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Techniques and models from cognitive psychology are being
used with increasing frequency in investigations of psychopathol-
ogy and clinical disorders (e.g., McFall, Treat, & Viken, 1997; Mc-
Nally & Reese, 2009; Treat & Dirks, 2007). These methods and
models play a significant role in elucidating the abnormal cog-
nitive processes that are associated with such disorders. In this
article we demonstrate how a theory of cognitive processing
can enhance cognitive-clinical interactions and lead to a better
understanding of the cognitive effects of psychopathologies like
depression and anxiety. The focus is on the use of sequential sam-
pling models to analyze data from two-choice response time (RT)
tasks. The article is structured as follows: We briefly review some
areas in which two-choice tasks have been employed to investi-
gate cognitive processing in anxiety and depression. We then show
through simulations and a simple lexical decision experiment how
a sequential sampling model, Ratcliff's diffusion model (Ratcliff,
1978; Ratcliff, Van Zandt, & McKoon, 1999), can improve analyses
of two-choice tasks by decomposing accuracy and RT distributions
into distinct components of processing. Application of the diffusion
model to a clinically relevant topic is then demonstrated through
the analysis of recognition memory data from subclinical partici-
pants with high- and low-trait anxiety to assess changes in decision
criteria that result from committing an error. The article concludes
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with discussion of areas of potential improvement for the applica-
tion of sampling models like the diffusion model to inform clinical
research.

1. Two-choice tasks and clinical research

The focus of this article is two-choice tasks to which sequential
sampling models can be applied. These tasks involve a fast (typ-
ically less than two seconds), one-process decision and the col-
lection of RTs and accuracy. This includes, but is not limited to,
discrimination (e.g., brightness or numerosity; Ratcliff & Rouder,
1998), recognition memory (Ratcliff, 1978; Ratcliff, Thapar, & McK-
oon, 2004; Spaniol, Voss, & Grady, 2008), lexical decision (Ratcliff,
Gomez, & McKoon, 2004), stop-signal (Verbruggen & Logan, 2009),
implicit association (Klauer, Voss, Schmitz, & Teige-Mocigemba,
2007) and perceptual matching (Ratcliff, 1981; Van Zandt, Colo-
nius, & Proctor, 2000). These tasks cover a range of decision types to
which sampling models can be applied, including yes/no, old/new,
same/different, categorization, two-alternative forced choice, and
response signal.

Within the realm of research on psychopathology and clin-
ical populations, two-choice tasks are commonly employed to
investigate processing differences between patients and healthy
controls. For example, these tasks have been instrumental in show-
ing that individuals with high levels of anxiety show preferen-
tial attention for threatening information (see Bar-Haim, Lamy,
Pergamin, Bakermans-Kranenburg, & van IJzendoorn, 2007, for a
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meta-analytic review). In a modified probe detection task, a threat-
ening word (e.g., cancer) and a neutral word (e.g., chair) are shown
at different locations on a screen, and one of the words is re-
placed by a probe that participants must detect. Anxious individu-
als show faster RTs when the probe replaces the threatening word
compared to the neutral word, suggesting that they preferentially
attend to threat (e.g., Mogg & Bradley, 1999; Mogg, Bradley, De
Bono, & Painter, 1997). Similar results have been demonstrated
with obsessive compulsive disorder (Lavy, van Oppen, & van den
Hout, 1994), posttraumatic stress disorder (McNally, Kaspi, Rie-
mann, & Zeitlin, 1998), social anxiety disorder (Rheingold, Herbert,
& Franklin, 2003), and panic disorder (McNally, Riemann, & Kim,
1990), suggesting that preferential processing of threat is common
to many anxiety disorders (see Bar-Haim et al., 2007). It is thought
that this bias for threat is involved in both the etiology and mainte-
nance of anxious states (Mathews, 1990; Mathews & Mackintosh,
1998), making it an important component of anxiety. Research in
this domain has led to the development of several models that ac-
count for the association between threat bias and anxiety (Bishop,
2007; Frewen, Dozois, Joanisse, & Neufeld, 2008; Mathews & Mack-
intosh, 1998; Mogg & Bradley, 1998; Weierich, Treat, & Holling-
worth, 2008).

Researchers using two-choice tasks to study depression have
found a slightly different pattern of processing differences.
Whereas high anxiety is associated with a bias to process threat-
ening information, depressive symptoms are more closely linked
with abnormal emotional processing. Nondepressed individuals
typically show a bias for positive over negative emotional informa-
tion, but depressed individuals either lack that advantage, leading
to unbiased processing of positive and negative emotional infor-
mation (Siegle, Granholm, Ingram, & Matt, 2001), or show a bias
for negative over positive emotional information (Power, Cameron,
& Dalgleish, 1996). Further, unlike high anxiety, depressive symp-
toms are associated with deficits on many cognitive tasks. De-
pressed patients have shown slower RTs and lower accuracy on
two-choice recognition memory tasks (Hilbert, Niederehe, & Kahn,
1976) and greater interference on Stroop tasks (Lemelin et al.,
1996).

Two-choice tasks have also been employed to assess the ef-
ficacy of antidepressants. In one study, patients taking the an-
tidepressant drug reboxetine were better at a simple two-choice
identification task than patients taking a placebo (Ferguson,
Wesnes, & Schwartz, 2003; see also Hindmarch, 1998), suggest-
ing that the antidepressant mitigated the processing deficit. A
recent study also showed that for healthy volunteers, reboxetine
increased processing of positive emotional words in a manner that
could potentially reverse negative biases in depression (Norbury,
MacKay, Cowen, Goodwin, & Harmer, 2008).

Other psychological disorders have been studied with two-
choice tasks, including obsessive compulsive disorder (Ruchsow
etal.,2005), schizophrenia (Williams & Hemsley, 1986), hypochon-
driasis (Lecci & Cohen, 2007), borderline personality disorder
(Nigg, Silk, Starvo, & Miller, 2005), and posttraumatic stress dis-
order (Masten et al., 2008). A complete review of the different
methodologies and findings from studies such as these is beyond
the scope of this article, but this sample illustrates the very active
domain of clinical research with two-choice tasks.

For each of the studies mentioned above, data analyses involved
comparisons of average RTs and/or accuracy values. Indeed, this
approach has served researchers well in studies of clinical disor-
ders and cognitive processing, as evidenced by the brief review
above. However, there are situations in which comparisons of RTs
or accuracy cannot sufficiently identify processing differences be-
tween groups or conditions. This problem can be overcome by us-
ing sequential sampling models to augment analyses of two-choice
tasks. Section 2 provides an overview of these models and the ways
in which they can improve analyses of two-choice tasks.
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Fig. 1. An illustration of the diffusion model. Panel A shows the total response
process, including encoding and response output. Panel B shows the diffusion
process for the decision component of the response process. Parameters of the
model are: a, boundary separation; z, starting point; T,., mean value of the
nondecision component of reaction time; 1, SD in drift across trials; s,, range of
the distribution of starting point (z) across trials; v, drift rate; po, proportion of
contaminants; and s, SD in variability in drift within trials..

2. Sequential sampling models

Sequential sampling models describe the processes involved
in making fast, two-choice decisions. The models were developed
to account for the entire data set associated with two-choice
paradigms, namely accuracy and the distributions of RTs for correct
and error responses. Several models have been developed in this
class, including the Linear Ballistic Accumulator model (Brown &
Heathcote, 2008), the Leaky Competing Accumulator model (Usher
& McClelland, 2001), the Poisson Counter model (Smith & Van
Zandt, 2000), and the Diffusion model (Ratcliff, 1978; Ratcliff et al.,
1999). We focus on Ratcliff's diffusion model because it has been
widely employed as an analytical tool (see Ratcliff & McKoon,
2008), and has been shown to fit behavioral data as well as or
better than competing models (Ratcliff & Smith, 2004). However,
the primary structure and components of the diffusion model are
found in various degrees in all of models in this class.

The diffusion model is a theory of simple, two-choice decisions.
The model assumes that noisy evidence is accumulated over time
until a criterial amount has been reached, at which point aresponse
is initiated. Fig. 1 shows a schematic of the model. Panel A shows
the entire response process. The stimulus is encoded (u), a decision
is reached (d), and the response is executed (w). The model does
not explain encoding or response execution, but it incorporates a
parameter, Ter, to account for the time these processes take (u + w
in Fig. 1A). The focus of the model is the diffusion-decision process,
shown in Panel B. In the model, noisy evidence is accumulated
from a starting point, z, to one of two boundaries, a or 0. The
two boundaries represent the two possible decisions, such as
yes/no, word/nonword, etc. Once the process reaches a boundary
the corresponding response is initiated. The inherent noise in the
accumulation of information, represented by the nonmonotonic
paths in Fig. 1B, produces the characteristic right skew of empirical
RT distributions.

The primary components of the model are boundary separation
(a), drift rate (v), starting point (z), and nondecision processing
(Ter). Each has a straightforward psychological interpretation.
The position of the starting point, z, indexes response bias. If an
individual is biased towards a response (e.g., through different
payoffs), their starting point will be closer to the corresponding
boundary, meaning that less evidence is required to make that
response. This will lead to faster and more probable responses
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at that boundary compared to the other. The separation between
the two boundaries, a, indexes response caution or speed/accuracy
settings. A wide boundary separation reflects a cautious response
style. In this case, the accumulation process will take longer to
reach a boundary, but it is less likely to hit the wrong boundary
by mistake, producing slow but accurate responses. Drift rate,
v, indexes the quality of evidence from the stimulus. If the
stimulus is easily classified, it will have a high rate of drift and
approach the correct boundary quickly, leading to fast and accurate
responses. The noise in the evidence accumulation, s, acts as a
scaling parameter of the model (i.e., if it were doubled, the other
parameters could be doubled to produce the same pattern of data),
and is set to a fixed value of .1.

There is variability in the values of some of these components
based on the assumption that they fluctuate from trial to trial in
the course of an experiment. Such variability is necessary for the
model to correctly account for the relative speeds of correct and
error responses. Eta is the across-trial variability in drift rate, s, is
across-trial variability in starting point, and s; is across-variability
in Ter. The model also includes an assumption about contaminants
(e.g., lapses in attention) and estimates the proportion of contam-
inant responses, p,. For the mathematical details of the diffusion
model, readers are directed to Ratcliff and Tuerlinckx (2002) or Rat-
cliff and Smith (2004).

3. Advantages of a diffusion model analysis

There are several advantages of the diffusion model over tra-
ditional analyses of RTs and/or accuracy. The first, and perhaps
the most important, advantage of the diffusion model stems from
its ability to decompose behavioral data into processing compo-
nents. The model can be fit to behavioral data to separate out the
different component values described above, allowing researchers
to compare values of response caution, response bias, nondecision
time, and stimulus evidence. With this approach researchers can
better identify the source(s) of differences between groups of sub-
jects. For example, older adults (60-90 year old) are often slower
than college students in two-choice tasks, which has been taken
by some to reflect a general decline or slowdown in processing
(e.g., Myerson, Ferraro, Hale, & Lima, 1992). However, Ratcliff, Tha-
par, and McKoon (2006) used the diffusion model to show that, in
tasks such as recognition memory and brightness discrimination,
older adults are slower because of longer nondecision time and
wider boundary separation (i.e., they are more cautious). Impor-
tantly, older adults did not have lower drift rates than young adults,
suggesting that they still acquire the same quality of information
from a stimulus. Thus there was no age-related impairment in dis-
crimination or recognition memory. The diffusion model allowed
a more detailed examination of the differences between older and
young adults, challenging the general slowing hypothesis and pro-
viding an alternative account of the data.

This approach can easily be extended to studies of psycho-
pathology. Suppose we performed an experiment with depressed
patients and healthy controls, and found that the patients were
slower overall (e.g., Lemelin, Baruch, Vincent, Everett, & Vincent,
1997, Pisljar, Pirtosek, Repovs, & Grgic, 2008; Rogers et al., 2000).
With the diffusion model, we could determine if the RT differ-
ence was due to more cautious responding (boundary separation),
poorer evidence from the stimulus (drift rates), or slower motor
response (nondecision time).

A detailed understanding of processing differences associated
with pathologies like depression can potentially lead to better as-
sessment and treatment. Targeted cognitive treatment has been
employed to reverse biased information processing and decrease
levels of anxiety or depression. In one study, individuals character-
ized by excessive cognitive worry were trained to selectively direct

attention away from threatening words (Hazen, Vasey, & Schmidt,
2009). Participants performed several sessions of a modified probe
discrimination task that included threat words paired with neu-
tral words. Importantly, the probe replaced the neutral word rather
than the threat word on almost every trial, so over time par-
ticipants were implicitly trained to attend away from the threat
words. This simple training regiment significantly reduced threat
bias and levels of anxiety and depression compared to a sham
training condition. In a related vein, Lang, Moulds, and Holmes
(2009) had participants watch a depressing film, then trained half
of the group to have a more positive appraisal of emotional events
and half to have a more negative appraisal. The group that was
trained with the positive emotional bias had fewer depressive in-
trusions and were less impacted by the negative film. Studies such
as these show that mitigating or reversing biased processing of in-
formation appears to be a promising treatment for depression and
anxiety. In this regard, detailed understanding of the relationship
between cognitive biases and psychopathology can lead to more
effective treatment.

By fitting RTs and accuracy jointly, the diffusion model can aid
with the identification of different types of bias. It is well known
that differences in accuracy or RTs can be due to discriminability
or response bias. For example, in a recognition memory task
individuals must determine whether test words were previously
studied or new. Suppose that one group of participants had more
hits than another (i.e., they correctly recognized more studied
words). This could reflect stronger memory for the first group, or
instead a bias to respond “old”. If participants in the first group
also responded “old” to many of the unstudied lures, it would
suggest the results were due to bias. Analyses of this sort benefit
greatly from the use of signal detection theory (SDT; Green &
Swets, 1974), which uses accuracy values from each condition
to distinguish between discriminability and bias. However, SDT
cannot differentiate between two types of bias that can produce
similar patterns of accuracy, response bias and memorial bias.
Response bias refers to a shift of the decision criterion, where
individuals require more or less evidence to make one of the
responses. This corresponds to the starting point, z, in the diffusion
model. Memorial bias refers to a shift in the memory-strength
distribution underlying the decision, where a class of stimuli
provide more or less evidence for the response. This corresponds
to the drift criterion in the diffusion model (a direct analog of the
criterion in SDT, see Ratcliff & McKoon, 2008), which essentially
reflects a shift in drift rates for each condition (e.g., the drift rate
for old items increases by the same amount that the drift rate
for new items decreases). Response biases and memorial biases
produce similar changes in accuracy, thus SDT cannot differentiate
between them. But by including RTs into the analysis, the diffusion
model can separate the effects of these biases and identify which
is responsible for the data (Spaniol et al., 2008; Voss, Rothermund,
& Brandtstadter, 2008).

This approach can be applied to studies of psychopathology.
Several studies have used affective decision tasks (e.g., “Is this word
threatening or not?”, “Is this picture emotionally positive or nega-
tive?”) to explore biases for threatening or emotional information
in individuals with anxiety or depression. In these tasks, partici-
pants with high anxiety are more likely to classify words as threat-
ening compared to low anxiety participants. Several studies have
analyzed this effect and concluded that it is simply a response bias
and does not reflect any differences in the threat value of the words
or pictures themselves (Becker & Rinck, 2004; Manguno-Mire, Con-
stans, & Geer, 2005; Windmann & Kruger, 1998). A diffusion model
analysis of such data could augment our understanding of this bias
by determining whether it is due to response bias, perceptual bias,
or both. Results of such a study could inform clinicians who wish
to employ cognitive training treatments similar to the ones pre-
viously discussed. If the tendency to classify items or events as
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threatening stemmed from a response bias, clinicians might focus
on training patients to overcome this bias by actively classifying
items as nonthreatening. If, on the other hand, the bias stemmed
from a perceptual bias, clinicians might train patients to associate
items with safety, thus reducing the threat value of the items.
Further, it is conceivable that these two types of bias are indica-
tive of different subtypes of anxiety, meaning that studies of this
sort could improve assessment, classification, and treatment.

The diffusion model can identify different decision components
because it utilizes all of the behavioral data. The model uses
accuracy and RT distributions for correct and error responses, so
all of the data are explained. In contrast, a comparison of mean RTs
does not account for potential differences in accuracy, and an SDT
analysis does not account for difference in RTs. Since each aspect
of the data is affected by the different components of the decision
process, each one contains useful information that should be used
to inform analyses.

The final advantage of the diffusion model that we explore in
this article involves the quality of evidence extracted from the
stimuli. Stimulus evidence refers to how strongly an item indicates
aresponse. In lexical decision, for example, participants must clas-
sify letter strings as words or nonwords. Commonly encountered
words, like tree, produce a strong lexical match and thus strong
evidence for the word response, whereas rare words, like aardvark,
produce a weak lexical match and thus weak evidence for the word
response. This difference in lexical evidence would be reflected by
faster RTs, higher accuracy, and higher drift rates for the common
words.

Stimulus evidence is often the primary focus of researchers em-
ploying two-choice tasks, and drift rates provide a more direct in-
dex of it than either RTs or accuracy. The reasoning is as follows:
RTs and accuracy are used to index stimulus evidence, but they are
both affected by the other components of the decision process. In-
dividual differences in decision components like boundary separa-
tion essentially add noise to RTs and accuracy because they do not
reflect differences in evidence strength. This decreases the sensi-
tivity of these measures when used to assess stimulus evidence.
In contrast, when the diffusion model is applied the drift rate pa-
rameter indexes stimulus evidence, and the effects of the other
components are separated into the corresponding parameters. In
other words, individual differences in components like boundary
separation affect RTs and accuracy, but not drift rates. As a result,
drift rates are better able to detect small differences in stimulus
evidence that might not be apparent with comparisons of RTs or
accuracy. This point is illustrated in Section 4.

4. Measures of stimulus evidence

We present the results from a simple lexical decision experi-
ment and a series of simulations that were designed to assess the
sensitivity of the dependent measures that can be used to assess
differences in stimulus evidence. Although lexical decision is used,
the results are meant to apply to two-choice tasks in general.

4.1. Experiment 1

Experiment 1 was a simple lexical decision task. Of primary in-
terest is how well each dependent measure of stimulus evidence,
drift rates, RTs, and accuracy, truly reflects the lexical advantage
for high frequency words over low frequency words. In the ex-
periment, different components of the decision process were ma-
nipulated through instructions to demonstrate how the dependent
measures are affected. Separate groups of participants were given
either speed/accuracy instructions or response bias (e.g., more
words than nonwords) instructions. With this design, we can as-
sess how robust each measure is against the effects of instruc-
tion, which should not affect stimulus evidence, and how well each
measure captures the lexical advantage of high frequency words.

The effects of speed/accuracy and bias instructions have been
explored previously with the diffusion model (e.g., Ratcliff, 1985;
Ratcliff & Rouder, 1998; Voss, Rothermund, & Voss, 2004; Wagen-
makers, Ratcliff, Gomez, & McKoon, 2008), but to our knowledge no
one has explored the effects of these instructions on within-subject
comparisons of stimulus evidence. The results of this experiment
are not directly related to research on psychopathology but are
meant to illustrate a generic situation in which researchers are in-
terested in a processing difference between two types of stimuli.

Procedure. A basic lexical decision task was performed in which
participants were shown single strings of letters and asked to
determine whether they were words or not. The stimuli were
displayed on a CRT of a Pentium IV class PC, and RTs and accuracy
were collected from the keyboard. Participants were told to press
the “/” key if the string was a word and the “z” key if it was
a nonword. They were originally instructed to respond quickly
and accurately. Letter strings were presented until a response was
made, with a 200 ms interval before presentation of the next
string. To discourage guessing, the word “ERROR” was displayed
for 750 ms after an incorrect response. Participants first completed
a practice block of 30 words and 30 nonwords.

Participants in the speed/accuracy condition were told to
consider the pace at which they performed the practice block to be
their normal pace. For each subsequent block they were instructed
to go at their normal pace, or to emphasize speed or emphasize
accuracy. They were also informed that emphasizing speed might
lead to more errors, and emphasizing accuracy might lead to
slower responses. At the beginning of each block, participants were
informed whether it was a speed, accuracy, or normal pace block.
Participants completed six blocks of each type in random order.
Each block consisted of 42 nonwords and 42 words, the latter
of which were split into half high frequency words and half low
frequency words.

For participants in the bias condition, blocks of trials were con-
structed that contained different proportions of words and non-
words. After completing the practice block, subjects were informed
that some blocks would contain more words than nonwords, some
more nonwords than words, and some an even number of words
and nonwords. At the beginning of each block, subjects were in-
formed that it would be a “word,” “nonword,” or “even” block.
Word blocks contained 60 words (30 each of high and low fre-
quency) and 24 nonwords. Nonword blocks contained 60 non-
words, and 24 words (12 each of high and low frequency). Even
blocks contained 42 words (21 each of high and low frequency)
and 42 nonwords. Subjects completed 6 of each block in random
order, for a total of 18 blocks.

Participants. Ohio State University students completed the experi-
ment for credit in an introductory psychology course. There were
18 participants that received speed/accuracy instructions and 18
participants that received bias instructions.

Stimuli. The stimuli were high and low frequency words and
nonwords. The high frequency word pool consisted of 866 words
with frequencies from 78 to 10,600 per million (mean 287.49,
SD = 476; Kucera & Francis, 1967). The low frequency word pool
consisted of 899 low frequency words with frequencies of 4 and
5 per million (mean 4.41, SD = 0.17). Nonwords were created
from a separate word pool by randomly replacing all of the vowels
with other vowels (except for u after q), producing pronounceable
nonwords. Words and nonwords were randomly chosen from each
pool without replacement for each participant.

Model Fitting. All responses faster than 300 ms or slower than 3 s
were discarded (less than .6% of the total data). The model was fit to
each participant’s data using a X> minimization routine (for other
methods, see Ratcliff & Tuerlinckx, 2002; Voss et al., 2004; Voss &
Voss, 2007). The data entered into the routine were the number
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Table 1
Best fitting parameter values from Experiment 1.
a Z/a Ter n Sz St Do UHF ULF Unonword X2 (23)
Instruction
Speed 0.104 0.506 0.415 0.049 0.072 0.175 0.002 0.384 0.152 —0.224 45.1(16)
(.02) (.05) (.04) (.06) (.02) (.05) (.01) (.10) (.06) (.06)
Normal 0.133 0.482 0.453 0.135 0.047 0.178 0.001 0.410 0.193 —0.245 38.8(12)
(.02) (.05) (.03) (.08) (.04) (.05) (.01) (.12) (.06) (.08)
S 0.156 0.495 0.485 0.09 0.061 0.179 0.008 0.387 0.189 —0.253 39.6(19)
(.04) (.04) (.07) (.06) (.05) (.08) (.01) (.12) (.07) (.06)
Biased-word 0.133 0.614 0.417 0.057 0.041 0.173 0.001 0.392 0.152 —0.231 41.7 (14)
(.03) (.05) (.04) (.06) (.04) (.05) (.01) (.13) (.05) (.06)
Neutral 0.141 0.518 0.434 0.101 0.060 0.174 0.002 0.457 0.179 —0.238 43.1(21)
(.04) (.05) (.03) (.08) (.05) (.07) (.01) (.17) (.09) (.08)
Biased-nonword 0.131 0.341 0.439 0.067 0.063 0.169 0.001 0.477 0.216 —0.221 40.6 (17)
(.04) (.07) (.03) (.06) (.03) (.06) (.01) (.15) (.09) (.08)

Note. Parameter values are averages across participants (SDs in parenthesis). a = boundary separation; z/a = position of starting point relative to the boundaries (values
above .5 indicate bias to respond “word” and values below .5 indicate bias to respond “nonword”); Ter = nondecision component; n= variability in drift across trials;
s, = variability in starting point; s, = variability in nondecision component; p, = probability of outlier responses, vyr = drift rate for high frequency words; v;r = drift rate

for low frequency words; vponwora = drift rate for nonwords.

Table 2
Behavioral data averaged across participants for Experiment 1.

Speed/Acc instruction Mean RTs Bias Instruction Mean RTs
Correct Error Acc Correct Error Acc

Speed block Word-bias block

HE 531 470 .886 HF 558 571 .985
(45) (84) (.08) (64) (231) (.01)

LE 605 562 723 LE 696 783 .884
(65) (92) (.09) (136) (196) (.05)

N 604 547 .859 e 752 634 .874
(71) (96) (.06) (156) (111) (.07)

Normal block Even block

HE 610 546 951 HF 609 555 .957
(52) (219) (.04) (75) (101) (.03)

LF 714 742 831 LF 752 741 797
(98) (159) (.07) (129) (213) (.08)

Nonword 715 772 .906 Nonword 722 792 915
(93) (190) (.05) (122) (340) (.05)

Accuracy block Nonword-bias block

HF 698 593 971 HF 633 478 923
(95) (342) (.03) (66) (201) (.05)

LE 824 872 .848 LF 748 629 731
(135) (239) (.08) (138) (143) (.12)

Nonword 815 923 952 Nonword 654 787 .956
(132) (265) (.03) (117) (208) (.02)

Note. Standard deviations are shown in parenthesis. HF = high frequency words; LF = low frequency words; Acc = accuracy.

of observations, accuracy, and correct and error RT distributions
for each condition. All data were fit simultaneously. The RT
distributions were approximated by the .1, .3, .5 (median), .7,
and .9 quantiles of each distribution, providing a summary of
the distribution shape that is robust against the effects of outlier
responses (see Ratcliff & Tuerlinckx, 2002, for justification). For a
given set of parameter values, the predicted quantiles from the
diffusion model are compared against the empirical quantiles,
producing a X? value. The parameters are then adjusted using a
SIMPLEX routine to minimize this value. For example, suppose
a participant had accuracy of 88% and .1 and .3 quantiles of the
RT distribution for correct responses of 440 ms and 480 ms,
respectively. This means that 17.6% (.3 — .1 % .88) of the responses
for that condition fall between 440 ms and 480 ms. This value is
compared against the predicted value from the diffusion model,
and the difference is minimized through parameter adjustment.
Each block type (e.g., speed, normal, or accuracy) was fit in-
dependently to allow the parameters to capture changes in cri-
teria. The average parameter values and X? values from the fit-
ting routines are shown in Table 1. The degrees of freedom for
X? value are given by (K*11)-M, where K is the number of con-
ditions and M is the number of free parameters. The obtained X?

values were all larger than the critical value (35), showing sig-
nificant misses between the model and the data. However, be-
cause the sensitivity of the X? increases with the number of obser-
vations, even a small deviation would produce significant values
(see Ratcliff, Thapar, & McKoon, 2004). Overall, the fit quality was
comparable to previous applications of the model (Ratcliff, Thapar,
Gomez, & McKoon, 2004; White, Ratcliff, Vasey, & McKoon, 2009)
and captured the data well. Inspection of the model predictions
from the best fitting parameters (not presented) showed that the
prediction errors were small and symmetrically distributed around
0 (see White, Ratcliff, Vasey, & McKoon, in revision, for more
details).

4.2. Results

The best fitting diffusion model parameters and behavioral
data averaged across participants are shown in Tables 1 and 2,
respectively. The data suggest that the instructions were effective.
With speed/accuracy instructions, mean RTs for each condition
were smallest for speed blocks, larger for normal blocks, and
largest for accuracy blocks. Accuracy values showed the opposite
pattern. With bias instructions, responses were fastest and most
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Fig. 2. Results from Experiment 1 for speed/accuracy instructions. The top panel shows the word frequency effect, defined as the difference between high and low frequency
words for each measure. The bottom panel shows the effect sizes (from Cohen’s d) from the ANOVAs for each measure. Error bars are 2 SEs.

probable when participants were biased to that response, and
slowest and least probable when they were biased to the opposite
response.

To assess the robustness and sensitivity of the dependent mea-
sures of lexical evidence, repeated measures ANOVAs were per-
formed with frequency (high, low) and instruction (speed, normal,
accuracy, or word, neutral, nonword) as within factors. Figs. 2 and
3 show the data and the effect sizes for each comparison. The ideal
dependent measure would reflect only differences in lexical pro-
cessing, which would be reflected by a large main effect of fre-
quency, but no effect of instruction and no interaction between
frequency and instruction. Repeated measures ANOVAs were also
performed with instruction as the within factor on boundary sep-
aration (a) and the relative starting point (z/a) to assess how well
they track the effects of instruction. Table 3 shows the results of
the ANOVAs.

For speed/accuracy instructions, the effect of word frequency
was largest for drift rates, followed by accuracy and RTs. Both
RTs and accuracy comparisons showed significant main effects
of the speed/accuracy instructions and significant interactions
between frequency and instruction, whereas drift rates did not.
The RT difference between high and low frequency words was
largest for the accuracy blocks, followed by the normal and speed
blocks, whereas the opposite was found for accuracy (see Fig. 2). In
contrast, the drift rate difference between high and low frequency
words did not reliably vary as a function of instruction. Instead, the
effects of instruction were reflected in the diffusion model analysis
by a large main effect of instruction for boundary separation (a).

The results for the bias instructions were similar and are shown
in Fig. 3. Again, the main effect of word frequency was largest
for drift rates, followed by accuracy and RTs. All three measures
showed significant effects of the bias instructions, though drift
rates were least affected. The interaction between instruction
and word frequency was significant for accuracy and marginally

significant for RTs, but not for drift rates. As Fig. 3 shows, the effects
of response bias were reflected in the diffusion model analysis by a
large main effect of instruction for the relative starting point (z/a).

These results show that drift rates are more sensitive to stim-
ulus evidence and less affected by speed/accuracy and response
bias instructions compared to accuracy and mean RTs. Importantly,
these were within-subject comparisons, showing that the effects of
response criteria on RTs and accuracy cannot be completely elim-
inated by using a participant as their own baseline.

4.3. Previous applications of the diffusion model to study psy-
chopathology

Although drift rates were most sensitive to the word frequency
effect in the above experiment, the effect sizes were quite large,
meaning that all three measures showed a reliable difference be-
tween the conditions. However, in situations with small effect sizes
the extra sensitivity of the drift rates can be critical. We showed
this recently by using the diffusion model to analyze lexical
decision data from high- and low-anxious participants. As previ-
ously mentioned, it is well established that high-anxious individu-
als show biased processing of threat (e.g., Fox, 1993). Accordingly,
it was predicted that they should be faster at identifying threat
words compared to neutral words in lexical decision. However,
several studies using RTs as dependent measures failed to find such
an advantage (Hill & Kemp-Wheeler, 1989; MacLeod & Mathews,
1991; Mathews & Milroy, 1994). The failure to find threat bias in
this task was taken to support the hypothesis that threat bias only
occurs when there are multiple inputs competing for attention,
a condition which the lexical decision task lacks (see MacLeod &
Mathews, 1991).

Several models have been formulated to explain preferential
processing of threatening information in anxious individuals. In
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Table 3
ANOVA results from Experiment 1.
Speed/Accuracy instruction Accuracy Mean RT Drift rates a z/a
. . F(1,17) =97.9 F(1,17) = 66.8 F(1,17) = 118.5 - -
Main effect: Word frequency < .001 p < .001 p < .001
Main effect: Instruction F@2,34) =55.2 F(2,34) =595 F(2,34) = 1.08 F(2,34) =76.3 F(2,347) = 1.33
p < .001 p < .001 ns p < .001 ns
. F(2,34) =3.32 F(2,34) =6.8 F(2,34) = 1.16 - -
Interaction p=.048 p = .003 -
Bias instruction
. . F(1,17) = 102.8 F(1,17) =445 F(1,17) = 135.9 - -
Main effect: Word frequency p < .001 P < .001 P < .001
. . . F(2,34) = 30.4 F(2,34) = 40.9 F(2,34) = 4.45 F(2,34) =1.2 F(2,347) = 107.5
Main effect: Instruction < 001 p < 001 p= 021 s p < 001
. F(2,34) = 19.8 F(2,34) = 2.67 F(2,34) = 0.86 = =
Interaction p < .001 p=.083 -
Note. a = boundary separation; z/a= position of starting point relative to the boundaries.
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Fig. 3. Results from Experiment 1 for response bias instructions. The top panel shows the word frequency effect, defined as the difference between high and low frequency
words for each measure. Word refers to blocks with more words than nonwords, nonword refers to blocks with more nonwords, and even refers to blocks with an even
number of words and nonwords. The bottom panel shows the effect sizes (from Cohen’s d) from the ANOVAs for each measure. Error bars are 2 SEs.

relation to the diffusion model, these models provide a descrip-
tive account of why anxious individuals have facilitated process-
ing (i.e., higher drift rates) for threatening items compared to
nonthreatening items. Many of these models have been adjusted,
explicitly or implicitly, to account for the null findings from lex-
ical decision tasks and the role of processing competition among
inputs (e.g., Bishop, 2007; Mathews & Mackintosh, 1998). How-
ever, in their simplest form many of these models still predict
biased processing of threat, regardless of whether there is
more than one input to compete for attention (see White
et al, in revision). Thus we hypothesized that although
input competition might magnify the effect of the threat bias, mak-
ing it easier to detect, there could still be small effects of threat
bias without competition. To test this, individuals with high- and
low-trait anxiety performed a single-string lexical decision task
(without input competition) with threatening and matched

nonthreatening words presented among many neutral fillers.
Threat bias was defined as an advantage for the threatening words
over the nonthreatening words (i.e., higher accuracy, higher drift
rates, or faster RTs). Across three separate subject groups, the
behavioral measures showed only weak, nonsignificant trends
hinting at a threat bias for anxious participants. In contrast, the
diffusion model analysis showed a threat bias for high-anxious par-
ticipants that replicated with each participant group (White et al.,
in revision). These results challenge the hypothesis that process-
ing competition is necessary to demonstrate threat bias in anxious
individuals, allowing for more parsimonious models of anxiety.
The previous study illustrates a situation in which the diffu-
sion model advanced our understanding of psychopathology, but
there has also been at least one instance in which a study of psy-
chopathology advanced our understanding and use of the diffusion
model itself. We previously used the diffusion model to investigate



46 C.N. White et al. / Journal of Mathematical Psychology 54 (2010) 39-52

Table 4
Simulated and recovered parameter values from the diffusion model and effect sizes from between-condition comparisons.
a 4 Ter n Sz St Do Unonthr Uthreat Ufiller Vnonword X2 (33)
Simulation value 0.14 0.07 0.45 0.10 0.06 0.20 0.001 0.27 0.33 0.30 —0.30
(.03) (.01) (.03)
Recovered 860 total obs 0.141 0.070 0.456 0.128 0.068 0.198 0.003 0.306 0.355 0.338 —0.338 28.7
(.047) (.023) (.047) (.062) (.050) (.043) (.007) (.093) (.101) (.078) (.086) (11.7)
Recovered 120 total obs 0.188 0.092 0.458 0.173 0.053 0.220 0.001 0.370 0.441 0.400 —0.411 20.79
(.075) (.038) (.058) (.116) (.062) (.078) (.016) (.129) (.152) (.145) (.175) (15.3)
Effect size (d) Mean RT Accuracy Drift rate (120 obs) Drift rate (860 obs)
Between 1.64(.87) 1.42 (.67) 1.82 (.64) 2.86 (.97)
Within 2.76 (.85) 2.10(.83) 2.93(1.12) 3.42(1.16)

Note. Recovered values are averages across simulated subjects (SDs in parenthesis). “860 total obs” indicates that there were 400 observations in each filler condition;
120 total obs” indicates that there were only 30 observations in each (see text for details). a= boundary separation; z = starting point; Ter= nondecision component; n=
variability in drift across trials; s, = variability in starting point; s,= variability in nondecision component; p,= probability of outlier responses, v = drift rate for each of
the following conditions: threat words (threat), nonthreat words (nonthr), filler words (filler), and nonwords (nonword); d= effect size of comparison between threat and

nonthreat words (from within or between-subjects comparisons).

emotional processing in dysphoric (i.e., moderately high levels of
depressive symptoms) and nondysphoric college students (White
et al., 2009). The goal was to assess differences in memory and lex-
ical processing of positive and negative emotional words, which
were presented among many neutral filler words. However, the
emotional word pools used in the experiments only contained 30
words each. This left relatively few observations (especially for er-
rors) to use in fitting the model, which would result in noisy param-
eter estimates. To remedy this, the model was fit to all conditions
simultaneously, including the neutral filler conditions with hun-
dreds of observations. The only parameter that was allowed to vary
across condition was drift rate. Estimates for the other parameters,
like nondecision time and boundary separation, were weighted
by the number of observations for each condition. In this man-
ner the filler conditions with many observations were used to con-
strain the fitting process, allowing the drift rates for the emotional
words to be better estimated. In other words, the drift rates for
the positive and negative emotional words were estimated based
on boundary separation and nondecision estimates that were
derived mostly from the filler conditions. The results of three
experiments showed a bias for positive emotional words in the
nondysphoric participants, but not in the dysphoric participants
(White et al., 2009), consistent with previous research (Bradley &
Mathews, 1983; Matt, Vazquez, & Campbell, 1992). Importantly,
this difference in emotional bias was not significant when the dif-
fusion model was fit only to the emotional conditions with few
observations, nor was it significant in comparisons of RTs or ac-
curacy. Since there are often a limited number of critical stimuli
for use in studies of psychopathology, this approach provides a
method for increasing sensitivity without requiring more critical
stimuli. Next we present several simulations that were designed to
illustrate this technique and the advantages of the diffusion model
described above.

4.4. Simulations

There are two main goals of these simulations. The first is
to demonstrate how filler conditions with a large number of
observations can improve fits to conditions with relatively few
observations (Ratcliff, 2008; White et al., 2009). The second goal
is to show how each dependent measure, drift rates, accuracy, and
RTs, is affected by individual differences in response components.
In line with the work reviewed above, we simulated data from
the diffusion model with parameter values similar to those
obtained in a lexical decision experiment (White et al., in revision).
The simulations were designed to reflect an experiment where
a group of participants with high anxiety show a processing
difference between threatening and nonthreatening words. There

were four conditions in the simulated experiment: threatening
words, nonthreatening words, filler words, and filler nonwords.
Importantly, the simulated conditions differed in the number of
observations to reflect situations with a limited number of critical
stimuli. The threat/nonthreat conditions had 30 observations each,
whereas the filler conditions had 400 observations each. The
total number of observations (860) reflects the number that
could be obtained in a 45 min experiment. We set the drift
rates in the simulations to reflect an advantage for the threat
words over the nonthreat words. The drift rates were 0.33 for
threat words, 0.27 for nonthreat words, 0.30 for filler words, and
—0.30 for nonwords (the negative value indicates response at the
bottom boundary). The remaining parameter values are shown
in Table 4. In practice, there are differences across individuals
in response caution, nondecision time, and response bias, so
values of these components were drawn from normal distributions
(means and standard deviations shown in Table 4) for 150
simulated subjects. The range of values chosen for this simulation
was taken from the same experiment as the simulation values
(White et al., in revision). In real experiments, drift rates would
vary across participants as well, but they were kept constant in
these simulations to focus on the effects of the other response
components.

4.4.1. Using filler conditions to constrain fits

To assess the benefit of including the filler conditions with
many observations, the diffusion model was fit to the simulated
data in two ways. In one set of fits, the filler conditions only had
30 observations each (120 total), so each condition had relatively
few observations. In the other set of fits, all of the observations
were used to constrain the model, so the filler conditions had 400
observations each (860 total). When fitting each set of simulated
data, only drift rate was allowed to vary between conditions. The
contribution of each condition to the model fits was weighted by
the number of observations in that condition, as described above.
Thus in the fits with 860 total observations, the filler words and
nonwords with 400 observations each contributed heavily to the
estimates for boundary separation, nondecision time, response
bias, and the variability parameters. The threat/nonthreat data
with only 30 observations each determined the drift rates for
the respective conditions, but did not greatly affect the estimates
for the other parameters. Conversely, in the fits with only 120
observations, each condition contributed equally to the parameter
estimation. The simulated and recovered parameter values are
shown in the top portion of Table 4.

For the model fits with only 120 total observations, the esti-
mates for q, eta, and the drift rates were too large (z was also in-
flated, but it remained fairly stable relative to a). The inflation of the
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parameter estimates occurred because the small number of obser-
vations per condition meant that many simulated subjects had too
few errors to properly constrain the fits of the model. With fewer
than 5 errors in a condition, the quantiles for the error RTs for that
condition cannot be accurately estimated. As a result, the variabil-
ity components tend to be overestimated, leading to larger com-
ponent estimates to compensate (Ratcliff & Tuerlinckx, 2002). This
problem is most pronounced in tasks with high accuracy like lexi-
cal decision. Interestingly, although the drift rate estimates were
inflated, the difference between the threat/nonthreat conditions
appears relatively consistent with the difference used in the simu-
lations.

In contrast, the model fits with 860 total observations accu-
rately recovered the parameter values that were used to gen-
erate the data (within one standard deviation). Importantly, the
drift rates for the threat/nonthreat conditions were accurately es-
timated, even though there were still relatively few observations
in those conditions. With the data for all four conditions fit simul-
taneously, the filler conditions with 400 observations constrained
the parameter values for all of the components other than the drift
rates for the threat/nonthreat conditions. Consequently, the drift
rates for these conditions were accurately estimated because the
other decision components were mostly determined by the other
responses.

Using the constraints from large-n conditions on parameter
estimates for small-n conditions is an important step forward in
application of the diffusion model. The constraints allow the model
to estimate drift rates for conditions that require low numbers
of observations, increasing the number of situations in which
the model can be applied. The discovery of this approach was
the direct result of research using the diffusion model to study
psychopathology, and researchers in that domain are most likely
to benefit from it.

4.4.2. Sensitivity of dependent measures

The other aim of the simulations was to show the different sen-
sitivities of the dependent measures used to assess stimulus evi-
dence, reinforcing the results from the lexical decision experiment
reported above. We compared the measures that could be used to
detect the difference between threat and nonthreat words: drift
rates, mean RTs, and accuracy. Although 150 subjects were simu-
lated, studies with patient populations are often limited in sample
size, so 30 simulated subjects were randomly sampled from the
total pool. For each sample, drift rates, predicted mean RTs, and
predicted mean accuracy values for the threat and nonthreat con-
ditions were calculated and then submitted to t-tests (both within
and between). This process was repeated 2000 times (with replace-
ment) to ensure stable results. The bottom portion of Table 4 shows
the mean effect size (from Cohen'’s d) for each measure. Consistent
with the results from Experiment 1, the difference between threat
and nonthreat words was better detected by the drift rates than by
the RT means or accuracy. This difference in sensitivity is highly
reliable. For the between-subject comparisons, the 95% confidence
intervals on the advantage of drift rates (860 obs.) compared to ac-
curacy (in units of Cohen’s d) are 1.26-1.62 for between-subject
tests and 1.11-1.53 for within, and the interval for drift rates com-
pared to mean RTs is .98-1.46 for between and .58-.86 for within.
Drift rates are better able to capture the difference because they are
determined by the full set of data for each condition, and because
between-subject differences in response criteria are absorbed into
the other components. Consistent with the results of Experiment
1, this was true even for within-subject comparisons.

4.4.3. Detecting differences between groups
The final simulation built on the previous one and was designed
to mimic a full experimental situation where researchers are trying

to detect processing differences between groups. The method was
the same as above, except in this case data were simulated for
two separate groups. In this simulation, one group, which we will
denote as the high anxiety group, had a moderate advantage for
threat words over nonthreatening words (i.e., threat bias), whereas
the other group (low anxiety) had only a small advantage for threat
words. Thus high anxiety is associated with a larger threat bias than
low anxiety. The goal of the simulation was to show how well each
measure detected this difference between the groups.

Table 5 shows the parameter values that were used to simulate
the data. For the high anxiety group, the values were the same
as used in the previous simulations, with a higher drift rate for
threat (.33) compared to nonthreat words (.27). For the low anxiety
group, there was only a small advantage for threat words (.28)
over nonthreat words (.26). All of the other parameter values
were the same as in the previous simulation, except that across-
subject variability in drift rate was incorporated. Thus, in this set
of simulations there were individual differences in q, Ter, z/a, and
v, which reflects a more realistic experimental situation than the
previous simulation that did not include variability in drift rates
across simulated subjects.

The procedure was as follows: data were simulated for 150
subjects in each group, then the diffusion model was fit back
to the simulated data (using all 860 observations). Out of the
total set of simulated subjects, 20 were chosen from each anxiety
group. Then, for recovered drift rates, simulated accuracy values,
and simulated mean RTs, a mixed ANOVA was performed with
condition (threat, nonthreat) as the within factor and group
(high anxiety, low anxiety) as the between factor. This process
was repeated 2000 times with replacement. The values for each
measure are shown at the bottom of Table 5. The primary focus
is on the interaction term of the ANOVA, which would be used
to detect differential threat bias between the anxiety groups. For
each run of the process, we recorded the p-value of the interaction
and calculated the percentage of runs that showed a significant
interaction (p < .05) for each dependent measure. Drift rates
detected the true difference 83.8% of the time, compared to 57.2%
for RTs and 38.1% for accuracy values.! Thus with relatively small
differences between groups, mean RTs or accuracy values can be
too insensitive to detect the difference.

These simulations reinforce the experimental work reviewed
above. When the diffusion model provides an adequate account of
the behavioral data, drift rates are more sensitive than accuracy
or RTs in detecting differences between conditions. Further, the
inclusion of filler conditions with many observations can improve
fit quality for conditions with few observations. Since research on
psychopathology often involves small effects and a limited number
of critical stimuli, the diffusion model provides a promising
alternative to analyses of RTs or accuracy. Next we present a new
analysis in which the diffusion model is used to assess differences
between individuals with high- and low-trait anxiety.

5. Experiment 2: Anxiety and error reactivity

Experiment 2 demonstrates an approach to fitting the diffusion
model to compare processing between two groups of participants,

1 The advantage of RTs over accuracy in these simulations is due to ceiling effects.
In Experiment 1, accuracy was more sensitive to the word frequency effect because
accuracy for low frequency words was low enough that ceiling effects were reduced.
To show this, we repeated the between-group simulation with lower values of
drift for threat and nonthreat words. The threat and nonthreat drift rates were .16
and .10, respectively, for the high anxiety group, and .12 and .10 for the low anxiety
group. With this simulation, the percentage of detected group differences was 69%
for drift rates, 32% for accuracy, and 15% for RTs, indicating that accuracy values are
more sensitive than RTs unless there are ceiling effects.
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Table 5
Results from group simulations.
a z Ter n Sz St Do Unonthr Uthreat Ufiller Vnonword X2
Low anxiety: Simulation value 0.14 0.07 0.45 0.10 0.06 0.20 0.001 0.26 0.28 0.30 —0.30
y: (.03) (.01) (.03) (.07) (.07) (.07) (.07)
Recovered value 0.145 0.072 0.456 0.118 0.064 0.206 0.003 0.267 0.286 0.321 —0.330 30.3
(.04) (.02) (.04) (.06) (.04) (.03) (01) (11) (11) (.11) (.10) (14)
T T o —_— 0.14 0.07 0.45 0.10 0.06 0.20 0.001 0.27 0.33 0.30 —0.30
d uE (.03) (01) (.03) (.07) (.07) (.07) (.07)
R o 0.149 0.075 0.451 0.121 0.067 0.206 0.003 0.299 0.363 0.333 —0.331 29.2
(.04) (.02) (.04) (.06) (.05) (.03) (.01) (.12) (14) (.10) (11) (12)
Low anxiety High anxiety % Detection of between-group difference
Dependent measure Threat Nonthreat Threat Nonthreat
701 710 668 703 57.2
DeauR (117) (108) (106) (128)
—— 919 909 .950 924 38.1
v (.07) (.09) (.06) (.09)
Drift rates 0.286 0.267 0.363 0.299 83.8
(.11) (.11) (.14) (.12)

Note. Recovered values are averages across simulated subjects (SDs in parenthesis). Detection of between-group differences refers to the percentage of times (out of each
sample of 20 participants) that each measure showed a significant difference between the high and low anxiety groups (see text for details). a = boundary separation;
z = starting point; Ter = nondecision component; n = variability in drift across trials; s,= variability in starting point; s, = variability in nondecision component;
Do = probability of outlier responses; v = drift rate for each of the following conditions: threatening words (threat), nonthreatening words (nonthr), filler words (filler), and

nonwords (nonword).

those with high- or low-trait anxiety. The experiment and
simulations discussed above focused primarily on the advantage
of drift rates as measures of stimulus evidence, but Experiment 2
focuses on how the diffusion model can aid researchers who are
more interested in decision criteria. We focus on response style
following correct and error responses in a recognition memory
task. Individuals have been shown to have slower responses after
an error than after a correct response (e.g., Hajcak, McDonald, &
Simons, 2003), and individuals with high negative affect, which is
common to both depression and anxiety, show a larger slowdown
after errors than individuals with low negative affect (Robinson,
Meier, Wilkowski, & Ode, 2007). This slowdown is thought to
reflect increased caution so as to avoid the negative affect
associated with additional negative feedback (Holroyd & Coles,
2002). The diffusion model allows us to test this directly, as any
differences in caution should be reflected by increased boundary
separation.

5.1. Method

Participants performed a recognition memory task in which
they studied lists of words and then had to decide “old” or “new”
according to whether test words had been studied or not. They
were instructed to press the “/” key if the word had been studied
and the “z” if it had not. Each participant completed 12 study lists
of 26 words and 12 test lists of 52 words (half old and half new).
Study words were presented for 1200 ms, and test words were
shown until a response was made. Participants were instructed to
respond quickly and accurately. After an incorrect response, the
word “ERROR” was displayed for 750 ms before the next trial.

5.2. Stimuli

The stimuli were drawn randomly without replacement from
the same pools of high and low frequency words as in Experiment
1. For the analyses presented here all conditions were collapsed
into four conditions: old items after a correct response, new items
after a correct response, old items after an error, and new items
after an error.

5.3. Measure

The Spielberger Trait Anxiety Inventory (STAI; Spielberger,
1985) was used to assess anxiety level. This 20 item self-report

Table 6
Behavioral data from Experiment 2 averaged across participants.
Low anxiety High anxiety
Targets Lures Targets Lures
Mean correct RT
Post-correct 744 (92) 772 (114) 750 (99) 796 (116)
Post-error 740 (124) 774 (126) 766 (91) 809 (114)
Mean error RT
Post-correct 847 (135) 842 (152) 887 (210) 809 (212)
Post-error 785 (166) 742 (164) 859 (154) 802 (133)
Accuracy
Post-correct 699 (.10) 766 (.11) 719 (.07) 758 (.12)
Post-error .687(.10) .708 (.16) .691(.11) .703(.16)
d/
Post-correct 1.32 (.46) 1.35(.49)
Post-error 1.12 (.50) 1.14(.56)

Note. Standard deviations are shown in parenthesis. Post-Error refers to responses
following errors; Post-Correct refers to responses following correct responses.

questionnaire is commonly used to assess subclinical levels of
anxiety. Higher scores on the questionnaire indicate higher levels
of trait anxiety.

5.4. Participants

There were 120 total participants in the experiment who
received credit in an introductory psychology class. The upper and
lower thirds of STAI scores were used to group participants. Low
anxiety participants (n = 42) had a mean STAI score of 31.4, and
high anxiety participants (n = 42) had a mean STAI score of 46.4.

5.5. Results

All responses faster than 250 ms or longer than 3 s were ex-
cluded (less than .8% of the data). The results from the experiment
are shown in Table 6. Accuracy and d’ were lower after an error
than after a correct response, but there were no difference between
high and low-anxious participants (Fs < 1). Unlike other studies
(e.g., Robinson et al., 2007) there were no significant increases in
mean RTs following error responses for either group (F < 1). Thus
the analysis of behavioral data shows no differences in post-error
responses as a function of anxiety.
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Table 7
Best fitting parameter values from the diffusion model in Experiment 2.
Low anxiety a z/a Ter n s, % Do Vrarget Vlure X2(12)
0.125 0.544 0.538 0.233 0.036 0.173 0.002 0.128 —0.249 20.8
Post-correct
(.03) (.09) (.05) (.09) (.04) (.10) (.01) (.09) (.11) (8.3)
Post-error 0.121 0.594 0.516 0.183 0.028 0.223 0.007 0.078 —0.200 243
(.03) (.13) (.06) (.12) (.03) (.11) (.02) (.11) (.18) (14)
High anxiety
Post-correct 0.125 0.554 0.551 0.235 0.042 0.176 0.005 0.153 —0.229 21.1
(.03) (.08) (.05) (.08) (.04) (.07) (.02) (.09) (.11) (10)
Do — 0.136 0.603 0.515 0.194 0.042 0.197 0.007 0.091 —0.206 19.81
(.04) (.12) (.06) (.11) (.04) (.11) (.03) (.10) (.14) (11)

Note. Recovered values are averages across subjects (SDs in parenthesis). a = boundary separation; z/a = position of starting point relative to the boundaries (values
above .5 indicate a bias to respond “old”); Ter = nondecision component; n = variability in drift across trials; s,= variability in starting point; s, = variability in nondecision
component; p, = probability of outlier responses; varge: = drift rate for targets; vy, =drift rate for lures. Post-correct refers to trials following a correct response. Post-error

refers to trials following an error.
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Fig. 4. Best fitting model parameters from Experiment 2 averaged across subjects. Dark bars are the best fitting parameters for responses following a correct response and
light bars are for trials following an error. v(t) = drift rate for targets; v(l)= drift rate for lures; a = boundary separation; z/a= relative position of starting point between
boundaries; Ter = nondecision time. Values of response bias above .5 indicate a bias to respond “old.” Error bars are 2 SEs.

5.6. Model fitting and results

The diffusion model was fit to each participant’s data, resulting
in parameter estimates for every participant that could be used in
t-tests and ANOVAs in the same manner as RTs or accuracy. For this
particular experiment, the model was fit separately to post-correct
and post-error responses. Since each condition in the experiment
had sufficient numbers of observations, there was no need to use
fillers to constrain the model fitting like shown in the simulations.
The results are shown in Fig. 4 and Table 7. The Chi-squared values
shown in Table 7 were all near the critical value (21), suggesting
good fits to the data. All comparisons used mixed ANOVAS with
anxiety group (high, low) as the between factor and trial type
(post-correct, post-error) as the within factor.

For both anxiety groups, nondecision time (Ter) was shorter
after an error than after a correct response, F(1,82) = 25.28,
MSE = .002, p < .001. This result was unexpected, and could
reflect an increase in impulsive responses following an error.
However, the changes in Ter did not differ as a function of anxiety
(interaction: F(1, 82) = 1.88, MSE = .002, nn.s.). The starting point
parameter showed an overall bias to respond “old” that was more
pronounced after an error than after a correct response, F(1, 82) =
8.25, MSE = .010, p < .01, but the bias did not reliably differ
between the two groups (F < 1).

Consistent with predictions, high anxiety participants increased
their boundary separation after an error, whereas low anxiety
participants did not. The interaction between anxiety group and
trial type was significant for boundary separation, F(1, 82) = 5.73,
MSE = .0004, p = .018, but there were no main effects of group or
trial type (see Fig. 4). Subsequent comparisons showed a significant
increase in boundary separation following errors for high-anxious
participants, t(41) = 2.17, p = .03, and a nonsignificant decrease
for low-anxious participants, t(41) = —1.15, p = .25. Drift rates
were used to assess discriminability, which was operationalized
as the difference between drift rates for old (positive values) and
new (negative values) words, with a larger difference indicating
better quality of evidence and thus better discriminability. There
was an overall decrease in discriminability after errors for both
groups (main effect of trial type: F(1, 82) = 24.9, MSE = .014,
p < .001), but there was no main effect of anxiety group or
interaction between trial type and anxiety group (Fs < 1).

The results of the diffusion model analysis are consistent with
Robinson et al. (2007), showing that high-anxious participants
were more cautious after committing an error. As mentioned
above, this increase in caution has been suggested to stem from a
desire to avoid the negative feedback associated with committing
an error. Avoidance of negative or threatening information is a
major component of high anxiety (e.g., Mathews, 1990), thus this
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finding is consistent with typical high anxiety behavior. Since
there were no group differences in RTs or accuracy, this difference
in response caution between high- and low-anxious participants
would not have been apparent without use of the diffusion model.

6. Discussion

We have identified and demonstrated ways in which sequential
sampling models like the diffusion model can augment and im-
prove studies of clinical populations and psychological disorders.
The diffusion model allows researchers to compare different com-
ponents of the decision process to identify the loci of processing
differences between conditions or groups. There remain several ar-
eas in which future work is needed to expand the application of
these models to studies of psychopathology, to which we turn next.

6.1. Broadening the application of sequential sampling models

Fitting processing models to data is more complex and involved
than traditional methods of separately analyzing RTs and accuracy.
The additional complexity and time required to use these models
might discourage researchers from incorporating them into their
research. Fortunately, there have been several attempts to provide
user-friendly programs to aid in implementing the diffusion model.
One approach is the EZ diffusion model of Wagenmakers, van der
Maas, and Grasman (2007). This is a simplified version of the full
diffusion model which extracts estimates for Ter, a, and v from
behavioral data. However, it has been argued that the assumptions
necessary for application of the EZ diffusion model, like having an
unbiased starting point, are often not met in usual applications of
the model (Ratcliff, 2008; but see Wagenmakers, van der Maas,
Dolan, & Grasman, 2008). Additionally, the EZ model is more
sensitive to outliers and less efficient at parameter recovery than
the X2 method. In light of these limitations, we recommend that
the EZ diffusion model only be used for early data exploration, not
for comparisons of parameter values across groups or conditions.

Another approach to broadening the application of the diffusion
model comes from the development of statistical packages for
implementation. Vandekerckhove and Tuerlinckx (2008) offer a
MATLAB toolbox, DMAT, that allows researchers to implement the
model in a fairly flexible manner. Voss and Voss (2007) have also
developed a software package, fast-dm, that allows researchers to
flexibly estimate diffusion model parameters from behavioral data.

There is also room for advancement in the types of data to which
the diffusion model can be applied. One area for improvement
involves fitting the model to data with relatively few observations,
since the model parameters cannot be accurately estimated with
too few data points. As mentioned above, practical constraints
often limit the number of observations that can be obtained in
studies with clinical populations. For example, if researchers were
interested in determining if posttraumatic stress disorder patients
had better or worse memory for information related to their
traumatic event, they might have a limited number of words or
pictures that sufficiently represent the event and are salient to
the patients. We showed above how filler conditions with many
observations can be used to improve the model fits for conditions
with relatively few observations, providing a more accurate
estimate of the drift rates for the critical stimuli. However, this
procedure still requires the collection of many observations, which
might not be feasible when studying patient populations. Patients
with psychological disorders might lack the attentional capacity,
motivation, or ability to perform hundreds of experimental trials,
meaning there would not be enough observations to accurately
fit the diffusion model. This is an important limitation of complex
models like the diffusion model.

One method to deal with few observations is to fit the model to
data averaged across participants. Unfortunately, it is well known
that fitting averaged data can lead to biases and distortions in
parameter estimates. Recently, Cohen, Sanborn, and Shiffrin (2008)
showed that, for certain models, there are conditions in which
fitting group data is superior to fitting individual data, particularly
when each participant has very few observations. In support of
this approach, Ratcliff, Thapar, and McKoon (2004) found that
across several data sets the fits to averaged group data were
consistent with the average of fits to individual participant’s data.
However, the data sets in that study had a moderate to large
number of observations for each participant. In light of this, we
do not currently recommend this approach since the behavior of
the fitting methods have not been investigated when there are
relatively few observations for each participant.

Another future direction for sequential sampling models like
the diffusion model involves application to new experimental
paradigms. Although these models have been shown to account
for data from a range of two-choice tasks (see Ratcliff & McKoon,
2008), there are several tasks to which sequential sampling models
have not yet been applied, such as the previously discussed probe
detection task. Future research is necessary to determine whether
and in what manner sequential sampling models can account for
data from such paradigms. Since there are many two-choice tasks
being used to investigate differences between groups or clinical
populations, there is great promise in developing processing
models to augment analysis of these paradigms.

6.2. Sources of evidence and complex decisions

In most applications, models like the diffusion model are agnos-
tic about what sources of information contribute to the evidence
used in the decision process. The model does not specify how the
drift rate is determined, other than to say that it represents the
quality of evidence for a response (but see Ratcliff, 1981; Smith &
Ratcliff, 2009, for models that integrate the decision process with
models of encoding processes). In this regard there is nothing in-
herent in the diffusion model that is related to a particular clinical
disorder. It is only through thoughtful experimental design that
the components of the model become meaningful to clinical re-
searchers. For example, if differences in drift rates reflect enhanced
or impaired memory for threatening information, it can help re-
searchers better understand abnormal processing in anxiety, and
potentially help identify individuals who are at risk of developing
anxiety disorders. Thus while sequential sampling models provide
a processing account of the decision, they only provide a descrip-
tive account of the information feeding the decision process.

However, although it has not been described until this point,
there is a sequential sampling model that provides a complimen-
tary approach to the diffusion model, decision field theory (DFT;
Busemeyer & Townsend, 1993; Roe, Busemeyer, & Townsend,
2001). DFT has a similar structure as the diffusion model, but it
is meant to account for longer, more complex decisions between
more than two options. A schematic of the model is shown in Fig. 5.
In the model, the preference state for each option is determined
by evaluating the relative valences of the options. If an option has
a positive valence, this leads to approach behavior and increases
the chance of selecting that option. In contrast to the diffusion
model, there is only one response boundary and each option has
its own accumulation path. Whichever path reaches the boundary
first is selected as the response. Importantly, more than one stim-
ulus attribute can be used to contrast the options, and the valence
of each option at any given time is determined by the valences for
whichever attribute is being attended to at that time. If, for exam-
ple, an individual were choosing between two cars that differed
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Fig.5. Anillustration of Decision Field Theory. Each path represents the preference
state for one of the three options in the decision (A, B, or C). The first path to reach
the top boundary is selected for response. See text for details.

in price and quality, focusing on quality might produce a prefer-
ence for car A, while focusing on price might produce a preference
for car B. The decision process in DFT is dynamic, because over the
course of the decision the buyer might first focus on quality and
then switch to price. Further, these attributes might have different
importance, meaning a greater proportion of deliberation time is
spent focusing on one over the other.

DFT provides a promising framework for researchers investigat-
ing psychopathology and clinical disorders. Busemeyer, Townsend,
and Stout (2002) incorporated a dynamic model of needs into DFT.
In this version of the model, the valence of a decision is determined
by attentional values and motivational values. Motivational val-
ues are determined by current needs and how well each option
satisfies those needs. The authors showed how DFT could account
for the results of a study by Goldberg, Lerner, and Tetlock (1999),
in which induced emotion led individuals to select harsher pun-
ishments for offenders. In the Goldberg et al. study, participants
who watched a film where a criminal went unpunished were more
likely to select a harsher punishment for a later, unrelated crime.
DFT was able to account for the selection of stricter punishment
by assuming that viewing the film increased one’s need for pun-
ishment relative to their need for compassion. In this regard, the
role of needs, emotions, and motivation can be accounted for in a
decision process model (see also Busemeyer, Dimperio, & Jessup,
2007).

Similar to the diffusion model, DFT can identify the sources
of processing differences more precisely than can be done with
behavioral analyses. The addition of constructs like motivation to
decision models can greatly advance research with clinical popula-
tions. Such advancements in decision models like DFT and the dif-
fusion model will improve our understanding of the relationship
between clinical disorders and abnormal cognitive, motivational,
and decisional processes.

7. Conclusion

The experiments and simulations discussed in this article
demonstrate the utility of sequential sampling models like the
diffusion model in efforts to understand how cognitive processing
differs as a function of psychopathology. These models can decom-
pose behavioral data into meaningful psychological components,
allowing researchers to assess potential differences in response
caution, response bias, stimulus evidence, and encoding and re-
sponse time. Differences in RTs and/or accuracy can be localized to
the component(s) of processing that are responsible. Further, se-
quential sampling models can identify processing differences even
when there are no apparent differences in the behavioral data, as
the present analysis of anxiety and error responses demonstrated.

In this regard, sequential sampling models can provide alternative
explanations to those based on behavioral data alone.
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