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Introduction

One debate in the numerical cognition literature focuses on whether performance across individ-
uals on precise symbolic numerical tasks, in which children and adults compare Arabic numerals such
as 45 versus 50, is correlated with performance on approximate non-symbolic numerosity tasks, in
which participants compare 45 versus 50 dots. The nature of the relation between these tasks and
among these tasks and overall mathematics achievement tests is unclear because there is a discrep-
ancy in the findings reported in the numerical cognition literature. Sometimes performance on sym-
bolic and non-symbolic tasks is correlated, but sometimes it is not (De Smedt, Verschaffel, &
Ghesquiere, 2009; Fazio, Bailey, Thompson, & Siegler, 2014; Gilmore, Attridge, & Inglis, 2011;
Halberda, Ly, Wilmer, Naiman, & Germine, 2012; Holloway & Ansari, 2009; Maloney, Risko, Preston,
Ansari, & Fugelsang, 2010; Price, Palmer, Battista, & Ansari, 2012; Sasanguie, Defever, Van den
Bussche, & Reynvoet, 2011). Sometimes performance on non-symbolic comparison tasks is correlated
with mathematics achievement scores, and sometimes it is not (De Smedt et al., 2009; Durand, Hulme,
Larkin, & Snowling, 2005; Fazio et al., 2014; Gilmore, McCarthy, & Spelke, 2010; Halberda, Mazzocco,
& Feigenson, 2008; Holloway & Ansari, 2009; Inglis, Attridge, Batchelor, & Gilmore, 2011; Libertus,
Feigenson, & Halberda, 2011; Lyons & Beilock, 2011; Mazzocco, Feigenson, & Halberda, 2011a,
2011b; Mundy & Gilmore, 2009; Price et al., 2012).

Recent research by Inglis and colleagues (2011), Halberda and colleagues (2012), and Fazio and
colleagues (2014) illustrates variability in the reported strength of the relationship between non-
symbolic tasks and mathematics achievement. Inglis and colleagues (2011) reported a strong correla-
tion for 7- to 9-year-old children between accuracy on the calculation subtests of the Woodcock-John-
son mathematics achievement test and accuracy on a non-symbolic dot comparison task. Accuracy
was operationalized as the Weber fraction, w, which is a measure of precision/acuity of an individual’s
approximate number system (ANS). It is hypothesized that the ANS allows humans of all ages, as well
as animals, to approximate numerical magnitudes or values (Dehaene, Dehaene-Lambertz, & Cohen,
1998). Larger values of w indicate lower levels of numerical precision. Inglis and colleagues found a
negative correlation between w on the non-symbolic comparison task and standardized mathematics
achievement scores for children but not for adults. That is, those children who had larger Weber frac-
tions had lower standardized mathematics achievement scores. Inglis and colleagues’ (2011) findings
contrast with those of Halberda and colleagues (2012), who used a large internet-based sample of chil-
dren and adults between 11 and 85 years of age to complete a non-symbolic number comparison task.
Halberda and colleagues found a small but significant correlation between ANS precision on the non-
symbolic comparison task and school mathematics ability across all ages tested. Fazio and colleagues
(2014) found that after controlling for standardized reading performance, a non-mathematics test of
basic cognitive ability, both symbolic and non-symbolic performance uniquely predicted mathematics
achievement scores. That is, both symbolic knowledge and non-symbolic knowledge contribute to
overall mathematics achievement. However, performance on symbolic tasks explained a greater pro-
portion of the variance in mathematics achievement than did performance on non-symbolic tasks.
Taken together, these three examples illustrate the variability in the strength of the correlations that
exist between non-symbolic task performance and mathematics achievement across the lifespan. Two
recent meta-analyses (Chen & Li, 2014; Fazio et al., 2014) provided possible explanations for these
variable findings.

Chen and Li’s (2014) meta-analysis claims that one source of the discrepant results is that many of
the previously conducted studies may have been underpowered, and the small sample sizes led to
spurious conclusions. Fazio and colleagues’ (2014) meta-analysis found a small reliable correlation
between non-symbolic numerical performance and overall mathematics achievement. The size of
the correlations reported in the individual studies that comprised the meta-analysis differed with
regard to the dependent variables that the studies’ authors chose. For example, when accuracy (per-
centage correct) or accuracy-based measures (w) in addition to response time (RT) was the dependent
variable of choice, the correlation between performance on the non-symbolic numerical task and
standardized mathematics achievement was stronger than when a measure of RT was used alone.
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The relationship between performance on non-symbolic tasks and overall mathematics achievement
was also stronger for children under 6 years of age as compared with children between 6 and 18 years
of age and adult participants. This finding is consistent with age differences found by Inglis and
colleagues (2011). Fazio and colleagues interpreted the age differences to mean that formal schooling
might play a role in the developmental differences and offered possible interpretations. First, children
under 6 years of age might be more reliant on non-symbolic numerical representations than children
in the 6- to 18-year-old age range and adults, who presumably have extensive experience in working
with symbolic numbers in formal schooling environments. Second, mathematics achievement tests for
children under 6 years of age might be more sensitive to non-symbolic numerical knowledge. In sum-
mary, Fazio and colleagues’ (2014) meta-analysis indicated that the age of the participants completing
the non-symbolic and mathematics achievement tests and the dependent variables chosen to measure
the numerical knowledge might contribute to the discrepancies found in the numerical cognition
literature.

Recent work by Ratcliff, Thompson, and McKoon (2015), in which the diffusion model (Ratcliff,
1978) was applied to adults’ performance on symbolic and non-symbolic discrimination tasks, agreed
with conclusions drawn by Fazio and colleagues (2014). They argued that it is misleading for research-
ers to report only RT or accuracy from symbolic and non-symbolic discrimination tasks because each
dependent variable could present a slightly different view of participants’ numerical information pro-
cessing abilities. Intuition might suggest that RT and accuracy are negatively correlated with one
another such that better performance means more accurate responses and faster responses relative
to the average values for the group (e.g., see Siegler’'s (1996) overlapping waves theory that describes
how children know and use various strategies that differ in accuracy and efficiency). However, Ratcliff
and colleagues (2015) provided evidence that an individual’s accuracy and RT were not correlated
within symbolic and non-symbolic numerical discrimination tasks (this is also true in other tasks;
Ratcliff, Thapar, & McKoon, 2010, 2011). Knowing how accurately a participant decided whether 45
was greater than or less than 50 did not predict how quickly the participant made the decision. The
diffusion model, described in detail below, provides an explanation of this result. The model was fit
to correct and error RT distributions and accuracy, and it produced model parameters representing
the quality of evidence (drift rate), the amount of evidence needed for a decision (boundary separa-
tion), and the duration of non-decision processes (non-decision time). Application of the model
showed that boundary settings and drift rates were largely uncorrelated with each other and that
accuracy was mainly determined by drift rate and RT was largely determined by boundary separation
(and non-decision time). This provided a way of understanding the lack of correlation between RT and
accuracy (but did not predict why there was no correlation). People use global boundary settings for
decisions, and they do not modulate their settings as a function of whether they are good or bad at a
particular task (Ratcliff et al., 2015).

In this article, we show how, according to the diffusion model, accuracy and RT and dependent
measures based on them do not assess independent abilities but instead are manifestations of the
same underlying cognitive processes. In the studies cited above (Fazio et al., 2014; Halberda et al.,
2012; Inglis et al., 2011; Ratcliff et al., 2015), the response required of a participant is a decision
between two (or more) alternatives (e.g., “is this number larger or smaller than 50?”). Whatever
the quality of a participant’s numerosity information, a response must be chosen, and the choice
will take some amount of time. Accuracy and speed can trade off, and the trade-off is under a par-
ticipant’s control. A participant might decide to respond as quickly as possible, sacrificing accuracy,
or as accurately as possible, sacrificing speed. If a participant adopts a speed emphasis, the slope
of the RT-difficulty function will be lower than if the participant adopts an accuracy emphasis
(Ratcliff et al., 2015, Experiment 2). In consequence, differences among participants in the quality
of the numeracy information on which they base their decisions can be obscured by differences in
their speed/accuracy settings. The only way to separate information quality from speed/accuracy
settings is to understand how they interact. We do that with a sequential sampling decision
model, Ratcliff's (1978) diffusion model (see also Ratcliff & McKoon, 2008), which is described
below.
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The diffusion model

In Ratcliff's (1978) diffusion model (see also Ratcliff & McKoon, 2008), there is noisy accumulation
of stimulus information over time toward one of two boundaries. A response is made when the
amount of accumulated information reaches one of two boundaries, or criteria, one for each of the
two possible choices (e.g., “is 60 greater than or less than 50?”). The rate of accumulation, called “drift
rate,” is determined by the quality of the information used in a decision. For example, information
about “is 9 greater than 1?” would be stronger than information about “is 2 greater than 1?” and
the information available to a high school student would likely be stronger than the information avail-
able to a second grader (e.g., Ratcliff, Love, Thompson, & Opfer, 2012). Drift rate corresponds to numer-
ical acuity in the numerosity and number discrimination tasks.

Fig. 1 shows the operation of the model. Total RT is the time it takes to encode a stimulus, trans-
form the stimulus representation to a decision-relevant representation, compare the representation
with memory, decide on a response, execute a response, and so forth. The transformation from the
stimulus to a decision-relevant representation maps the many dimensions of a stimulus (e.g., size,
color, shape, number) onto the task-relevant dimension—the drift rate that drives the decision pro-
cess. The accumulation of information begins at a starting point (z in Fig. 1) and proceeds until one
of the two boundaries is reached (a or O in the figure). Because the accumulation process is noisy,
for a given value of drift rate, at each instant of time there is some probability of moving toward
the correct boundary and some smaller probability of moving toward the incorrect boundary. This
variability means that accumulated information can hit the wrong boundary, producing errors, and
that stimuli with the same values of drift rate can hit a boundary at different times. For application
of the model, non-decision processes (e.g., stimulus encoding, transformation to task-relevant infor-
mation, response execution) are combined into one parameter, T, in Fig. 1. As illustrated in the figure,
the model predicts the right-skewed shapes of RT distributions that are observed empirically in two-
choice tasks.

The model decomposes accuracy and RTs into the three main components just described: drift
rates, boundary settings, and non-decision processes. The values of these components vary from trial
to trial because, it is assumed, participants cannot accurately set identical values from trial to trial
(e.g., Laming, 1968; Ratcliff, 1978). Across-trial variability in drift rate is assumed to be normally dis-
tributed with SD #, across-trial variability in the starting point (equivalent to across-trial variability in
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Fig. 1. Illustration of the diffusion model. The top panel shows three simulated paths with drift rate v, starting point z, and
boundary separation a. Drift rate is normally distributed with SD #, and starting point is uniformly distributed with range s,.
Non-decision time is composed of encoding processes, processes that turn the stimulus representation into a decision-related
representation, and response output processes. Non-decision time has mean T, and a uniform distribution with range s,.
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the boundary positions) is assumed to be uniformly distributed with range s,, and across-trial variabil-
ity in the non-decision component is assumed to be uniformly distributed with range s.. These distri-
butional assumptions are the ones usually made, but they are not critical as long as they are within
their usual ranges (Ratcliff, 2013).

Because the model decomposes accuracy and RTs into components and separates out variability in
them, the power to observe effects of independent variables on performance can be substantially
increased. For example, lexical decision experiments have been used to attempt to identify partici-
pants with high anxiety by looking at their performance on “threat” words (e.g., anger, hostility,
attack). Significant differences between high-anxiety and low-anxiety participants did not appear
with RTs or accuracy but did appear with drift rates. The model analyses increased power by a factor
of approximately 2 (White, Ratcliff, Vasey, & McKoon, 2010).

Current theories about numeracy are constrained only by mean RTs for correct responses or only by
accuracy. The diffusion model is more tightly constrained and can be falsified. The most powerful con-
straint comes from the requirement that the model fit the right-skewed shape of RT distributions, as
shown in Fig. 1 (Ratcliff, 1978, 2002; Ratcliff & McKoon, 2008; Ratcliff, Van Zandt, & McKoon, 1999).
Ratcliff (2002) generated simulated data for which RT distributions behaved across conditions in ways
that are plausible but never obtained empirically. In all cases, the model failed to fit the data. In addi-
tion, across experimental conditions that vary in difficulty, such as when target numbers differ in
absolute distance from a comparison number (e.g., 50) in a symbolic number discrimination task,
changes in accuracy, RT distributions, and the relative speeds of correct and error responses must
all be captured by changes in only one parameter of the model, namely drift rate. Across experimental
conditions that vary in speed/accuracy criteria (e.g., speed vs. accuracy instructions to participants), all
changes in accuracy, RT distributions, and the relative speeds of correct and error responses are usu-
ally captured by changes only in the settings of the boundaries. The boundaries cannot be adjusted as
a function of difficulty because it would be necessary for the system to know which level of difficulty
was being tested before boundary settings could be determined. The model explains the ways in
which drift rates and boundary settings can interact to determine participants’ RTs and accuracy.
For a given value of drift rate, a participant can adopt wider boundaries and so be more accurate
but slower, whereas the participant can adopt narrower boundaries and so be faster but less accurate.
Across participants, drift rates and boundary settings can differ independently. Participants who have
high drift rates will have good accuracy and fast responses when their boundaries are close together,
and they will have good (perhaps slightly better) accuracy and slow responses when their boundaries
are farther apart. Participants who have low drift rates will have poor accuracy and fast responses
when their boundaries are close together, and they will have (perhaps) somewhat better accuracy
and slow responses when their boundaries are far apart. To put this another way, participants with
fast responses can be accurate or inaccurate, and participants with slow responses can be accurate
or inaccurate (cf. Ratcliff, Thapar, & McKoon, 2006; Ratcliff et al., 2010, 2011). That boundary settings
are under a participant’s control has been demonstrated in past studies where participants responded
to instructions to maximize speed by decreasing the settings (Ratcliff, Thapar, & McKoon, 2001, 2003,
2004; Thapar, Ratcliff, & McKoon, 2003). In the model, accuracy is related to drift rate and RT is related
to speed-accuracy criteria, but drift rate and criteria are not related to each other across participants.
This provides a theoretical basis for understanding why the common belief that accurate participants
do not always make the quickest decisions does not always hold true. Ratcliff and colleagues (2015)
provided evidence that accuracy, RT, and dependent measures based on them do not assess indepen-
dent abilities but instead are manifestations of the same underlying cognitive processes. The finding
that accuracy-RT correlations were not significant calls into question interpretations of results from
the many previous studies in the numerical cognition literature for which only RTs or only accuracy
values were reported. The finding also puts a stringent constraint on theories about number process-
ing; whatever it is that determines a participant’s overall accuracy is not directly related to whatever it
is that determines the participant’s overall speed. Any theory about performance in numeracy tasks
must explain why this is so. In summary, the diffusion model breaks down accuracy and RT into com-
ponents of information processing, and these resulting model parameters are not significantly corre-
lated with one another. Thus, the model allows researchers to assess speed-accuracy relationships.
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The model also solves a scaling problem for RT and accuracy. In the numeracy literature, when a
task has high accuracy the performance measure is typically RT (or a measure based on RT), and when
a task has low accuracy the measure is typically accuracy (or a measure based on accuracy). The two
measures have different scales; accuracy varies from chance to ceiling and asymptotes at 1, and RTs
vary from a short minimum to potentially very long duration. The diffusion model resolves this issue
because the two measures come from the same underlying processes.

The model also helps to address problems with ceiling and floor effects (Ratcliff, 2014). For some
experiments, accuracy might be at chance for several of the most difficult conditions (e.g., “is 48 more
or less than 50?”), and it might be at ceiling for several of the easiest conditions (e.g., “is 13 more or
less than 507?”). Model parameters (especially parameters that represent across-trial variability in
model components) can be estimated when accuracy is not at ceiling or floor (0 or 1). When accuracy
is at ceiling or floor, the model can estimate differences in drift rates because the other conditions
allow model parameters to be estimated. Because RTs differ across these high-accuracy conditions,
RTs are sufficient to determine drift rates. Ceiling effects are likely present in symbolic number dis-
crimination tasks, especially for older children and adults, because participants have extensive expe-
rience in thinking about and processing whole numbers.

The current experiment

Ratcliff and colleagues (2015) tested college-aged adults on four numerical tasks: (a) numerosity
discrimination (a non-symbolic numerical decision task in which participants decided whether a stim-
ulus array contained more or less than 50 asterisks), (b) number discrimination (a symbolic numerical
decision task in which participants decided whether an Arabic numeral was greater than or less than
the number 50), (c) memory for two-digit numbers (participants indicated whether two-digit num-
bers on a test list appeared on an immediately preceding study list), and (d) memory for three-digit
numbers (participants indicated whether three-digit numbers on a test list appeared on an immedi-
ately preceding study list). Results provided evidence that “on-line” decision tasks, such as numerosity
and number discrimination that require perceptual discrimination yet do not require memory access,
were correlated with performance on “off-line” tasks that do require memory access, such as memory
for two- and three-digit numbers. Accuracy positively correlated across tasks, as did RTs. The more
accurate an individual was in deciding whether the number of asterisks on the computer screen
was greater than or less than 50 during the numerosity discrimination task, the more accurate the
individual was when deciding whether a numeral was greater than or less than 50 in the number dis-
crimination task. The faster a participant responded on one task, the faster the participant responded
on the other task. However, if a participant was accurate, it did not mean that the participant was fast
(and vice versa). There were significant positive correlations across the tasks between the quality of
the numeracy information (drift rate) driving the decision process and between the speed/accuracy
criterion settings, suggesting that similar numeracy skills and similar speed-accuracy settings are
involved in numerosity and number discrimination and memory for two- and three-digit numbers.
The novelty of our current experiment is that the diffusion model can account for correct and incorrect
RTs, RT distributions, and accuracy. The model decomposes RTs into three main information process-
ing components, and these parameters can indicate what develops over time as children become more
accurate and faster at making numerical decisions. The advantage of applying the diffusion model to
cross-sectional data is that the mechanism of change in simple numerical decisions across the lifespan
can be highlighted. For instance, if drift rates increase with age or grade level, it could indicate that
improvement in children’s magnitude understanding, or numerical acuity/discrimination ability, is
driving the decision process. If boundary separation becomes narrower with age, it could indicate that
children become more willing to execute a response. Finally, if the non-decision component becomes
faster with age, a model-based interpretation is that the children are becoming more skilled at trans-
forming the stimulus array into a form that will allow them to execute a discrimination decision.

In our current experiment, our first aim was to replicate the findings of Ratcliff and colleagues (2015)
with children by investigating whether elementary and middle school students’ performance on the
non-symbolic numerosity discrimination task (“is the number of asterisks in a 10 x 10 array greater
than or less than 50 asterisks?”) was correlated with their performance on the symbolic number
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discrimination task (“is an Arabic numeral greater than or less than the Arabic numeral 50?”). We
tested four groups of children—first graders, second/third graders, fourth/fifth graders, and seventh/
eighth graders—and then compared the children’s performance with performance of the adults
reported in Ratcliff and colleagues (2015). A second aim was to investigate whether there were devel-
opmental progressions in diffusion model parameters across the lifespan on a symbolic numerical dis-
crimination task. Ratcliff and colleagues (2012) reported developmental differences on a non-symbolic
numerical discrimination task in drift rate, boundary separation, and non-decision time across the lifes-
pan. Children, much like older adults, made slower decisions than did college-aged adults. However,
developmental differences in the diffusion model parameters indicated that children and older adults
made slow decisions for different reasons. Younger children required more evidence prior to making a
decision, set more conservative decision criteria, and took longer to encode stimulus information,
transform the representation to produce a decision related to numerical quantity, and execute a deci-
sion than did older children and college-aged adults. It is an open question as to whether drift rate,
boundary separation, and non-decision times change across the lifespan for other numeracy tasks such
as the number discrimination task, a task on which participants presumably improve because they are
learning more about the relations between whole numbers during formal schooling. A third aim was to
examine individual differences in accuracy and RT between the two tasks, to examine individual differ-
ences in model parameters between tasks, and to examine correlations between accuracy and RT
within each task. This allowed us to investigate whether RT and accuracy on symbolic and non-
symbolic discrimination tasks were relatively independent measures of performance within individual
children, as was found previously with adults. If so, we could then argue against the practice of choos-
ing one or the other dependent variable alone to assess children’s numerical discrimination abilities.

Method
Participants

Ratcliff and colleagues (2015) tested 32 college students at the University of Oklahoma (M,g. = 19.4
years) who participated in one 60-min session in partial fulfillment of class requirements for an intro-
ductory psychology course. Results from these students served as a benchmark against which data
from 91 newly-tested children in the current experiments were compared. There were four groups
of children who each participated in two 30-min sessions. See Table 1 for participant demographics.
In total, 19 first graders, 5 second/third graders, and 4 fourth/fifth graders were excluded from anal-
yses because (a) they made a substantial proportion of fast responses (<400 ms) showing that they
were just hitting keys as fast as possible and had given up on the task or (b) they did not complete
enough trials for modeling. Not completing enough trials for modeling was particularly a problem
for first graders. These children either lacked an ability to complete the task or found the tasks to
be very difficult/monotonous and, thus, decided to give up.

Procedure and stimuli

Participants completed the symbolic number discrimination task during Session 1 and completed
the non-symbolic numerosity discrimination task during Session 2. Stimuli were displayed on the

Table 1
Participant demographics.
Grade n  Mean age (SD) Sex Ethnicity breakdown Mean days between
testing sessions
First 19 7.12(0.21) 53% girls 79% Caucasian, 16% biracial, 5% Asian 10.01

Second/Third 26 8.20(1.83) 62% girls 85% Caucasian, 8% Asian, 4% biracial, 4% Hispanic 22.62

Fourth/Fifth 27 10.46 (0.63) 59% girls 89% Caucasian, 4% African American, 4% Native 28.59
American, 4% biracial

Seventh/Eighth 19 13.22 (0.58) 37% girls 63% Caucasian, 11% Native American, 11% biracial, 2.47
5% African American, 5% Asian, 5% Hispanic




C.A. Thompson et al. /Journal of Experimental Child Psychology 150 (2016) 48-71 55

screen of a laptop computer, and responses were collected from the laptop’s keyboard using the “?”
key for “large” responses and the “Z” key for “small” responses. Prior to beginning each experiment,
participants were told that sometimes decisions would be difficult to make, but they were to respond
as quickly and accurately as possible. Participants were encouraged to take a brief rest break between
each block of trials. During the rest break, participants saw two progress bars that displayed their pro-
portion of correct and error responses.

During Session 3, second/third and fourth/fifth graders completed the matrix reasoning and vocab-
ulary subtests of the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV). The second/
third graders from our sample had a mean IQ score of 115 on the matrix reasoning and vocabulary
subtests; the fourth/fifth graders had a mean IQ score of 117. We do not have IQ scores from the first
graders, the seventh/eighth graders, or the college-aged adults. However, the 1Q scores of the second/
third and fourth/fifth graders are almost the same as those of a comparable college-aged sample
(M =119) who completed the Wechsler Adult Intelligence Scale-Revised (WAIS-R) matrix reasoning
and vocabulary subtests (Ratcliff et al., 2001). Average achievement test scores (Basic Early Assess-
ment of Reading [BEAR] and Oklahoma Core Curriculum Tests [OCCT]), obtained from the public
school district administrators, and average IQ scores are listed in the Appendix.

Symbolic number discrimination

White Arabic numerals between 10 and 90 were displayed on a black background in the middle of a
laptop screen. Participants pushed the “Z” key if a small number between 10 and 49 was displayed and
pushed the “?” key if a large number between 51 and 90 was displayed. Each numeral remained vis-
ible until a response key was pressed. After a key was pressed, the screen was cleared, a smiling (cor-
rect response) or frowning (incorrect response) face was displayed for 500 ms, a blank screen
appeared for 100 ms, and then the next trial began. There were eight blocks of trials, 80 trials per
block, with each of the possible numbers tested once in each block in random order.

Non-symbolic numerosity discrimination

On each trial, some number of white asterisks, between 11 and 90, was displayed against a black
background. The asterisks occupied randomly selected positions in a 10 x 10 grid in the center of the
laptop screen that subtended a visual angle of 7.5 degrees horizontally and 7.0 degrees vertically.
Arrays containing fewer than 11 asterisks were not included to deter participants from counting.

Participants pushed the “Z” key if a small number of asterisks between 11 and 49 was displayed
and pushed the “?” key if a large number of asterisks between 51 and 90 was displayed. The asterisks
remained on the screen until a response key was pressed. Then the screen was cleared, a smiling (cor-
rect response) or frowning (incorrect response) face was displayed for 500 ms, the screen was cleared,
a blank screen appeared for 100 ms, and then the next trial began. There were eight blocks of trials, 80
trials per block, with each of the possible numbers of asterisks tested once in each block in random
order.

Results

Responses shorter than 300 ms for children and 250 ms for adults were eliminated from analyses,
as were responses longer than 4000 ms for children and 2000 ms for adults. The percentages elimi-
nated were 19.1%, 6.1%, 5.1%, 4.4%, and 3.0% for first graders, second/third graders, fourth/fifth graders,
seventh/eighth graders, and college-aged adults, respectively, for the numerosity discrimination task,
and 11.5%, 3.4%, 1.6%, 1.1%, and 3.0% for these corresponding groups in the number discrimination
task.

Table 2 shows the proportion correct and mean RT for children in first, second/third, fourth/fifth,
and seventh/eighth grades and college-aged adults in the numerosity and number discrimination
tasks. The left-most column of Table 2 shows that experimental stimuli (e.g., number of asterisks or
numerals presented on the computer screen) were grouped into conditions (six for the numerosity
discrimination task and eight for the number discrimination task) to provide more observations per
condition for application of the diffusion model. The conditions were created by grouping “small”
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responses to small stimuli with “large” responses to large stimuli (e.g., 17-22 asterisks grouped with
71-76 asterisks). In this way, our conditions collapsed over absolute distance from the standard (e.g.,
50 asterisks). In addition, we made sure that “small” responses to small stimuli were similar to “large”
responses to large stimuli. Recent computational modeling results suggest that an interaction of stim-
ulus ratio (e.g., Weber fraction) and absolute distance best explains adults’ performance on non-
symbolic numerical discrimination tasks (Prather, 2014). But this appears to be task specific. In our
numerosity and number discrimination tasks, “large” responses to large stimuli are symmetric to
“small” responses to small stimuli (Ratcliff, 2014). Thus, using stimulus ratios would combine condi-
tions with data that are not equivalent.

The participants were slightly biased in the numerosity discrimination task such that their chance
level of accuracy for responding “small” and “large” was approximately 47 and not 50 (as in Ratcliff,
2014, Experiments 1 and 2; Ratcliff et al., 2015). It is for this reason that there are slightly more num-
bers in the first bin as compared with subsequent bins shown in Table 2.

Note that we refer interchangeably to age and grade because older children were in higher grades
than younger children. However, we did not use age as a continuous variable in any of the analyses.
Across all grades on both the numerosity and number discrimination tasks, accuracy increased and
RT decreased as difficulty level decreased. That is, the closer the stimuli were to 50, the lower the accu-
racy and the longer the RT. Participant accuracy was at or near ceiling levels for the three easiest con-
ditions in the numerosity discrimination task that contained the most/least asterisks (.799-.894 for
first graders, .876-.936 for second/third graders, .891-.938 for fourth/fifth graders, .904-.947 for
seventh/eighth graders, and .908-.943 for adults). RTs continued to decrease in the three easiest
conditions as the stimuli became more discriminable, that is, as their distance from 50 increased
(1076-994 ms for first graders, 911-845 ms for second/third graders, 795-705 ms for fourth/fifth gra-
ders, 660-593 ms for seventh/eighth graders, and 491-455 ms for adults). In the number discrimina-
tion task, accuracy was near ceiling, 80% to 97% range, for each of the conditions (.802-.906 for first
graders, .854-.955 for second/third graders, .858-.957 for fourth/fifth graders, .870-.970 for
seventh/eighth graders, and .879-.972 for adults). As in the numerosity discrimination task, RTs from
the number discrimination task decreased substantially as the conditions went from hardest to easiest
(1302-1135 ms for first graders, 1239-1015 ms for second/third graders, 1034-811 ms for fourth/fifth
graders, 758-629 ms for seventh/eighth graders, and 632-501 ms for adults).

Fig. 2 plots accuracy and median RT against level of difficulty. Note that the most difficult condi-
tions were the ones with the smallest absolute distance from 50. For both tasks, accuracy decreased
as a function of difficulty, although the decrease in accuracy was more apparent for the

Table 2
Response proportions and mean RTs for the numerosity and number discrimination tasks.
Task Condition 1 grade 2/3 grade 4/5 grade 7/8 grade Adult
Pr. Mean Cor. Pr. Mean Cor. Pr. Mean Cor. Pr. Mean Cor. Pr. Mean Cor.
Cor. RT Cor. RT Cor. RT Cor. RT Cor. RT
Numerosity 11-16/77-88 .894 994 936 845 938 705 947 593 943 455
17-22/71-76 .856 1049 916 895 909 737 940 623 934 479
23-28/65-70 .799 1076 876 911 891 795 904 660 908 491
29-34/59-64 .757 1110 813 959 .825 838 .846 701 .874 527
35-40/53-58 .671 1109 710 1009 735 864 753 747 783 558
41-46/47-52 570 1139 590 1034 594 901 .600 799 617 591
Number 10-14/86-90 .906 1135 955 1015 957 811 970 629 972 501
15-19/81-85 .887 1179 930 1016 950 861 948 616 963 512
20-24/76-80 .867 1155 934 1029 945 868 956 616 968 510
25-29/71-75 .852 1203 938 1056 943 867 948 637 952 529
30-34/66-70 .860 1209 916 1099 929 904 937 664 956 534
35-39/61-65 .854 1246 908 1149 919 946 924 676 943 563
40-44/56-60 .821 1253 .859 1176 .880 1000 .896 723 904 590
45-49/51-55 .802 1302 .854 1239 .858 1034 870 758 879 632

Note. Pr. Cor., proportion correct; Mean Cor. RT, mean correct response time.
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non-symbolic task than for the symbolic task in which performance was at ceiling. RT also increased as
difficulty increased across both tasks. There was no evidence of a size effect, with smaller numbers
discriminated from the 50 cutoff better than larger numbers (also see Figs. 2 and 4 in Ratcliff,
2014). Dehaene, Dupoux, and Mehler (1990) provided evidence that 1 and 2 are easier to discriminate
from one another than are larger numbers equidistant apart, such as 8 and 9, but we did not see this
result with the larger numbers used in our experiments. This may also reflect a task difference; judg-
ing differences between two numbers or numerosities is different from judging whether one number
or numerosity is different from a criterion number or numerosity. Importantly, our numerosity task is
tapping a basic numeracy skill because it has been shown to correlate with number discrimination as
well as number memory tasks (Ratcliff et al., 2015).

When accuracy was averaged across all of the easy and difficult conditions, first graders were less
accurate than all other groups on the numerosity and number discrimination tasks (see Table 3). There
were no other significant differences in averaged accuracy across the groups of participants. These
data averaged across conditions indicated that children in second/third grade were responding as
accurately as older children and adults on the two tasks; however, there were significant grade differ-
ences in median RT averaged across conditions (see Table 3) for both tasks. First through third graders
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did not differ from one another in median RTs for the number discrimination task, nor did seventh/
eighth graders and adults. Fourth/fifth graders, seventh/eighth graders, and adults made faster
responses than did first graders and second/third graders. Seventh/eighth graders and adults made
faster responses than did fourth/fifth graders. For the numerosity discrimination task, participants
in all grades made faster responses than did first graders. Fourth/fifth graders, seventh/eighth graders,
and adults made faster responses than did second/third graders. Seventh/eighth graders and adults
made faster responses than did fourth/fifth graders. Adults made faster responses than did seventh/

eighth graders.
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Accuracy 0.1 quantile RT 0.5 quantile RT 0.9 quantile RT
1.0 900 3000
0.9 - | 800 - 1600 — P
O 0.8 . % | 700 - «| 1400 — 2500 — Rk Xx%%
Q07 - x O BREx x| 1200 Sk x| 2000 x
S 0.6 - % 600 % 1000 4, ;
S o. % ghdon x 1500 (4
— 05 500 800 1000
0-4 _ _)ﬂ( X b |
T T T T 171 400 I I I I I 600 T 1T T T 1 I I I I I
04 06 08 1 400 600 800 600 1000 1600 1000 2000 3000
1.0 ] 800 1400 71 3000 -
(0] .9 -
g 09 . 700 . 1200 2500 x
© 0.8 X I ‘. P
’5.) 0.7 - x 38 600 — Xy ox K&x% x x[ 1000 - XX Xxx 2000 — Xy X
® * 1500 - udX
T 06 500 - %« 800 + .
X
05 " 400 — 600 1000 g #® x
T T 1T T°1 T T T T T T T T T T T T T T T
05 07 09 400 600 800 600 1000 1400 1000 2000 3000
1_ -
og 550 — x| 1000 2500
. = X
e 500 ook | 900 %| 2000 % x
c 087 ) x 800 — g .
S 0.7 - Bk 450 7 o x 700 | g 1500 Y .
X,
0 | 400 ¢ 600 — | %
< g'g A 350 ¥ 500 1000
’ T T T T T T T T T T T 400 _I T T T 17T 500
05 07 09 350 450 550 400 700 1000 500 1500 2500
1.0 4 700 1100 X N
3 09 650 £ | 1000 x| 2000 X
© 600 — x| 900 x /X % X
(o)) 0.8 1 550 - X x * X x XX }(Xx
2, Sl 800 x 1500 %
© 0.7 500 o g 700 - ¥ X
N~ ol 450 - *xx % x
0.6 1 X 400 X X 600 — X x 1000 — x x
0.5 - ’ 500
T T T T T T T T T 1771 T T 1T 1771 T T T
05 07 09 400 550 700 500 700 900 1000 2000
2 10 500 Zgg 1400 X
3 09 % | 450 1200 %
T 0.8 " 400 4 o o 107 " ¥ 1000 :
o, s 00 s 600 — o LEN
c 077 . 800 | %
S e “ 350 - 500 x ;
L 0s 300 400 x 600
g T T T | T T T T 1 400
05 07 09 300 400 500 400 600 800 400 800 1200

Fig. 3. Model predictions plotted against experimental data for the numerosity discrimination task. Accuracy and RT data from

.1, .5, and .9 quantiles are plotted.
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The model was fit to the data for each participant individually using a standard chi-square method.
The values of all the components of processing identified by the model are estimated simultaneously
from the data for all the conditions in an experiment. The fitting method uses quantiles of the RT dis-
tributions for correct and error responses for each condition (the .1, .3, .5, .7, and .9 quantile RTs). The
model predicts the cumulative probability of a response at each RT quantile. Subtracting the cumula-
tive probabilities for each successive quantile from the next higher quantile gives the proportion of
responses between adjacent quantiles. For a chi-square computation, these are the expected values,
to be compared with the observed proportions of responses between the quantiles (i.e., the
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proportions between .1, .3, .5,.7, and .9 are each .2, and the proportions below .1 and above .9 are both
.1). Summing over (Observed — Expected)?/Expected for correct and error responses multiplied by the
number of observations for each condition gives a single chi-square value, and the sum of these over
conditions is minimized with a general SIMPLEX minimization routine. The parameter values for the
model are adjusted by SIMPLEX until the minimum chi-square value is obtained (see Ratcliff &
Tuerlinckx, 2002, and Ratcliff & Childers, 2015, for a full description of the fitting method).

The RTs used for fitting the model, especially for the number discrimination task, were slightly
complicated by the fact that for many adult participants, for many conditions, there were fewer than
five errors and so quantiles could not be computed. When this was the case, the RT distribution for a
condition was divided at its median, and the model was fit by predicting the cumulative probability of
responses above and below the median. This reduced the number of degrees of freedom from 6 to 2 for
that error condition. (To avoid very small or very large medians when there were only one or two
responses, when these might be outliers, this division was used only when the median for errors
was between the .3 and .7 median RTs for correct responses.) This reduction procedure was not used
on the child data because these participants committed enough errors to allow their data to be mod-
eled in the typical way. Mean chi-square values (Table 4) were lower than critical values. Because of
the conditions with fewer than five errors, the average degrees of freedom were reduced from 55 to 50
for the numerosity discrimination task and from 74 to 54 for the number discrimination task for the
adult participants.

Table 3
Grade differences in means across conditions for average accuracy (proportion correct) and median RT (ms) in the numerosity and
number tasks.

Dependent variable F statistic Post-hoc t-tests (Bonferroni) Post-hoc p-values
Accuracy for numerosity F(4,118)=7.87, p <.0001, First (.77) < Second/Third (.81) p<.05
task n?=.211 First (.77) < Fourth/Fifth (.82) p<.01
First (.77) < Seventh/Eighth (.82) p<.05
First (.77) < Adults (.85) p <.0001
Accuracy for number task F(4,118)=8.27, p <.0001, First (.86) < Second/Third (.92) p<.01
n?=.219 First (.86) < Fourth/Fifth (.93) p <.0001
First (.86) < Seventh/Eighth (.93) p<.01
First (.86) < Adults (.94) p <.0001
RT for numerosity task  F(4,118)=68.14, p <.0001, First (950.62) > Second/Third (819.11) p<.01
n*=.698 First (950.62) > Fourth/Fifth (692.50) p <.0001
First (950.62) > Seventh/Eighth (585.56) p <.0001
First (950.62) > Adults (473.48) p <.0001
Second/Third (819.11) > Fourth/Fifth p<.01
(692.50)
Second/Third (819.11) > Seventh/Eighth ~ p <.0001
(585.56)

Second/Third (819.11) > Adults (473.48) p <.0001
Fourth/Fifth (692.50) > Seventh/Eighth p<.05
(585.56)

Fourth/Fifth (692.50) > Adults (473.48) p <.0001
Seventh/Eighth (585.56) > Adults (473.48) p<.01

RT for number task F(4,118)=69.71, p <.0001, First (1081.83) > Fourth/Fifth (783.04) p <.0001
n?=.70 First (1081.83) > Seventh/Eighth (590.98) p <.0001
First (1081.83) > Adults (494.51) p <.0001
Second/Third (964.28) > Fourth/Fifth p <.0001
(783.04)
Second/Third (964.28) > Seventh/Eighth  p <.0001
(590.98)

Second/Third (964.28) > Adults (494.51) p<.0001
Fourth/Fifth (783.04) > Seventh/Eighth p <.0001
(590.98)

Fourth/Fifth (783.04) > Adults (494.51)  p<.0001




C.A. Thompson et al./Journal of Experimental Child Psychology 150 (2016) 48-71 61

Figs. 3 and 4 demonstrate that the model accounted for the data in both the numerosity and num-
ber discrimination tasks well. These figures plot the predicted values from the diffusion model against
the experimental values for accuracy at the .1, .5, and .9 quantile RTs. A developmental progression is
clear for both tasks. The predicted values from the model are a closer fit for older children and adults
than for the very youngest participants.

Model-based interpretations of the data

The values of the parameters that generated the best fit of the model to the data averaged over par-
ticipants are shown in Tables 4 and 5. It should be noted that the mean parameter values across the
two tasks were fairly similar. For example, the boundaries that first graders set on the numerosity dis-
crimination task were similar to the boundary separations that they set on the number discrimination
task. Likewise, non-decision times were similar across tasks, as were drift rates for equivalent condi-
tions (e.g., the easiest conditions in which numbers or arrays of asterisks were furthest from 50). Sim-
ilar parameter settings across the two tasks for individuals at each grade level indicate that the tasks
are likely tapping a similar underlying numerical ability (see Ratcliff et al., 2015). Statistical analyses
comparing the parameter values across grade levels in the numerosity and number discrimination
tasks are included in Tables 6 and 7, respectively. First we discuss the parameter values averaged over
participants, and then we discuss individual differences in the parameter values.

Values of model parameters averaged across participants

Fig. 5 shows the psychometric functions that relate drift rate (v) to difficulty for the numerosity
(top) and number (bottom) discrimination tasks. Average drift rate (y-axis) is plotted against the inde-
pendent variable of number of asterisks or number shown on the computer screen (x-axis). Linear
functions characterize each grade level for both experiments. Performance is near chance for numbers
of asterisks around 50, so the intercept of the drift rate function is near zero for the numerosity dis-
crimination task. The intercept is well above zero for the number discrimination task. Children in
lower grades had significantly lower drift rates than did children in higher grades and adults on both
the numerosity and number discrimination tasks. This indicates that numerical acuity/discrimination
abilities increased with increasing grade level. Children in lower grades set wider boundaries (a) than
did children in higher grades and adults for the numerosity and number discrimination tasks (see
Fig. 6, top left panel). Thus, the decision criteria narrowed with increasing grade level. Children in
lower grades had larger non-decision times (T,) than did children in higher grades and adults for both

Table 4
Diffusion model parameters.
Task Group a Tor n s, S x>
Numerosity 1 grade 195 450 .074 .102 293 69.6
2/3 grade 193 429 125 .092 249 64.6
4/5 grade .170 .396 131 .085 .248 67.1
7/8 grade 154 380 .180 .085 134 56.2
Adult 117 322 134 .067 156 64.3
Number 1 grade 210 497 .034 .109 290 99.9
2/3 grade 227 462 .085 .102 .209 84.8
4/5 grade .194 420 .106 .085 .180 75.7
7/8 grade 152 392 124 .077 .150 731
Adult 129 336 .099 .072 .140 64.2

Note. The parameters were as follows: boundary separation a (starting point z = a/2), mean non-decision component of response
time Ty, SD in drift across trials #, range of the distribution of starting point s,, and range of the distribution of non-decision
times s.. Critical values of chi-squares are 67.5 for 50 degrees of freedom for the numerosity discrimination task and 72.2 for
54 degrees of freedom for the number discrimination task.
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Table 5
Drift rates. v1 through v8 correspond to the various conditions that differ in difficulty.
Task Group 2 Vo V3 Vg Vs Ve vy Vg
Numerosity 1 grade 193 .163 123 .095 .062 .022
2/3 grade .268 228 194 .145 .092 .042
4/5 grade 314 265 218 161 110 035
7/8 grade 414 382 298 222 .144 .059
Adult 482 392 351 .249 .167 .060
Number 1 grade 142 127 .116 .100 .100 .102 .079 .072
2/3 grade 218 210 .203 .196 .166 151 118 .108
4/5 grade 304 272 .248 255 227 194 147 124
7/8 grade 391 361 370 341 285 290 230 .189
Adult 434 409 414 365 346 305 253 .189

the numerosity and number discrimination tasks (see Fig. 6, bottom left panel). That is, with increas-
ing grade, participants were quicker at encoding, transforming the stimulus array, and executing their
decisions. There was a significant grade difference in the range in non-decision times (s;) across trials
for both the numerosity and number discrimination tasks (see Fig. 6, bottom left panel). Variability in
non-decision time got smaller as grade level increased. There was a significant grade difference in the
standard deviation in drift across trials (#) for the numerosity and number discrimination tasks (see
Fig. 6, top right panel). This means that the numerical acuity/discrimination became less variable with
increasing grade level. There was no statistically significant difference in the range in across-trial vari-
ability in starting point (s,) across grade levels for the numerosity task; however, there was a signif-
icant difference in s, across grade levels for the number discrimination task, with children in lower
grades showing greater variability in starting points across trials than adults (see Fig. 6, bottom right
panel).

Differences among individuals in data and model parameters

The more accurate the participant was on the numerosity discrimination task, the more accurate
the participant was on the number discrimination task (see Table 8), and this was true across grade
levels. All of these correlations were significant at the p <.05 level except for the performance of first
graders. Similarly, the faster a participant responded (mean RT) on the numerosity discrimination
task, the faster the participant responded (mean RT) on the number discrimination task (see Table 8).
Again, this was true across grades. As reported previously by Ratcliff and colleagues (2015), there were
extremely weak correlations between mean RT and accuracy for the numerosity discrimination task
for all grades except seventh/eighth in which a moderate, but not statistically significant, correlation
was found. Similarly, there were weak correlations between mean RT and accuracy on the number dis-
crimination task for all grades except fourth/fifth in which a moderate statistically significant corre-
lation was found. The most accurate participants were not always the participants who responded
the quickest. Importantly, the common belief would be that accuracy and RT are negatively correlated
with one another (e.g., accurate participants produce shorter response times). The correlations that
were found between accuracy and RT, however, were positive instead of negative. In fact, only 2 of
the 10 correlations comparing accuracy and RT on the numerosity and number discriminations tasks
were negative (see Table 8).

Fig. 7 shows scatter plots and the correlations between model parameters (e.g., drift rate on the
numerosity discrimination task vs. drift rate on the number discrimination task) across the two tasks
for each grade. Drift rate was highly correlated across the two tasks for all grade levels. Non-decision
time was highly correlated across tasks for first graders and seventh/eighth graders and was moder-
ately so for second/third graders and fourth/fifth graders. Boundary separation was strongly correlated
across tasks for first graders and fourth/fifth graders and was moderately correlated for second/third
graders and seventh/eighth graders. These results showed that the main components of processing
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Table 6
Grade differences in parameter values for numerosity task.
Parameter F statistic Post-hoc t-tests (Bonferroni) Post-hoc p-values
Drift rate (v) F(4,118)=19.27, p<.0001, First (.093) < Fourth/Fifth (.158) p<.05
n*=.395 First (.093) < Seventh/Eighth p <.0001
(221)
First (.093) < Adults (.247) p <.0001

Second/Third (.14) < Seventh/ p<.01
Eighth (.221)

Second/Third (.14) < Adults (.247) p <.0001
Fourth/Fifth (.158) < Seventh/ p<.05
Eighth (.221)

Fourth/Fifth (.158) < Adults (.247) p <.0001

Boundaries (a) F(4,118) = 14.83, p <.0001, First (.20) > Seventh/Eighth (.154) p <.05
n* =334 First (.20) > Adults (.118) p <.0001
Second/Third (.193) > Seventh/  p<.05
Eighth (.154)
Second/Third (.193) > Adults p <.0001
(.118)

Fourth/Fifth (.17) > Adults (.118) p<.0001
Seventh/Eighth (.154) > Adults p=.051
(.118)

Non-decision times (T,,) F(4,118) =29.96, p <.0001, First (.45) > Fourth/Fifth (.396) p<.01

% =.504 First (.45) > Seventh/Eighth (.38) p <.0001

First (.45) > Adults (.323) p <.0001
Second/Third (.429) > Seventh/  p<.01
Eighth (.38)
Second/Third (.429) > Adults p <.0001
(323)

Fourth/Fifth (.396) > Adults (.323) p <.0001
Seventh/Eighth (.38) > Adults p <.0001

(.323)
Range in non-decision times across F(4,118) =19.63, p <.0001, First (.293) > Seventh/Eighth p <.0001
trials (s) n*=.40 (.134)
First (.293) > Adults (.154) p <.0001

Second/Third (.249) > Seventh/  p <.0001
Eighth (.134)

Second/Third (.249) > Adults p <.0001
(.154)

Fourth/Fifth (.248) > Seventh/ p <.0001
Eighth (.134)

Fourth/Fifth (.248) > Adults (.154) p <.0001

Standard deviation in drift rates F(4,118) = 3.16, p <.05, First (.074) < Seventh/Eighth (.18) p <.01
across trials (1) n*=.096

Range of starting points across trials F(4,118)=1.86, p >.05
(s2)

were related across tasks. If an individual had a high drift rate, large boundary separation, or long non-
decision time on one task, the individual tended to have a high drift rate, large boundary separation, or
long non-decision time on the other task.

The diffusion model parameters were not highly correlated with one another, and this was true
across grade level (see Table 9). That is, boundary settings were not strongly correlated with non-
decision times or drift rates, and non-decision times were not strongly correlated with drift rates.
The only exception was that for first graders non-decision time and drift rate were significantly cor-
related. These results are consistent with those reported by Ratcliff and colleagues (2015), in which it
was suggested that the diffusion model decomposes the dependent variables—accuracy and correct
and error RT distributions—into separate and relatively independent components of processing.
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Table 7
Grade differences in parameter values for number task.
Parameter F statistic Post-hoc t-tests (Bonferroni) Post-hoc p-values
Drift rate (v) F(4,118)=37.77, First (.10) < Second/Third (.165) p<.05
p <.0001, % =.561 First (.10) < Fourth/Fifth (.21) p<.0001
First (.10) < Seventh/Eighth (.295) p <.0001
First (.10) < Adults (.326) p <.0001
Second/Third (.165) < Seventh/Eighth (.295) p<.0001
Second/Third (.165) < Adults (.326) p <.0001
Fourth/Fifth (.21) < Seventh/Eighth (.295) p<.01
Fourth/Fifth (.21) < Adults (.326) p <.0001
Boundaries (a) F(4,118)=19.8, First (.211) > Seventh/Eighth (.152) p<.01
p <.0001, % =.402 First (.211) > Adults (.129) p <.0001
Second/Third (.227) > Seventh/Eighth (.152)  p <.0001
Second/Third (.227) > Adults (.129) p <.0001
Fourth/Fifth (.194) > Seventh/Eighth (.152) p<.05
Fourth/Fifth (.194) > Adults (.129) p <.0001
Non-decision times (Te,) F(4,118)=33.6, First (.497) > Fourth/Fifth (.42) p <.0001
p <.0001, #%=.532 First (.497) > Seventh/Eighth (.392) p <.0001
First (.497) > Adults (.336) p <.0001
Second/Third (.462) > Seventh/Eighth (.392)  p <.0001
Second/Third (.462) > Adults (.336) p <.0001
Fourth/Fifth (.42) > Adults (.336) p <.0001
Seventh/Eighth (.392) > Adults (.336) p<.01
Range in non-decision F(4,118)=9.73, First (.29) > Second/Third (.209) p<.05
times across trials (s;) p<.0001, 7% =.248 First (.29) > Fourth/Fifth (.18) p<.001
First (.29) > Seventh/Eighth (.15) p <.0001
First (.29) > Adults (.14) p<.0001
Second/Third (.209) > Adults (.14) p<.05
Standard deviation in drift ~ F(4,118)=4.05, First (.034) < Fourth/Fifth (.106) p<.05
rates across trials (1) p<.01, ?=.121 First (.034) < Seventh/Eighth (.124) p<.01
First (.034) < Adults (.099) p<.05
Range of starting points F(4,118)=4.02, First (.109) > Adults (.072) p<.05
across trials (s;) p<.01,7?=.119 Second/Third (.102) > Adults (.072) p<.05

Table 10 shows correlations among the behavioral measures, RT and accuracy, and model param-
eters. Our previous work with adults (Ratcliff et al., 2015) showed that accuracy is mainly determined
by drift rate and RT is mainly determined by boundary settings, and that was replicated across grade
levels in our current experiments.

Discussion

Previous research (Ratcliff et al., 2012) showed a developmental progression in children’s simple
two-choice non-symbolic numerical discrimination decisions. For example, children accumulated a
lower quality of evidence than did adults when attempting to make a non-symbolic numerical deci-
sion, set wider decision criteria than did adults, and were slower at encoding the stimulus array, trans-
forming the array into task-relevant information, and executing a motor response than were adults.
One goal of our current experiments was to determine whether this pattern of results could be repli-
cated with a new group of children and extended to a symbolic number discrimination task. We also
investigated whether RT and accuracy on the symbolic and non-symbolic discrimination tasks was
related across individuals. Indeed, our current results provide evidence for a developmental progres-
sion in diffusion model parameters toward higher drift rates, narrower boundary settings, and faster
non-decision components across the lifespan in both non-symbolic and symbolic tasks. In contrast,
previous research found that only boundary separation and non-decision criteria differed between
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Fig. 5. Drift rate plotted against number of asterisks (numerosity discrimination task) and number (number discrimination
task). Drift rate increased as condition difficulty became easier (e.g., numbers further from 50).

aging adults and college-aged students who completed a non-symbolic discrimination task (Ratcliff
et al., 2001). Our current findings indicate that with increasing age, children’s symbolic and non-
symbolic magnitude knowledge improves and results in higher drift rates.

RTs decreased and accuracy increased from the hardest conditions (comparisons closest to 50) to
the simplest conditions (comparisons furthest from 50), and this provided evidence for the numerical
distance effect (Dehaene et al., 1998) in both the symbolic and non-symbolic discrimination tasks.
Across age ranges, participants were at ceiling levels of accuracy on the number discrimination task
and also on the simplest conditions in the numerosity discrimination task. By the time children are
in first grade, they have already acquired some adult-like abilities in comparing Arabic numerals
and asterisk arrays.

We found (in line with Ratcliff et al., 2015) that RT was strongly correlated across the symbolic
number discrimination task and the non-symbolic numerosity discrimination task, as was accuracy.
This means that participants who made fast responses on one task tended to make fast responses
on the other task, and participants who made accurate decisions on one task made accurate decisions
on the other task. Diffusion model drift rate, boundary separation, and non-decision time parameters
were also strongly correlated with the same model parameter on the two tasks. For example, a partic-
ipant who had a high drift rate (acuity) on one task was able to abstract high-quality information from
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Fig. 6. Developmental differences in boundary separation (upper left panel), SD in drift rate (upper right panel), non-decision
time and across-trial range in non-decision time (bottom left panel), and across-trial range in starting point (bottom right
panel).

Table 8
Correlations for accuracy and mean RT averaged across conditions.
Group Accuracy-accuracy  Mean RT-mean RT  Numerosity accuracy-mean RT ~ Number accuracy-mean RT
1 grade 372 .667 —.049 335
2/3 grade  .609 822 .045 —-.236
4/5 grade  .341 .838 187 480
7/8 grade  .762 .550 404 299
Adult .634 .592 .078 .205

Note. Critical values for the correlations are as follows: first grade, .46; second/third grade, .39; fourth/fifth grade, .38; seventh/
eighth grade, .46; and adult, .35.

the stimulus array on the other task, and a participant with conservative boundary settings on one
task tended to set conservative decision criteria on the other task.

In contrast, RT and accuracy were not correlated with each other within a task so that whether a
participant was fast did not predict whether the participant was accurate. In addition, drift rate,
boundary setting, and non-decision time parameters were not correlated with each other within a
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Correlations between the numerosity and number discrimination tasks
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Fig. 7. Plots of model parameters between the numerosity and number discrimination tasks for boundary separation (left
column), non-decision time (middle column), and drift rate (right column). The diagonal lines have slope 1 and intercept 0. The
critical values for the correlations are as follows: first graders = .46, second/third graders =.39, fourth/fifth graders =.38,
seventh/eighth graders = .46.

task. This provided an explanation within the diffusion model framework of the lack of correlation
between RT and accuracy (see Ratcliff et al., 2015). That is, the model successfully differentiates the
quality of information on which participants base their decisions from their willingness to make
decisions and other components of information processing such as their ability to encode and
transform a stimulus and execute a decision.

Our results may help to reconcile discrepant findings in the numerical cognition literature.
Sometimes there are significant correlations across symbolic and non-symbolic tasks in the numerical



68 C.A. Thompson et al./Journal of Experimental Child Psychology 150 (2016) 48-71

Table 9
Correlations between model parameters
averaged across the two tasks.

Group a[Ter alv Ter|V
1 grade —.40 -.24 51
2/3 grade -.23 21 —.08
4/5 grade -.27 .09 .09
7/8 grade -.17 27 .19
Adult .16 -.13 18

Note. Critical values for the correlations are
as follows: first grade, .46; second/third
grade, .39; fourth/fifth grade, .38; seventh/
eighth grade, .46; and adult, .35.

cognition literature, and sometimes there are not. Fazio and colleagues’ (2014) meta-analysis indi-
cated the circumstances under which correlations between non-symbolic numerical discrimination
tasks and mathematics achievement are likely to be found. There were stronger correlations between
non-symbolic task performance and mathematics achievement when accuracy-based measures or
accuracy- and RT-based measures of non-symbolic task performance were combined rather than
when RT-based measures of non-symbolic task performance were considered alone.

Therefore, the discrepancy in the numerical cognition literature may at least partly stem from the
fact that researchers primarily use either accuracy- or RT-based measures, but rarely both, to describe
performance on numerical decision tasks. The classic study of symbolic numerical discrimination con-
ducted by Sekuler and Mierkiewicz (1977) is a prime example in which changes in RT only were
tracked across age cohorts. Our results point to the fact that accuracy and RT vary independently
and may stem from different underlying processes; we found no evidence in support of the common
belief that accurate participants should make faster responses relative to the average values for the
group. Therefore, basing claims about participants’ numerical decision making on either of these
dependent variables alone may lead to a skewed understanding of children’s and adults’ numerical
information processing abilities. The explanation for the lack of negative correlations between RT
and accuracy within the framework of the diffusion model was that drift rates, boundary settings,
and non-decision times are independent of one another, accuracy is mainly determined by drift rate,
and RT is mainly determined by boundary settings. One advantage of modeling the data with the dif-
fusion model is that it accounts for the quality of the accumulated information (drift rate) separately
from speed/accuracy settings (boundary separation).

Ceiling- and floor-level performance may also contribute to the inconsistent findings in the
numerical cognition literature. That is, if all participants make highly accurate decisions but there is
some variability in RTs, researchers may then choose to report RTs instead of accuracy because of
the increased variability in the RT data as compared with the accuracy data. Drift rates can be
obtained for participants when their RTs vary even though their accuracy may be at ceiling or floor
levels.

Our current results indicate that an information-processing model, such as the diffusion model,
that decomposes simple two-choice decisions into an encoding/response execution component, an
evidence accumulation component, and speed/accuracy settings can inform theories about numerical
decision making across the lifespan. Our model-based analysis of children’s performance on symbolic
and non-symbolic numerical decisions suggests evidence that the number and numerosity discrimi-
nation tasks are tapping participants’ underlying numerical ability. Future research should investigate
whether diffusion model parameters are correlated with mathematics achievement test scores and 1Q
scores. These analyses could point to the mechanisms by which basic numeracy skills, such as decid-
ing whether an Arabic numeral is greater than or less than 50, are related to more complex mathemat-
ical abilities indexed on achievement tests. We were unable to obtain achievement test scores for all of
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Table 10
Correlations of model parameters and accuracy and RT across grades.
Accuracy for numerosity ~ Accuracy for number RT for numerosity RT for number
discrimination discrimination discrimination discrimination
a Ter v a Ter v a Ter v a Ter 14
1 grade —-0.013 0.464 0.613 0.165 0414 0.814 0.843 -0316 -0.581 0.632 0.095 -0.205

2/3 grade 0.055 -0.067 0.419 0.116 0.299 0.542 0.749 0.172 -0.421 0.227 0.331 -0.652
4/5 grade 0.51 —0.237 0474 0554 -025 -0.068 0.536 -0.027 -0.367 0.882 -0.048 -0.637
7/8 grade 048 -0.154 056 046 0.017 0456 0.79 -0.058 -0.148 0.705 0.225 -0.297
Adult 0431 -0.117 0.535 0.372 0.248 0309 0.84 0.427 -0.335 0.835 0.294 -0.585

our participants because the very youngest children were not state-mandated to take achievement
tests, and not all parents gave permission for their children’s scores to be released for research pur-
poses. Given findings from Chen and Li’s (2014) meta-analysis, we were concerned that any significant
or non-significant correlations that we found between non-symbolic task performance and mathe-
matics achievement would be underpowered in our sample. One “proof of existence” example from
the domain of reading illustrates that in a large individual differences study with struggling adult
readers, drift rates from a lexical decision task were correlated with standardized reading scores
and IQ scores (McKoon & Ratcliff, 2016). Future research should involve the testing of many more chil-
dren from each grade level to establish whether there are also significant relations among model
parameters for symbolic and non-symbolic numerical decision tasks and standardized achievement/
I1Q scores in the domain of mathematics. This could be especially important to tease apart the reasons
why so many first graders were unable to complete the tasks (e.g., general lack of ability vs. task dif-
ficulty vs. boredom).

It is an open question as to whether diffusion model parameters that model non-symbolic discrim-
ination data are related to overall mathematics achievement. Like Fazio and colleagues (2014), we
hypothesize that simple two-choice symbolic and non-symbolic numerical decision tasks may tap
more rudimentary information processing skills than the more complex variety of skills necessary
to answer questions on standardized achievement tests and IQ assessments. Standardized tests of
mathematics achievement may test a range of skills, some of which are related to basic numerical abil-
ities and some of which are unrelated to numerical abilities. Future research could focus on cataloging
the constructs being tested on standardized achievement tests such that the same basic underlying
processes at play in the achievement tests can be more directly compared with similar cognitive tasks.

Another step for future research will be to use stimuli that control for continuous extent (e.g., yel-
low and blue dot arrays available from http://panamath.org) to determine whether diffusion model
parameters differ when these aspects of the stimuli are controlled. Pilot data that we have collected
in our labs with college-aged adults have shown that drift rates for non-symbolic tasks that do and
do not control for continuous extent are correlated. In addition, drift rates on the symbolic and
non-symbolic tasks used in the current experiments are highly correlated for participants across all
of the grades we tested; therefore, these tasks are likely tapping a common underlying numerical
ability.
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Appendix A

Average achievement test and IQ scores.

Grade Achievement test Average score Percentage at Average matrix
and maximum and SD or above grade reasoning and
possible score level proficiency  vocabulary

IQ and SD

First BEAR, 41 30.11, 5.54 89

Second/Third BEAR, 35 28.77,7.22 73 115.24, 12.28

Fourth/Fifth OCCT Math, 990 854.74, 76.18 100 117,12.81
OCCT Reading, 990  822.35, 61.81 96

Seventh/Eighth OCCT Math, 990 804.47, 55.15 100

OCCT Reading, 990  817.94, 62.59 94

Note. BEAR, Basic Early Assessment of Reading; OCCT, Oklahoma Core Curriculum Tests.
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