete case (Eqgs. (12)
and (13)).

CoNcLUsION

In this note, I have addressed the problem of modeling accumulation of evidence in
a diffusion model when the rate of accumulation of evidence changes during the time
course of accumulation. I have provided relatively simple expressions in the case of
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time-controlled processing (e.g., the response signal procedure). The expressions derived
for information-controlled processing are somewhat more complex and require numerical
solutions. It appears that the response signal procedure (or some procedure in which
accuracy as a function of processing time can be obtained) will provide the best oppor-
tunity for testing and fitting the above kind of model. In the ordinary reaction time
situation, discrimination between processes will have to be done at the level of reaction
time distributions and it is often likely that data will not allow fine enough discrimination.
However, one results have been obtained for time-controlled processing, it may be
instructive to fit the model in an ordinary reaction time situation.

The results noted here may be more generally useful than indicated above. First, the
diffusion model may prove useful in modeling such paradigms as lexical priming
(McClelland, 1979) or tachistoscopic paradigms in which information is assumed to be
rapidly decaying from an iconic store (Rumelhart, 1970). Second, the diffusion process
may be useful as a continuous approximation to discrete processes (Cox & Miller, 1965).
Third, the diffusion model need not only apply to reaction time processes but may
apply to more general classification tasks in which random walk classification models
are appropriate.
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