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We examined the effects of aging on performance in an item-recognition experiment with confidence
judgments. A model for confidence judgments and response time (RTs; Ratcliff & Starns, 2013) was used
to fit a large amount of data from a new sample of older adults and a previously reported sample of
younger adults. This model of confidence judgments allows us to distinguish between changes evidence
from memory and changes in decision-related components and it accounts for both RT distributions and
response proportions. Older adults took longer to respond than younger adults, older adults exhibited a
small decrease in the strength of evidence from memory compared with younger adults and a slight bias
toward judging items as “old.” The difference in RTs between the 2 age groups was primarily explained
by the difference in the nondecision component. Although our small sample size makes the general
conclusions about aging tentative, the results are consistent with other research examining the effects of
aging in two-choice RT tasks and response-signal tasks, and the study demonstrates that confidence
judgment choice proportion and RT distribution data from older adults can be fit with the response time
and confidence 2 (RTCON2) model.
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For most cognitive tasks, older adults consistently make deci-
sions more slowly but not necessarily less accurately than younger
adults. This slowdown has often been interpreted as a generalized
processing deficit in the central nervous system (e.g., Cerella,
1985; Deary, 2000; Salthouse, 1996). Previous modeling work,
however, has demonstrated that this slow-down, at least in two-
choice tasks, can be attributed to increased decision thresholds
(older adults are more cautious) and an increase in the duration of
processes outside the decision process, such as encoding, memory
access, and motor response processes. However, this earlier re-
search has consistently found only slight decreases in the quality of
evidence extracted from the stimulus in item recognition memory
tasks (Ratcliff, Thapar, & McKoon, 2004, 2006a, 2010, 2011).
This experiment was designed to examine the effects of aging on
performance in an item recognition memory task with confidence
judgments using a model of confidence judgments that has not
previously been applied to this population.

We used item recognition because the diffusion model has
provided a complete explanation of accuracy and response time
(RT) data (including RT distributions for both correct and error
responses) from this type of memory task in previous experiments
(McKoon & Ratcliff, 2012; Ratcliff et al., 2004, 2006a, 2007,
2010, 2011). In item recognition experiments, subjects study lists
of items (items may be words, pictures, etc.) and then, during a

later test, must distinguish between items that were on the previous
study list (“old” items) and items that were not on the previous
study list (“new” items). Other studies investigating aging and item
recognition have found only small effects of age on accuracy in
this task (e.g., Balota, Dolan, & Duchek, 2000; Bowles & Poon,
1982; Craik, 1994; Craik & Jennings, 1992; Erber, 1974; Gordon
& Clark, 1974; Kausler, 1994; Naveh-Benjamin, 2000; Neath,
1998, chap. 16; Old & Naveh-Benjamin, 2008; Rabinowitz, 1984;
Schonfield & Robertson, 1966). Older adults make similar patterns
of responses as younger adults when making confidence judg-
ments in item recognition tasks (Dodson, Bawa, & Krueger, 2007;
Pacheco et al., 2012). This is in contrast to other memory tasks,
such as associative recognition, cued and free recall, and source
memory, where age has a larger effect on accuracy (Buchler &
Reder, 2007; Craik, 1983, 1986; Craik & McDowd, 1987; Healy,
Light, & Chung, 2005; Kausler, 1994; Naveh-Benjamin, 2000; Old
& Naveh-Benjamin, 2008; Ratcliff et al., 2011; Schonfield &
Robertson, 1966; Wahlin, Backman, & Winblad, 1995). Older
adults also make different patterns of confidence responses than
younger adults in associative recognition and source memory
tasks: older adults make more high-confidence false alarms in
these tasks (Chua, Schacter, & Sperling, 2009; Dodson, Bawa, &
Krueger, 2007; Fandakova et al., 2013; Kelley & Sahakyan, 2003;
Pacheco et al., 2012; Shing et al., 2009).

We examined confidence responses in item recognition because
confidence judgments have been used extensively to investigate
claims about the number and nature of the processes involved in
recognition memory (Egan, 1958; Lockhart & Murdock, 1970;
Malmberg & Xu, 2007; Ratcliff, McKoon, & Tindall, 1994; Rat-
cliff, Sheu, & Gronlund, 1992; Yonelinas, 1994). In confidence
judgment procedures, subjects rate their confidence that an item is
old or new using a response scale with levels ranging, for example,
from “very sure old” to “very sure new.” These ratings are then
used to create receiver operating characteristic (ROC) functions,
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which are plots of the cumulative hit rate (old responses to old
items) against the cumulative false alarm rate (old responses to
new items). Hit and false alarm rates are calculated first for the
highest confidence old responses, then for the two highest confi-
dence old response categories (adding together the number of
responses in those two categories), then for the three highest, and
so on. These hit and false alarm rates are frequently converted to
z-scores, resulting in a function called a z-ROC. The slopes of
these z-ROC functions have been used to test the predictions of
global memory models (Ratcliff & McKoon, 1991; Ratcliff et al.,
1994, 1992) and the shapes of these z-ROC functions have been
used to make claims about the number of processes and sources of
information involved in recognition memory decisions (e.g., De-
Carlo, 2002; Yonelinas, 1997, 1999). However, this type of anal-
ysis (and the use of ROCs to test the global memory models)
typically ignores the RTs associated with these confidence judg-
ments, it assumes that the only source of variability in the decision
process is the variability in memory strength between items, and
analyses are often conducted on data that have been averaged
across subjects. All of these problems with standard z-ROC anal-
yses can be addressed by using the response time and confidence
2 (RTCON2) model (Ratcliff & Starns, 2013). This model pro-
duces both accuracy and RT predictions, it includes several
sources of variability related to the decision process, it can be fit
to individual subjects, and it is able to fit a variety of z-ROC
function shapes. This provides an alternative explanation for the
shapes of z-ROC functions in item recognition that is based on
how subjects utilize confidence response scales and the model and
the explanation of shape is constrained by RT data (Ratcliff &
Starns, 2013). Additionally, this model can distinguish between
various causes of longer RTs such as differences in memory
strength or differences in how much subjects emphasize accuracy
over speed. This is especially important when modeling data from
older adults.

There are many studies that have demonstrated that older adults
perform cognitive tasks more slowly than younger adults. This
slowing has often been interpreted as a general slowing of pro-
cessing in the central nervous system because it occurs across a
variety of tasks (e.g., Birren, 1965; Brinley, 1965; Cerella, 1985,
1990, 1991, 1994; Fisk & Warr, 1996; Salthouse, 1985, 1996;
Salthouse, Kausler, & Saults, 1988). This slowdown is generally
considered to be a deficit in that, as all cognitive processes slow
down, certain operations may not be completed in time for later
operations to use the results of earlier operations and overall
processing will be impaired (e.g., Salthouse, 1996). However, this
interpretation implies that a slowdown in RT for older adults
should be accompanied by a decrease in accuracy and this is not
always true (e.g., Ratcliff, Thapar, Gomez, & McKoon, 2004;
Ratcliff, Thapar, & McKoon, 2001, 2003, 2004, 2006a, 2006b,
2007, 2010, 2011; Spieler, Balota, & Faust, 1996; Starns & Rat-
cliff, 2010; Thapar et al., 2003). To properly assess changes in RT
and accuracy as a function of age, it is necessary to have a model
for understanding both response proportions and RTs and the
connection between them. There is a well-known relationship
between the speed and accuracy with which people make decisions
(Wickelgren, 1977), and any method of evaluating RTs and accu-
racy from older adults should be able to account for these speed/
accuracy tradeoffs because older adults tend to emphasize accu-
racy more than younger adults (Salthouse, 1979).

Previous work by Ratcliff et al. (2004, 2006a, 2006b, 2007,
2010) has used Ratcliff’s (1978) diffusion model to examine
changes in performance in two-choice tasks as a function of age.
These studies have demonstrated that, at least in these tasks, most
of the RT slowdown observed in older adults can be attributed to
a combination of different response strategies and longer nonde-
cision times, but not to any deficit in the evidence used in the
decision process. That is, older adults took longer to make re-
sponses because they were more cautious about making mistakes
and so responded more slowly and carefully than younger adults,
and the older adults took longer to encode a stimulus, extract
decision-related information from memory, and make a motor
response. All of these studies have found differences between
older and younger adults in the amount of time needed to encode
a stimulus, extract decision-related information from memory, and
make a response (i.e., nondecision time), but results have been
varied in terms of response caution. Most studies have found that
older adults require more information to make a decision than
younger adults (i.e., have higher decision thresholds; e.g., Ratcliff
et al., 2001, 2006a), but some studies have found no difference
between older and younger adults’ decision thresholds for some
tasks or conditions (e.g., Ratcliff, 2008; Ratcliff et al., 2003,
2006a). Specifically, no difference between older and younger
adults in boundary separation was observed in a brightness dis-
crimination task (Ratcliff et al., 2003), a response signal task
(Ratcliff, 2008) and the difference is reduced or eliminated when
subjects are instructed to emphasize accuracy over speed (Ratcliff
et al., 2004, 2006a).

Our goal is to apply a similar analysis to results from a confi-
dence judgment paradigm. As mentioned previously, confidence
judgments have been used to test different models of memory and
are used, inappropriately in our view, to determine how many
memory processes are being used to make a decision. However,
most previous work examining confidence judgments and aging
have ignored RTs. This is especially problematic when comparing
data from older and younger adults since younger adults may be
more willing than older adults to make faster responses at the
expense of accuracy (Basowitz & Korchin, 1957; Silverman, 1963;
Starns & Ratcliff, 2010; Strayer & Kramer, 1994; Thorndike,
Bregman, Tilton, & Woodyard, 1928). We are also generally
interested in examining how performance on memory tasks
changes with age and it is important to attempt to disentangle
differences in memory strength from differences in how people use
confidence response scales. To do this, we will apply the RTCON2
model to confidence judgments from older and younger adults in
an item recognition task.

RTCON2 Model

The RTCON2 model has previously been applied to confidence
judgments in item recognition and associative recognition as well
as motion discrimination tasks and was shown to provide a better
fit to the data than several competing decision models (Ratcliff &
Starns, 2013; Voskuilen & Ratcliff, 2016). In the RTCON2 model,
the evidence available to the decision process on a single trial (i.e.,
the memory strength for a particular item) is assumed to be a
distribution across the evidence-strength dimension rather than a
discrete value (cf. Beck et al., 2008; Gomez, Ratcliff, & Perea,
2008; Jazayeri & Movshon, 2006; Ratcliff, 1981; Ratcliff &
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Starns, 2009). These evidence distributions have a SD of 1 and
their mean location varies across trials, according to a distribution
of the mean drift rate. The bottom portion of Figure 1 illustrates
how the distribution of evidence for a single item feeds into the
decision process. Confidence criteria are used to divide the
evidence-strength dimension into multiple response regions corre-
sponding to different levels of confidence. Each response region
has its own accumulator and decision boundary, as shown in the
top portion of Figure 1, and the accumulators race until one of
them reaches its decision boundary and that response is made. In
this kind of paradigm, each confidence category requires a differ-
ent motor response which we argue requires a different accumu-
lator and decision boundary for each possible response.

The mean of the evidence distribution is called the drift rate (v),
and it is determined by the quality of information extracted from
the stimulus. The quality of information from stimuli of the same
type (e.g., high-frequency words) is allowed to vary across trials to
reflect differences in the encoding and retrieval of information
from memory. This between-trial variability in drift rate is as-
sumed to be normally distributed with SD �. The average rate of
accumulation for each response accumulator is determined by the
proportion of the within-trial distribution of evidence in each of the
response regions. This accumulation process is subject to moment-
to-moment variability such that processes with the same drift rate
will not always terminate at the same time or with the same
confidence response.

RTCON2 uses a constant summed evidence algorithm to model
the accumulation of evidence in each response accumulator. In this
algorithm, the change in evidence on each time step is determined
by its drift rate and noise. On each time step, one of the response
accumulators is selected randomly and increased, and some of the
other response accumulators are decreased such that the sum of the
total decrease is equal to the increase in the selected accumulator.

Two versions of the constant summed evidence model have
been examined, one with all accumulators decremented and one

with only some of the accumulators decremented. (Ratcliff &
Starns, 2013; Voskuilen & Ratcliff, 2016). For this application, we
used a version of the model where an increase in evidence in one
of the new accumulators would cause a decrease in evidence only
in the old accumulators, but not the other new accumulators (and
vice versa). This version of the algorithm (compared with the one
in which all other accumulators are decremented) represents the
assumption that evidence for one type of response (old or new)
does not compete with other confidence levels of that same re-
sponse. The expressions for the changes in evidence (�x) for each
accumulator at each time step (�t) are given in Equations 1 and 2.
Equation 1 describes the update in evidence for the selected
accumulator and Equation 2 describes the corresponding change in
activity for the nonselected accumulators.

�xi � a�i�t � ��i��t (1)

�xj � �� 1

N � N
2
��a�i�t � ��i��t� � �� 1

N � N
2
��xi

(2)

If the selected accumulator was one of the new accumulators,
then Equation 2 would be used to adjust the old accumulators, but
the other new accumulators would be unchanged. In these equa-
tions, a is a scaling parameter that adjusts drift rate (vi, the area
under the distribution in a particular response region), � is within-
trial variability in the accumulation process, and � is a normally
distributed random variable with mean 0 and SD 1.

RT predictions are obtained from the model by adding the
decision time (the time taken for one of the evidence accumulators
to reach a decision boundary) to a uniformly distributed nondeci-
sion time (the exact choice of the distribution shape is not critical
so long as the SD in nondecision time is smaller than that of the
decision time, Ratcliff, 2013). RT predictions are also dependent
on the height of the decision boundaries, which vary from trial to
trial over a uniform distribution with a range of sb.

This model can produce longer RTs in several ways. Smaller
values of drift rate for a particular response region will produce
longer RTs for that confidence response than larger values of drift
rate (note that the drift rate associated with a response is deter-
mined by both the location of the drift distribution for a particular
condition and the positions of the confidence criteria). Larger
boundary values, indicating a more conservative threshold for
making a response, will produce longer RTs than smaller boundary
values. Larger values of nondecision time will also produce longer
RTs than smaller values of nondecision time. However, while all
of these parameter changes can produce longer mean RTs, they
also all produce different predictions regarding the shape and
location of the RT distributions and are therefore distinguishable.
Changes in drift rate primarily affect the tails of the RT distribu-
tions and have only a slight effect on the location of the leading
edges of the distributions. Smaller drift rates will also be associ-
ated with lower accuracy. Changes in the boundary settings affect
both the leading edge and the tails of the RT distribution and will
have a small effect on accuracy (larger boundary values are asso-
ciated with higher accuracy). Changes in nondecision time will
change the position of the RT distribution but will not affect its
shape or the accuracy of the responses. Therefore, this model can
disentangle differences in memory performance (as measured by
drift rates) from differences in decision process settings (such as
changes in boundary separation) and differences in nondecision

Figure 1. Response time and confidence 2 (RTCON2). The distribution
of evidence for an item on a given trial drives six mutually inhibitory
accumulators (one for each confidence category). The proportion of the
distribution between the confidence criteria on match dimension drives the
drift rate for each confidence category. When one of the accumulators
reaches its decision boundary, the corresponding response is made.
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times and so can be used to examine which of these processes are
responsible for slowing in older adults.

Experiment

The goal of the experiment was to collect data from an item-
recognition task with confidence judgments that we will fit with
the RTCON2 model to use the resulting model parameters to
investigate the effects of aging on performance in this task. Data
from the younger subjects were originally collected and reported in
Ratcliff et al. (1994, Experiment 5) and also modeled in Ratcliff
and Starns (2013) while the data from the older subjects were
collected more recently. Data from the younger subjects are refit
here identically to the way the data from the older subjects are fit.
Because this model is fit to both response proportions and RT
quantiles, to obtain high quality model fits, we need a large amount
of data per subject to provide reliable estimates of RTs and choice
proportions across conditions and confidence levels. To that end,
we have collected a data from many sessions from a relatively
small number of subjects. While this limits the conclusions we can
draw about aging effects in general, the patterns of results and
effect sizes are consistent with results from previous aging studies
with two-choice tasks. This experiment was approved by The Ohio
State University Social and Behavioral Institutional Review Board
(IRB).

Method

Subjects. Eleven Northwestern undergraduates completed a
total of 97 1-hr sessions, after one practice session per subject was
eliminated (resulting in 7–11 sessions per subject). These data
were previously reported in Ratcliff et al. (1994). Twelve older
adults (age 60–80) completed a total of 96 1-hr sessions (eight
sessions per subject). We did not eliminate the first session of data
from the older adults (i.e., treat it as a practice session) both
because the older adults had participated in other experiments from
this lab (and so were practiced at this type of task) and because we
did not want to eliminate any data if it was not necessary (because
it was more difficult to get multiple sessions of data with this
population). To ensure this did not affect our results, we also fit the
model to data from just Sessions 2–7 from the older adults and the
results were unchanged (see Appendix). Older adults were re-
cruited from senior citizen centers in the Columbus area and paid

$15 for each session they completed. The older subjects had to
meet the following inclusion criteria to participate in the study: a
score of 26 or above on the Mini-Mental State Examination
(Folstein, Folstein, & McHugh, 1975) and no evidence of distur-
bances in consciousness, medical or neurological disease causing
cognitive impairment, head injury with loss of consciousness, or
current psychiatric disorder. One of the older adult subject’s data
were excluded because that person’s performance was at chance
for most of the conditions. Older subject characteristics are pre-
sented in Table 1. Subject characteristics for the younger adults are
not available, but the characteristics of the older subjects match
those of the Northwestern undergraduate population used in sim-
ilar studies (see Table 1 with characteristics from Ratcliff et al.,
2001, 2003, 2004).

Materials. The stimuli were drawn from two pools of words
formed from the Kucera and Francis (1967) word frequency lists.
Words in the low-frequency pool had frequencies of either 4 or 5,
and words in the high-frequency pool had frequencies between 78
and 10,601. The words varied from 4 to 10 letters in length. Words
derived from other common words by adding suffixes (e.g., -ing,
-ed, or -tion), plurals, and proper names were eliminated. This
resulted in a high-frequency pool of 815 words and a low-
frequency pool of 871 words.

Procedure. Study lists were composed of pairs of words to
minimize the possibility of rehearsal trading strategies (see Ratcliff
et al., 1990). Study lists consisted of either pure or mixed lists. In
a pure list, each of 16 pairs was presented for the same amount of
time, 1.5 s for weak or 5 s for strong items. In a mixed list,
sequential blocks of pairs in the study list had different study
times: the first 2 pairs at 1.5 s, the next 6 pairs at 5 s, the next 6
pairs at 1.5 s, and the last 2 pairs at 5 s, or the reverse ordering of
presentation times. For both pure and mixed lists, within each
middle block of 6 pairs, 3 pairs for which both words were high
frequency and 3 pairs for which both words were low frequency
were placed in random positions. The first and last 2 pairs in a list
were buffer items, and one word of each buffer pair was high
frequency and one low frequency. Subjects were instructed to learn
the pairs for later cued-recall tests. The cued recall task was
included to encourage subjects to focus on the pairs of words and
minimize rehearsal, but performance on this task was not scored.
In the 16 lists for a session, there were four of each type of list:
pure weak, pure strong, and the two kinds of mixed lists. There

Table 1
Subject Characteristics

Younger adults

Measure Older adults

Ratcliff, Thapar,
Gomez, et al.,

2004;
Experiment 1

Ratcliff, Thapar,
Gomez, et al.,

2004
Experiment 2

Ratcliff, Thapar,
& McKoon,

2004

Ratcliff, Thapar,
& McKoon,

2003

Thapar, Ratcliff,
& McKoon,

2003

Years education 16.14 (3.12) 13.12 (1.11) 13.58 (1.55) 12.6 (.9) 12.67 (1.03) 12.36 (1.04)
MMSE 29.27 (.65) 29.00 (.80) 29.04 (1.21) 29.0 (1.1) 29.11 (.94) 29.13 (1.06)
WAIS-III vocabulary (scaled score) 12.64 (2.58) — — 14.4 (1.9) 14.49 (2.26) 14.24 (2.12)
WAIS-III matrix reasoning (scaled score) 12.91 (3.45) — — 10.8 (2.5) 11.24 (2.79) 10.71 (2.32)
WAIS-III IQ 115.82 (12.43) 117.31 (8.76) 116.69 (11.91) — 116.76 (12.11) 114.46 (9.14)

Note. MMSE � Mini-Mental State Examination; WAIS-III � Wechsler Adult Intelligence Scale-3rd edition. The young adult background characteristics
are for a group of subjects from the same pool as those tested here. These data are from: Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff, Thapar, &
McKoon, 2003, 2004; Thapar, Ratcliff, & McKoon, 2003.
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were 64 test items associated with each study list (the 32 items
from the study list along with 32 new items) and these items were
presented in random order. Test lists immediately followed each
study list with no retention interval. Subjects responded using a PC
keyboard with the X, C, V, B, N, and M keys. Subjects were
instructed to place their left-hand ring, middle, and index fingers
on the X, C, and V keys and their right-hand index, middle, and
ring fingers on the B, N, and M keys. Subjects were instructed that
the M key stood for “very sure old,” the N key stood for “some-
what sure old” and so on. After each response, there was a 250-ms
blank interval followed by the next test item. For two randomly
chosen study lists, the recognition test list was followed by a
cued-recall test (the left member of the study pair was presented
and the subject was required to recall the right member). For our
analyses, we collapsed across list type leaving us with six condi-
tions: Word Frequency (high or low) � Strength (new, weak, or
strong). These manipulations were originally designed to investi-
gate the slope of the z-ROC function across various conditions, as
discussed in Ratcliff et al. (1994), and are repeated here to produce
an equivalent data set from older subjects.

Model Fitting

The RTCON2 model was fit to each individual subject’s re-
sponse proportion and RT quantiles (.1, .3, .5, .7, and .9) for each
of the six confidence response for each of the six conditions (as in
Ratcliff & Starns, 2013). The RT quantiles segment the response
proportion data into six bins of response proportions for each
confidence category. Initial parameter values were chosen that
produced predictions similar to the empirical data and then a
simplex function (Nelder & Mead, 1965) was used to adjust the
parameters of the model until the predictions matched the data as
closely as possible. The match between the empirical data and the
model predictions was quantified by a �2 statistic, which was
minimized by the simplex function (see Ratcliff & Tuerlinckx,
2002 for more detail). Because there are no exact solutions for this
model, simulations are used to generate predicted values from the
model. To simulate the process of accumulation given by Equa-
tions 1 and 2, we used the simple Euler’s method with 1-ms steps
(cf. Brown, Ratcliff, & Smith, 2006; Usher & McClelland, 2001).
For each millisecond step, one accumulator was chosen randomly,
and the evidence in it was incremented or decremented according
to Equation 1 and opposite accumulators were incremented or
decremented according to Equation 2 (e.g., if the selected accu-
mulator was for one of the new responses, then the evidence in the
old accumulators would be adjusted according to Equation 2 and
the other new accumulators would be unchanged). For each con-
dition, 20,000 simulations of the decision process were used to
generate the response proportions and RT quantiles for each con-
fidence category.

There are six RT bins for each confidence response, which gives
36 degrees of freedom for the six-choice task. However, these
response proportions have to add to one, which reduces the degrees
of freedom to 35 for each condition. With six conditions, this gives
a total of 210 degrees of freedom in the data. To enable compar-
isons across the two age groups, some of the parameter values
were fixed across the two age groups. These parameters were the
scale on the drift rate (a), the within-trial variability of the diffu-
sion process (�), and the between-trial variability in the decision

boundaries (sb). These parameters were chosen because they can
potentially complicate the comparison of other parameters of in-
terest (e.g., the two age groups could have the same drift rates but
different scaling parameters such that the rate of evidence accu-
mulation would be different for the two groups). To fix these
parameters, we first fit all of the data with these parameters
allowed to freely vary and then refit all of the data with these
parameters fixed to their mean values (across old and young the
subjects) from the initial fit.

Results

Data from this experiment consisted of response proportions and
RT quantiles for each subject from each condition and each con-
fidence response. For the older subjects, RTs less than 400 ms or
greater than 7,000 ms were excluded from our analyses. This
excluded 0.2% of the data. For the younger subjects, the cutoffs
were 300 ms and 3,000 ms, excluding 1.7% of the data (as in
Ratcliff & Starns, 2013). Different cutoff values are required for
the different age groups because the older adults’ RTs are consid-
erably longer than the younger adults’. Lower cutoff values were
chosen based on performance (i.e., at what time point does per-
formance rise above chance) and upper cutoff values were chosen
to exclude extreme values while minimizing loss of data.

We conducted several analysis of variances (ANOVAs) to in-
vestigate the effects of age and the experimental manipulations on
our various dependent variables. First, we investigated differences
in median RTs as a function of age, experimental condition, and
confidence response. Figure 2 plots the average median RT as a
function of the confidence response for each condition and age
group. Across all of the conditions and confidence responses, the
older adults’ median RTs (M � 1,209 ms) were longer than the
younger adults’ median RTs (M � 988 ms) and this difference was
significant (F(1, 20) � 11.69, p � .05, �2 � 0.13). Across all of
the conditions and age groups, there were significant differences in
median RTs across confidence level (F(5, 100) � 28.87, p � .05,
�2 � 0.24) with higher confidence responses having smaller
median RTs than lower confidence responses. However, the pat-
tern of median RTs across confidence responses was not identical
for older and younger adults (F(5, 100) � 2.80, p � .05, �2 �
0.02). The changes in RTs across confidence levels are more
extreme for the younger adults than for the older adults such that
there is a larger difference between the two groups for high-
confidence responses than for low-confidence responses. Second,
we investigated differences in response proportions as a function
of age, experimental condition, and confidence response. For this
analysis, the ordering of the confidence scale for the new condi-
tions has been reversed such that for all conditions the confidence
scale ranges from a high-confidence incorrect response to a high-
confidence correct response (i.e., we’re collapsing across old and
new responses). Some confidence responses were made more
frequently than others (F(5, 100) � 49.33, p � .05, �2 � 0.56) that
is unsurprising given that performance was above chance (such
that correct responses should be made more often than incorrect
responses) and the pattern of confidence responses varied across
conditions (F(25, 500) � 16.43, p � .05, �2 � 0.08). There was
no main effect of age (F(1, 20) � 4.00, �2 � 0.001) and no
significant interactions between age and the other factors (all F
values �1.7). Figure 3 shows the response proportions for older
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and younger subjects collapsed across all conditions (note that the
response scale in this figure ranges from high-confident incorrect
to high-confident correct). Although older adults made slightly
more medium-confidence error responses (Response 2), this dif-
ference was not significant. This is consistent with previous studies
finding no difference between older and younger adults in patterns
of confidence responses in item recognition tasks (Dodson et al.,
2007; Pacheco et al., 2012). Figure 4 plots the average proportion
of responses for each confidence response for each condition and
age group (with the regular ordering of the confidence scale).
Across all of the conditions the pattern of responses for older and
younger subjects is remarkably similar. Third, we investigated
differences in accuracy as a function of age and experimental
condition. For this analysis, response proportions were combined
across confidence levels to yield a single accuracy level for each
condition for each subject (e.g., response proportions for the three
new confidence categories were combined to yield an accuracy
value for the new conditions). The younger subjects were slightly
more accurate (about 5%) than the older subjects (see Table 2 for
mean accuracy values across conditions, collapsed across confi-
dence levels), and this difference was significant (F(1, 20) � 4.71,
p � .05, �2 � 0.05). There were also significant differences in
accuracy across conditions (F(5, 100) � 14.22, p � .05, �2 �
0.29) but these differences were consistent for older and younger
subjects (F(5, 100) � 0.96, �2 � 0.02). Overall, the behavioral
effects of age on RT and accuracy were consistent with previous
work (cf. Ratcliff et al., 2004, 2007).

The RTCON2 model was applied to data from each individual
subject. Averages of the fits are presented here and individual fits
are in the Appendix. Mean parameter estimates and SDs for each

age group are shown in Table 3 along with average �2 values. To
enable comparisons across the two age groups, the scale on the
drift rate (a), the within-trial variability of the diffusion process
(�), and the between-trial variability in the decision boundaries
(sb) were set to fixed values (shown in Table 3). These values were
chosen by initially allowing these parameters to vary freely and
then using the mean estimates across all subjects as the fixed
values. When these parameters were allowed to vary freely, none
of the results described below were changed and there were no
significant differences between the two groups for these parame-
ters (mean parameter values from fits with parameters varying
freely are presented in the Appendix). To make the model identi-
fiable, the mean drift rate for the first condition was also fixed to
zero (with all other mean drift rates and all of the confidence
criteria freely varying). In perceptual tasks, older adults have been
shown to have larger practice effects than younger adults (Ratcliff
et al., 2006b). To control for a possible practice confound, we
repeated all of our modeling analyses using only data from Ses-
sions 2–8 for each subject and the pattern of results was un-
changed. Mean parameter values from fits to just Sessions 2–8 are
also presented in the Appendix.

There were several significant differences in model parameters
across the two age groups. The older subjects had significantly
larger nondecision time components (M � 559 ms) than the
younger subjects (M � 370 ms; F(1, 20) � 29.10, p � .05, �2 �
0.59) that is consistent with previous research (e.g., Ratcliff et al.,
2004, 2007). To compare drift rates across the two age groups, we
subtracted the middle confidence criterion from all of the mean
drift rates (so that all of the values would be centered around the
middle of each subjects’ confidence scale) and reversed the sign of

Figure 2. Median responses time (RTs) as a function of the confidence response, experimental condition, and
age group. The dashed lines represent the averaged data from the younger adults and the solid lines represent
the averaged data from the older adults.
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the mean drift rates for new conditions (so that for all conditions
a larger drift rate indicates more evidence in favor of the correct
response). We conducted an ANOVA with experimental condition
and age as factors and found that the younger adults had more
extreme drift rates (M � 1.76) than the older adults (M � 1.35;
F(1, 20) � 6.60, p � .05, �2 � 0.07) and there were significant
differences in drift rates across conditions (F(5, 100) � 52.32, p �
.05, �2 � 0.50). Across conditions, mean drift rates ranged from
0.71 to 2.50. We conducted a similar analysis to compare decision
boundaries across age groups and conditions. Unlike some previ-
ous research (e.g., Ratcliff et al., 2004, 2007), we found no
significant difference between the old (M � 2.15) and young (M �
2.12) subjects in terms of the height of their decision boundaries
(F(1, 20) � 0.10, �2 � 0.001). There were significant differences
across conditions (F(5, 100) � 5.14, p � .05, �2 � 0.14) with
high-confidence response categories having lower bounds (M �
2.08, 1.82) than low-confidence response categories (M � 2.33,
2.45) that is the same pattern that was observed for RTs. The
changes in bounds across conditions were not the same for older
and younger adults (F(5, 100) � 2.82, p � .05, �2 � 0.08), which
will be discussed below and is consistent with the behavioral
finding that the pattern of RTs across confidence levels was not the
same for older and younger adults.

The best-fitting parameter estimates for each subject were used
to generate predicted data from the model and the predicted data
were then compared with the empirical data. The averaged empir-
ical RT data are plotted along with the averaged predicted RT data
in Figure 5. The six confidence categories are plotted along the

x-axis and the five RT quantiles for each confidence level are
plotted vertically. Overall, the model’s predictions appear to match
the data quite well. Figure 6 shows all of the empirical data (both
the RT quantiles and the response proportions) from all of the
subjects and conditions plotted against the predicted data along
with a reference line (with slope of one and intercept of zero). The
red (gray) points represent conditions with fewer than 25 obser-
vations. Again, the model’s predictions appear to match the data
quite well.

The ROC and z-ROC functions for the averaged data and model
predictions are shown in Figure 7 along with the average decision
boundaries. The ROC functions for the older adults, shown in
Panel A, are more symmetric over the negative diagonal than the
ROC functions for younger adults. The z-ROC functions for both
groups of subjects, shown in Panel B, are approximately linear.
Both the ROC and z-ROC functions for the younger adults are
slightly higher than the functions for the younger adults as a result
of the small difference in accuracy between the two groups. The
decision boundaries for each confidence category and each age
group are shown in Panel C. As mentioned previously, there was
no significant effect of age on boundary settings (i.e., younger and
older adults had similar average boundary values). However, the
changes in bounds across conditions were not the same for older
and younger adults. On average the older adults adopted slightly
lower boundaries for the old response categories and slightly
higher boundaries for the new response categories (see the bottom
row of Figure 7). Averaged across the different confidence levels,
for older adults the mean decision boundary for old responses was
2.06, the mean boundary for new responses was 2.24, and this
difference was significant, t(10) � 2.45, p � .05. In other words,
the older adults required a slightly greater amount of evidence to
decide an item was new than they did to decide an item was old.
Behaviorally, this pattern of decision boundaries would result in
slight increase in both hit and false alarm rates relative to a
symmetric pattern of decision boundaries. In contrast to the older
adults, the younger subjects’ decision boundaries were relatively
symmetric across the old and new response categories. For
younger adults the mean decision boundary for old responses was
2.19, the mean boundary for new responses was 2.04, and this
difference was not significant, t(10) � 	1.80, p 
 .05. The
changes in the decision boundaries across confidence levels were
also less extreme for the older adults than for the younger adults.
The younger adults show a more pronounced inverted u-shape
across confidence levels where the older adults show a slight
u-shape across confidence levels for only the old responses. This
difference captures the observed RT pattern where the difference
between older and younger subjects’ RTs was greater for the
high-confidence responses than for the low-confidence responses.

Overall, the older adults made responses more slowly and
slightly less accurately than the younger adults and the model was
able to account for these effects. The change in RTs for the older
adults relative to younger adults was fit by the model mainly as a
change in nondecision time (see Ratcliff, 2008). A change in
nondecision time produces shifts in the RT distribution, but does
not affect the overall shape of the distribution. This is consistent
with the observed RT distributions for the older and younger
adults. If we plot the RT quantiles of the older subjects against the
RT quantiles of the younger subjects, the resulting line is close to
linear and is well described by a line with a slope of one and an

Figure 3. Response proportions for each confidence response averaged
across conditions. The ordering of the confidence scale for the “new”
conditions has been reversed such that for all conditions the confidence
scale ranges from a high-confidence error response (1) to a high-
confidence correct response (6). The dashed line represents the averaged
data from the younger adults and the solid line represents the averaged data
from the older adults.
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intercept equal to the average Ter difference between the old and
young subjects (as shown in Figure 8). The points fall quite close
to this line indicating that the older adults’ RT distribution is of the
same shape as the younger adults’ RT distribution and is merely
shifted by an increase in nondecision time. For comparison, the
best-fitting line for these data points is also included in Figure 8 (in
red). To examine (and eliminate) the possibility that these results
reflect tradeoffs between parameter values rather than valid indi-
vidual differences, we simulated 40 sets of data using the mean
parameter values for the older adults and the same number of
observations per condition as in our behavioral data, and then fit
RTCON2 to the simulated data. The best-fitting estimates for
nondecision time, variability in nondecision time, and the average
of the six decision boundaries for each fit are plotted against each
other in Figure 9A along with correlations between these param-
eters. There is a correlation between the nondecision estimates and
the decision boundary estimates showing that these parameters
may tradeoff. However, the range of recovered nondecision esti-

mates is about 30 ms, which is much smaller than the difference
between older and younger subjects observed in our experiments
(around 190 ms). We also generated simulated data with either
large or small nondecision times (600 or 300 ms) or large or small
decision boundaries (average height of 2.35 or 1.95) and then
attempted to fit the data forcing the wrong parameter to account for
the effects. That is, if the data were simulated using the smaller
nondecision time, we fixed the nondecision time to the larger
value, fixed all other parameters except the boundaries to the true
generating values, and only allowed the decision boundaries to
vary. The resulting fits are shown in Figure 9B. The first row
shows the data simulated with a large or small value of nondeci-
sion time (the numbers) along with the best-fitting predictions
from the model fit with only decision boundaries changing (the
dashed lines). The model can produce reasonable predictions for
the median RT values across conditions, but produces RT distri-
butions with too much or too little spread. The second row shows
the data simulated with large or small average decision boundaries

Table 2
Mean Probability of Correct Responses (“Old” Responses in Old Conditions and “New”
Responses in New Conditions) and SDs Across Conditions and Age Groups, Collapsed Across
Confidence Levels

Age
group

New, HF
words

Old strong,
HF words

Old weak,
HF words

New, LF
words

Old strong,
LF words

Old weak,
LF words

Old .65 (.13) .74 (.06) .68 (.08) .75 (.14) .81 (.07) .74 (.08)
Young .70 (.12) .79 (.08) .70 (.10) .86 (.05) .87 (.04) .75 (.06)

Note. HF � high-frequency; LF � low-frequency.

Figure 4. Response proportions for each confidence response, experimental condition, and age group. Dashed
lines represent the averaged data from the younger adults and solid lines represent the averaged data from the
older adults.
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(the numbers) along with the best-fitting predictions from the
model fit with only nondecision time changing (the dashed lines).
The model can produce reasonable predictions for the .1 quantiles
of the RT distributions, but produces distributions with the wrong
amount of skew in the tails. These simulations demonstrate that,
while there may be small tradeoffs between nondecision and
bound height parameters when fitting RTCON2, these parameters
affect RT distributions in distinguishable ways such that the two
parameters are not interchangeable.

The slight decrease in accuracy for the older adults was fit by
the model as a change in drift rate. If we compare a measure of d=
generated from the data with a model-based measure of d=, we see
that the two measures are in close agreement (see Figure 10). The
behavioral d= is calculated by subtracting the normalized (z trans-
formed) false alarm rate from the normalized hit rate for each
condition and subject (collapsing across confidence levels). The
model-based d= is calculated from the parameter estimates for the
evidence strength distributions by plugging the appropriate values
into the formula below (where �o and �o are the mean and SD of
the old items and �N and �N are the mean and SD of the new
items):

d� �
	o � 	N

�1
2��o

2 � �N
2�

The vi parameters may be used for �o and �N as these param-
eters give the means of the evidence strength distributions across
trials. On each trial, the evidence strength distribution has a SD of
one and the location of the distribution varies across-trials accord-

ing to the parameters such that the SD of the evidence distribution

across trials is �si
2�12.

While the younger adults had larger d= values on average than
the older adults, it’s also worth noting that there is a large degree
of overlap between the two groups illustrated in Figure 10 (each
point represents one subject and one condition). Although each
subject is contributing four points to this figure (one per condi-
tion), the results are not dependent on any one subject. For exam-
ple, for the older adults the six largest d= values come from five
different subjects. The model is thus able to account for the
differences in both RT and accuracy observed between the two age
groups.

Discussion

We examined the effects of aging on performance in an item-
recognition experiment with confidence judgments. Because our
sample size is relatively small, our general conclusions about aging
are tentative. However, the results and effect sizes are consistent
with previous research investigating decision-making and aging.
Consistent with previous research, the older adults in this experi-
ment responded more slowly than the younger adults and slightly
less accurately. We fit these data with the RTCON2 model and the
model was able to capture these effects in an appropriate way. The
change in RT was reproduced in the model as a change in nonde-
cision time. The slight change in accuracy was reproduced in the
model as a slight decrease in drift parameters. The effect of age on
nondecision time was moderately large (�2 � 0.59). The effect of
age on drift rates was small (�2 � 0.07) and by contrast, the effect

Table 3
Mean Parameter Values and SDs Across Subject Groups

Age group Ter st a � sb �2

Old 559 (104) 124.0 (23.1) 0.028 0.100 0.400 861 (347)
Young 370 (52.0) 83.6 (33.0) 0.028 0.100 0.400 910 (226)

b1 b2 b3 b4 b5 b6

Old 2.33 (.81) 2.20 (.60) 2.20 (.40) 2.29 (.35) 2.09 (.34) 1.80 (.45)
Young 1.83 (.47) 1.84 (.27) 2.45 (.62) 2.61 (.62) 2.13 (.28) 1.84 (.50)

c1 c2 c3 c4 c5

Old 	1.24 (.47) 	.06 (.21) 0.69 (.15) 1.47 (.33) 2.84 (.37)
Young 	1.07 (.55) 	.07 (.37) 0.74 (.24) 1.76 (.37) 2.83 (.48)

vN-HF vOS-HF vOW-HF vN-LF vOS-LF vOW-LF

Old 0.00 2.03 (.63) 1.68 (.52) 	0.69 (.74) 2.76 (.87) 2.29 (.73)
Young 0.00 2.61 (.49) 2.03 (.50) 	1.05 (.41) 3.67 (.34) 2.68 (.52)

sN-HF sOS-HF sOW-HF sN-LF sOS-LF sOW-LF

Old 1.34 (.20) 1.67 (.07) 1.65 (.12) 1.57 (.22) 1.75 (.11) 1.82 (.09)
Young 1.06 (.22) 1.68 (.10) 1.68 (.14) 1.37 (.29) 1.74 (.21) 1.89 (.20)

Note. Ter is the mean nondecision time, st is the range in nondecision time, � is the SD in within trial
variability, a is the scaling factor that multiplies drift rate, sb is the range in variability in the decision boundaries,
b1–b6 Are the decision boundaries, c1–c5 are the confidence criteria, the � values are the mean values of the drift
rate distributions for each experimental condition, and the s values are the between-trial variability values for
each experimental condition. �2 is the goodness-of-fit value for the model fits. N-HF � New, high-frequency;
OS-HF � Old strong, high-frequency; OW-HF � Old weak, high-frequency; N-LF � New, low-frequency;
OS-LF � Old strong, low-frequency; OW-LF � Old weak, low-frequency.
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of condition on drift rates was large (�2 � 0.50). This shows that
the drift rate result across age groups is not the result of large
amounts of noise or insufficient sample size. Both of these findings
are consistent with previous modeling work investigating changes
in decision-making as a function of age (Ratcliff et al., 2001, 2003,
2004, 2006a, 2006b, 2007, 2010, 2011). Earlier research has
found only slight decreases in drift rates in item recognition
memory tasks (Ratcliff et al., 2004, 2006a, 2010, 2011) and
larger decreases in other tasks (e.g., letter discrimination:
Thapar, Ratcliff, & McKoon, 2003; associative recognition:

Ratcliff et al., 2011; Ratcliff & McKoon, 2008; McKoon &
Ratcliff, 2012). Although differences in drift rate will also
affect RTs, the difference in RTs between the two age groups

Figure 5. Averaged empirical response time (RT) data and averaged
predicted RT data for each condition and age group. The six confidence
categories are plotted along the x-axis and the five RT quantiles for each
confidence category are plotted vertically. The numbers 1–5 represent the
average RT quantiles from the behavioral data and the lines represent the
average predictions from RTCON2.

Figure 6. Empirical data (quantile response time (RTs) and response
proportions) plotted against model predictions from all subjects and all
experimental conditions with reference lines with intercept of 0 and slope
of 1. Conditions with fewer than 25 responses are plotted in red. See the
online article for the color version of this figure.
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in this experiment is primarily explained by the difference in
nondecision time. The approximate linearity of the points in
Figure 8 indicates that, relative to the RT distribution of the
younger subjects, the RT distribution of the older subjects is
shifted but does not appear to differ in terms of its shape or
skew. Changes in nondecision time can explain such a shift in
RT distributions whereas changes in mean drift rates or bound-
ary separation will affect the shape of the RT distribution (as
demonstrated in Figure 9B).

Previous applications of the diffusion model to two-choice data
from older adults have often found that older adults have larger

values of boundary separation than younger adults when no special
instructions are given or when both groups are instructed to em-
phasize speed (Ratcliff et al., 2004). However, when both groups
are instructed to emphasize accuracy then sometimes the differ-
ence in boundary separation is reduced or eliminated (Ratcliff et
al., 2004, 2006a). Furthermore, no difference in boundary separa-
tion was observed in a response-signal task with older and younger
adults (Ratcliff, 2008) and in a brightness discrimination task with
older and younger adults (Ratcliff et al., 2003).

Ratcliff (2008) fit data from older and younger adults from both
a response-signal and a standard RT version of a numerosity
discrimination task. In modeling the response signal task, the only
significant difference between the two groups was that the older
adults had longer nondecision times. That is, the older adults were
able to extract the same quality of information from the stimulus as
younger adults and set similar decision thresholds for making their
responses, but took longer to extract the relevant information from the
stimulus and make a response. The size of the boundary separation in
the response signal task was also comparable to the size of the
boundary separation in the standard RT task when subjects were
instructed to emphasize accuracy. Ratcliff et al. (2003) fit data from
older and younger adults from a brightness discrimination task and
found only differences in nondecision times across the two age
groups. This confidence judgment paradigm is thus not the first to
show no difference between old and young adults in terms of decision
boundaries, although it is not yet clear why some tasks and response
paradigms produce a difference and others do not.

Median RTs in this confidence-judgment task were considerably
longer than those observed in two-choice versions of this task. In

Figure 7. Average receiver operating characteristics (ROCs), z-ROCs,
and decision boundaries. (A) Average empirical ROC functions (solid
lines) and average predicted ROC functions (dashed lines) for old and
young subjects. (B) Average empirical z-ROC functions (solid lines) and
average predicted z-ROC functions (dashed lines) for old and young
subjects. (C) Average decision boundary height for each confidence re-
sponse for old and young subjects. See the online article for the color
version of this figure.

Figure 8. Comparison of older and younger subject response time (RT)
quantiles averaged across subjects and conditions. The quantiles increase
from the 0.1 quantile in the bottom left to the 0.9 quantile in the top right
(in steps of 0.2). SE bars for each quantile are shown as well as the
best-fitting linear regression line (the red dashed line) and reference line
with a slope of 1 and intercept equal to the mean Ter difference between
old and young subjects (the black line). See the online article for the color
version of this figure.
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a two-choice recognition memory experiment in Ratcliff et al.
(2011), the average median RTs for college-age adults were
around 600 ms across all conditions. In our confidence judgment
experiment, the average median RTs for the college-age adults
ranged from 800 to 1,200 ms, depending on the confidence level.
These RTs are more similar to those observed from college-age
adults when they have been instructed to emphasize accuracy over
speed (cf. Ratcliff et al., 2006a). It is possible that making confi-
dence judgments implicitly encourages subjects to emphasize ac-
curacy over speed and so induces behavior that is more similar
across the two age groups. Alternatively, it is possible that making
confidence judgments, with the increased number of response
options, seems more difficult than making two-choice judgments
so that even young subjects set more conservative boundaries than
they would in a two-choice task (cf. Starns & Ratcliff, 2010).

There are numerous methods for assessing subjects’ confidence
in their responses. Confidence judgments may be collected at the
same time as a decision (this is the more traditional approach,
especially in memory tasks; Banks, 1970; Egan, 1958; Lockhart &
Murdock, 1970; Ratcliff et al., 1992, 1994; Wickelgren & Norman,
1966) or following a two-choice decision (that is used more often
in perceptual tasks, Baranski & Petrusic, 1998; Merkle & Van
Zandt, 2006; Pleskac & Busemeyer, 2010; Van Zandt, 2000; Van
Zandt & Maldonado-Molina, 2004; Vickers, 1979; Vickers & Lee,
1998, 2000). Confidence may be reported using an ordinal scale
(as in more of the studies references above) or on a continuous
scale (Kvam et al., 2015; Province & Rouder, 2012). Confidence
judgments have also been associated with a variety of meta-
memory concepts such as prospective confidence judgments (i.e.,
predictions made at the time of learning about future ability to
recall an item), judgments of learning, feeling-of-knowing, and
other associated concepts.

Our study is novel in examining both RTs and response proportions
from older adults in a memory task with confidence judgments. Other
studies, however, have examined just response proportions from older
adults making confidence judgments and have analyzed these results
according to a dual-process description of memory (Healy, Light, &
Chung, 2005; Howard, Bessette-Symons, Zhang, & Hoyer, 2006;
Toth & Parks, 2006). According to a general dual-process account,
recognition memory relies on two components: recollection and fa-
miliarity. Familiarity is thought to consist of a general sense of
oldness whereas recollection is thought to include qualitative infor-
mation about the remembered item or its context. This account is
often implemented as an equal-variance signal-detection process for

Figure 9. Simulations of tradeoffs between parameters that affect response
time (RTs). (A) Parameter estimates for nondecision time (Ter), variability in
nondecision time (st) and the average of the six decision boundaries plotted
against each other along with correlations for each pair of parameters. (B) Fits
of the model to simulated data sets. The six confidence categories are plotted
along the x-axis and the five RT quantiles for each confidence category are
plotted vertically. The numbers 1–5 represent the RT quantiles from the
simulated data and the lines represent the predictions from the model fits. The
first row shows the data simulated using either a small or large value of Ter and
the second row shows the data simulated using either small or large decision
boundaries. See the online article for the color version of this figure.

Figure 10. Comparison of performance measures derived from the data
and from the model parameters. A measure of d= based on hit and false
alarm rates (averaged across confidence levels) is plotted against a model-
based measure of d= are based on the means and SDs of the drift rate
distributions from the model fits. Each point represents the d= value from
a single condition for a single subject. The horizontal and vertical lines
represent the mean d= values for each age group and each type of d=. See
the online article for the color version of this figure.
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familiarity plus a discrete threshold process for recollection (Yoneli-
nas, 1994; Yonelinas & Parks, 2007). When responding is based
entirely on familiarity, this model predicts asymmetrical curvilinear
ROC functions and linear z-ROC functions with a slope equal to one.
When responding is based on recollection for some proportion of the
word pairs, the model predicts linear ROC functions and slightly
nonlinear (i.e., slightly U-shaped) z-ROC functions with slopes less
than one.

Researchers invested in a dual-process account of memory have
collected data from older adults using a variety of procedures aimed
at identifying which components of memory decline with age (e.g.,
remember or know judgments: Bastin & Van Der Linden, 2003; Toth
& Parks, 2006; process-dissociation: Jennings & Jacoby, 1997; struc-
tural equation modeling: Quamme, Yonelinas, Widaman, Kroll, &
Sauvé, 2004; confidence judgments: Howard et al., 2006; Toth &
Parks, 2006; Healy, Light, & Chung, 2005). Most of the studies have
claimed that older adults show a decrease in recollection (see Yoneli-
nas, 2002), but results about familiarity have been mixed with some
studies finding a decrease in familiarity for older adults (Mark &
Rugg, 1998; Schacter, Koutstaal, Johnson, Gross, & Angell, 1997;
Toth & Parks, 2006) and other studies finding no difference or a
nonsignificant increase in familiarity (Bastin & Van Der Linden,
2003; Howard et al., 2006; Quamme et al., 2004). It has been argued
that these differences may be a result of the procedures used to estimate
recollection and familiarity components (Light, Prull, LaVoie, & Healy,
2000; Prull, Dawes, Martin, Rosenberg, & Light, 2006) and the overall
performance levels (Yonelinas, 2002). It is worth noting that more sym-
metric ROC functions can also be produced in a standard signal detection
model by including criterion variability (Benjamin, Diaz, & Wee, 2009).
Older adults could have more variability in criterion placements and this
would produce weaker and more symmetric ROC functions. However,
none of these analyses consider RTs or any kind of process model for
making decisions.

The RTCON2 model distinguishes between the evidence used to
make a decision (i.e., the information from memory) and the actual
process of making a decision. This makes the model well suited not
only for examining differences across age groups, but also for disen-
tangling changes in evidence from memory from changes in response
strategies. The ROC functions observed in our experiment are con-
sistent with a dual-process account in that a decrease in recollection
would produce ROC functions that are more symmetric. This is what
we observed for the older adults. However, we were able to fit these
results with a single-process model that was also able to account for
the RTs across all of the subjects and confidence levels. In contrast
there is no dual process model that is capable of dealing with RTs and
so such models are incomplete. The RTCON2 model is able to capture
the effects in the experimental data including the behavior of RT distri-
butions with a simple shift in the drift distribution, small changes in
decision thresholds, and a large change in nondecision time.

Other experiments have examined aging and confidence judgments
in associative recognition and source memory tasks. These paradigms
have produced some results that differ from item recognition results.
In associative and source-memory studies, older adults have been
found to make more high-confidence false alarms and are less sensi-
tive to differences in difficulty than younger adults (Chua, Schacter, &
Sperling, 2009; Dodson, Bawa, & Krueger, 2007; Dodson, Bawa, &
Slotnick, 2007; Dodson & Krueger, 2006; Fandakova et al., 2013;
Kelley & Sahakyan, 2003; Norman & Schacter, 1997; Pacheco et al.,
2012; Shing et al., 2009). Dodson et al. (2007) and Pacheco et al.

(2012) found that older adults were less accurate than younger adults
at assessing the accuracy of source judgments and cued-recall re-
sponses (even when matched on performance), but not less accurate
when assessing item-recognition responses. Fandakova et al. (2013)
and Shing et al. (2009) found that older adults made more high-
confidence errors in an associative recognition task. Kelley and Sa-
hakyan (2003) found that older and younger adults were equally able
to judge the accuracy of their cued-recall responses in a control
condition, but older adults showed a greater decrease in metamemory
accuracy than younger adults in a deceptive condition involving
associatively related lures.

Consistent with the item recognition findings, older adults in our
study did not make more high confidence errors than younger
adults overall, although they did make slightly more medium and
high confidence errors to new words (i.e., they were slightly more
likely than younger subjects to incorrectly claim they remembered
studying a new word with medium or high confidence). This can
be explained in the model by looking at the pattern of boundary
heights for old and young subjects across the old and new response
categories. On average, the older adults adopted slightly lower
boundaries for the old response categories and slightly higher
boundaries for the new response categories (see the bottom row of
Figure 6). This is equivalent to a response bias in a two-choice
task. As mentioned previously, studies of two-choice decision-
making have typically found that older adults adopt more conser-
vative decision-boundaries than younger adults (Ratcliff, Thapar,
& McKoon, 2004). In other words, older adults tend to use a
decision-making approach that reduces the number of incorrect
responses. The asymmetric decision boundaries observed in this
experiment may illustrate a similar strategy, albeit one that reduces
one type of incorrect response (misses) while increasing another
(false alarms). It would be interesting to see in future work if a
similar bias could account for some of the high-confidence errors
observed in associative and source memory tasks for older adults.

Fitting RT distributions is what enables RTCON2 to distinguish
between changes in response proportions that are the result of
changes in evidence and changes in response proportions that are
the result of changes in decision settings. Changes in the strength
of the evidence being used to make the decision (i.e., changes in
drift rates) can change the proportion of responses made at each
level of the confidence scale and this would correspond to an
overall change in performance. However, changes in response
proportions can also occur because of differences in how subjects
set decision boundaries across the confidence scale. This type of
change can reflect individual preferences (e.g., being more or less
cautious about making errors in general, being more or less willing
to make high confidence responses, and so on) or it can be the
result of instructions (e.g., to respond more quickly or more
accurately). These changes in response patterns are distinguishable
because they have different effects on the RT distributions. Shifts
in the evidence distribution will change the amount of evidence
within each response region. These changes in evidence primarily
affect the tail of the RT distribution and only minimally affect the
leading edge of the RT distribution. In contrast, changing the
height of the decision boundaries affects both the leading edge and
the tail of the RT distribution. Fitting RT distributions thus enables
us to distinguish between changes in evidence and changes in the
decision-making process.
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Conclusions

We modeled both response proportions and RT quantiles from
older and younger adults in an item-recognition task with confi-
dence judgments using RTCON2. This modeling approach pro-
vides a more complete account of the experimental data by ac-
counting for both choice proportions and RT distributions for each
of the choice categories. This allows us to distinguish between
changes in memory performance and differences in decision-
making preferences. As in previous modeling work with two-
choice tasks, the longer RTs of older adults were well explained by
changes in nondecision processing and there were only small
changes in drift rate with age (and these changes were consistent
with the observed changes in accuracy). Older adults did not use
more conservative decision thresholds than younger adults in this
task as in some earlier studies (Ratcliff, 2008; Ratcliff et al., 2003,
2004, 2006a), but did demonstrate a slight bias toward calling
items old. The RTCON2 model was able to fit all of the behavioral
results with a single memory process and a different pattern of
decision boundaries for older adults than younger adults.
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Appendix

Individual Fits and Additional Analyses

See Figures A1–A4 for individual data and model fits for older and
younger adults. RT quantiles are only included for high-frequency
(HF) conditions but the patterns were consistent across LF conditions.

Table A1 contains mean parameter values from the model fits
when the scale on drift, within-trial noise, and the variability in the
decision boundaries are allowed to vary across age groups. Note
that the best-fitting values for these parameters are very similar

across the two age groups. Table A2 contains mean parameter
values from when the model was fit to data from only seven
sessions per subject. To account for practice effects, we fit data
from Sessions 2–8 from the older subjects and Sessions 1–7 from
the younger subjects (because the younger subjects initially com-
pleted one practice session). For both of these fits, all of the same
patterns of results were observed.

(Appendix continues)
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Figure A1. Older subjects’ data and model fits. Each column contains data and model predictions for one subject. The
first three rows plot the response time (RT) quantiles for each confidence response with the six response keys plotted on the
x-axis (the “sure new” category is labeled 1 and the “sure old” category is labeled 6) and the RT quantiles plotted vertically
with each line representing a RT quantile. Only the high-frequency conditions are shown to save space. The numbers plotted
represent the empirical data and the lines represent predicted data from the model. In conditions where subjects made
between 5 and 10 responses the median RT is plotted as an ‘M’ and the other quantiles are not included. Conditions where
subjects made fewer than five responses are omitted from the figure. In conditions where the model predicted between 5 and
10 responses only the median RT is plotted and the other quantiles are not included. Conditions where the model predicted
fewer than five responses are omitted from the figure. The fourth row plots the response proportions from the data against
the model predictions for all conditions along with a reference line (with intercept of 0 and slope of 1). The fifth and sixth
row in each column plot the empirical and predicted z-receiver operating characteristic (ROC) and ROC curves for each
subject. The solid lines depict the empirical data and the dashed lines depict the model predictions. The blue, magenta, red,
and orange lines depict the low-frequency (LF): Strong, LF: Weak, high-frequency (HF): Strong, and HF: Weak conditions,
respectively. The seventh row plots the decision boundaries for each confidence response and the eighth row plots the
response proportions (both empirical data and model predictions) for each confidence response and condition. The solid lines
depict the empirical data and the dashed lines depict the model predictions. The red, orange, green, cyan, blue, and magenta
lines depict the HF: New, LF: New, HF: Strong Old, HF: Weak Old, LF: Strong Old, and LF: Weak Old conditions,
respectively. See the online article for the color version of this figure.
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Figure A2. Older subjects’ data and model fits. Each column contains data and model predictions for one subject. The
first three rows plot the response time (RT) quantiles for each confidence response with the six response keys plotted on the
x-axis (the “sure new” category is labeled 1 and the “sure old” category is labeled 6) and the RT quantiles plotted vertically
with each line representing a RT quantile. Only the high-frequency conditions are shown to save space. The numbers plotted
represent the empirical data and the lines represent predicted data from the model. In conditions where subjects made
between 5 and 10 responses the median RT is plotted as an ‘M’ and the other quantiles are not included. Conditions where
subjects made fewer than five responses are omitted from the figure. In conditions where the model predicted between 5 and
10 responses only the median RT is plotted and the other quantiles are not included. Conditions where the model predicted
fewer than five responses are omitted from the figure. The fourth row plots the response proportions from the data against
the model predictions for all conditions along with a reference line (with intercept of 0 and slope of 1). The fifth and sixth
row in each column plot the empirical and predicted z-receiver operating characteristic (ROC) and ROC curves for each
subject. The solid lines depict the empirical data and the dashed lines depict the model predictions. The blue, magenta, red,
and orange lines depict the low-frequency (LF): Strong, LF: Weak, high-frequency (HF): Strong, and HF: Weak conditions,
respectively. The seventh row plots the decision boundaries for each confidence response and the eighth row plots the
response proportions (both empirical data and model predictions) for each confidence response and condition. The solid lines
depict the empirical data and the dashed lines depict the model predictions. The red, orange, green, cyan, blue, and magenta
lines depict the HF: New, LF: New, HF: Strong Old, HF: Weak Old, LF: Strong Old, and LF: Weak Old conditions,
respectively. See the online article for the color version of this figure.
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Figure A3. Younger subjects’ data and model fits. Same plotting conventions as A1–A2. See the online article
for the color version of this figure.

(Appendix continues)
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Figure A4. Younger subjects’ data and model fits. Same plotting conventions as A1–A2. See the online article
for the color version of this figure.

(Appendix continues)
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Table A1
Mean Parameter Values and SDs Across Subject Groups With All Parameters Allowed to Vary Across
Age Groups

Age group Ter st a � sb �2

Old 555 (108) 129.0 (28.1) 0.031 (.004) 0.093 (.006) 0.404 (.049) 682 (247)
Young 368 (51.2) 76.9 (36.1) 0.032 (.004) 0.090 (.005) 0.430 (.031) 726 (237)

b1 b2 b3 b4 b5 b6

Old 2.31 (.81) 2.10 (.63) 2.15 (.42) 2.28 (.37) 2.06 (.33) 1.75 (.44)
Young 1.80 (.46) 1.75 (.28) 2.32 (.58) 2.48 (.58) 2.04 (.29) 1.79 (.47)

c1 c2 c3 c4 c5

Old 	1.23 (.46) 	0.08 (.22) 0.70 (.15) 1.53 (.38) 2.93 (.43)
Young 	1.09 (.59) 	0.09 (.40) 0.75 (.25) 1.73 (.35) 2.79 (.47)

vN-HF vOS-HF vOW-HF vN-LF vOS-LF vOW-LF

Old 0.00 2.04 (.62) 1.65 (.55) 	0.57 (.66) 2.76 (.83) 2.25 (.69)
Young 0.00 2.47 (.51) 1.95 (.49) 	0.97 (.37) 3.45 (.31) 2.52 (.48)

sN-HF sOS-HF sOW-HF sN-LF sOS-LF sOW-LF

Old 1.39 (.18) 1.73 (.12) 1.69 (.13) 1.59 (.20) 1.86 (.17) 1.94 (.20)
Young 1.17 (.25) 1.73 (.11) 1.75 (.13) 1.43 (.25) 1.91 (.24) 1.98 (.22)

Note. Ter is the mean nondecision time, st is the range in nondecision time, � is the SD in within trial variability, a is the
scaling factor that multiplies drift rate, sb is the range in variability in the decision boundaries, b1–b6 are the decision
boundaries, c1–c5 are the confidence criteria, the � values are the mean values of the drift rate distributions for each
experimental condition, and the s values are the between-trial variability values for each experimental condition. �2 is the
goodness-of-fit value for the model fits. N-HF � New, high-frequency; OS-HF � Old strong, high-frequency; OW-HF �
Old weak, high-frequency; N-LF � New, low-frequency; OS-LF � Old strong, low-frequency; OW-LF � Old weak,
low-frequency.

(Appendix continues)
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Table A2
Mean Parameter Values and SDs Across Subject Groups From Fits to Six Sessions Per Subject

Age group Ter st a � sb �2

Old 561 (108) 131.0 (36.7) 0.028 0.100 0.400 814 (344)
Young 375 (53.6) 87.0 (37.6) 0.028 0.100 0.400 722 (213)

b1 b2 b3 b4 b5 b6

Old 2.27 (.82) 2.15 (.57) 2.17 (.38) 2.27 (.37) 2.07 (.34) 1.75 (.44)
Young 1.86 (.48) 1.90 (.32) 2.54 (.64) 2.65 (.64) 2.21 (.28) 1.83 (.46)

c1 c2 c3 c4 c5

Old 	1.29 (.49) 	0.11 (.26) 0.69 (.16) 1.54 (.40) 2.98 (.44)
Young 	1.17 (.60) 	0.07 (.38) 0.79 (.27) 1.84 (.43) 2.95 (.54)

vN-HF vOS-HF vOW-HF vN-LF vOS-LF vOW-LF

Old 0.00 2.08 (.68) 1.70 (.57) 	0.68 (.72) 2.84 (.88) 2.30 (.72)
Young 0.00 2.69 (.60) 2.05 (.57) 	1.11 (.40) 3.73 (.41) 2.70 (.61)

sN-HF sOS-HF sOW-HF sN-LF sOS-LF sOW-LF

Old 1.39 (.20) 1.66 (.16) 1.64 (.11) 1.61 (.19) 1.80 (.16) 1.85 (.13)
Young 1.19 (.21) 1.71 (.08) 1.74 (.09) 1.49 (.18) 1.78 (.15) 1.91 (.18)

Note. Ter is the mean nondecision time, st is the range in nondecision time, � is the SD in within trial variability, a is the
scaling factor that multiplies drift rate, sb is the range in variability in the decision boundaries, b1–b6 are the decision
boundaries, c1–c5 are the confidence criteria, the � values are the mean values of the drift rate distributions for each
experimental condition, and the s values are the between-trial variability values for each experimental condition. �2 is the
goodness-of-fit value for the model fits. N-HF � New, high-frequency; OS-HF � Old strong, high-frequency; OW-HF �
Old weak, high-frequency; N-LF � New, low-frequency; OS-LF � Old strong, low-frequency; OW-LF � Old weak,
low-frequency.
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