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Enhanced processing of threatening information is a well established phenomenon among high-anxious
individuals. This effect is most reliably shown in situations where 2 or more items compete for processing
resources, suggesting that input competition is a critical component of the effect. However, it could be
that there are small effects in situations without input competition, but the dependent measures typically
used are not sensitive enough to detect them. The present study analyzed data from a noncompetition
task, single-string lexical decision, with the diffusion model, a decision process model that provides a
more direct measure of performance differences than either response times or accuracy alone. The
diffusion model analysis showed a consistent processing advantage for threatening words in high-anxious
individuals, whereas traditional comparisons showed no significant differences. These results challenge
the view that input competition is necessary for enhanced threat processing. Implications for theories of
anxiety are discussed.
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Numerous studies have demonstrated that individuals high in
anxiety show enhanced processing of threatening information over
nonthreatening information compared to their low-anxious coun-
terparts. This phenomenon, often termed a threat bias, has been
repeatedly demonstrated in clinically anxious samples and in non-
clinical samples of individuals high in trait anxiety (see Bar-Haim,
Lamy, Pergamin, Bakermans-Kranenburg, & van IJzendoorn,
2007, for a meta-analytic review). Such biased processing of threat
is thought to play a significant role in the development and/or
maintenance of anxious states (e.g., Beck & Clark, 1997; Bishop,
2007; Eysenck, 1992; Mathews & Mackintosh, 1998; Mogg &
Bradley, 1998; Williams, Watts, MacLeod, & Mathews, 1988,
1997). Accordingly, there has been much empirical and theoretical
work devoted to understanding the exact nature of this bias.

The present study focuses on the conditions in which anxiety-
related threat bias does and does not manifest. In particular, we
investigated whether competition for processing resources is nec-
essary to demonstrate threat bias in individuals high in anxiety. It
has been suggested that the bias only occurs when threatening
information competes with nonthreatening information for pro-
cessing resources (e.g., MacLeod & Mathews, 1991; Mathews,
1990; Mathews & Mackintosh, 1998; Williams et al., 1997). For
example, Mathews and Mackintosh (1998) stated, “Thus, it is the
attentional priority accorded to threat in preference to other cues,
rather than the efficiency of processing threatening information per
se, that characterizes anxiety” (pp. 540–541).

In support of this view, the tasks that reliably show threat bias
do indeed involve more than one stimulus (or stimulus aspect) that

competes for processing resources. For example, in the widely
used probe detection (e.g., MacLeod, Mathews, & Tata, 1986) and
probe discrimination tasks (e.g., Bradley, Mogg, Falla, & Hamil-
ton, 1998), two stimuli (e.g., words or faces), one threatening and
one neutral, are briefly presented at different locations on the
screen. Then a probe is presented at the location of one of the
stimuli, and participants must indicate the presence of the probe or
determine its type or location. In individuals high in anxiety,
responses are typically faster when the probe replaces the threat-
ening stimulus and slower when it replaces the neutral stimulus,
suggesting that attention is preferentially allocated to threat for
these individuals. Because participants can attend to either of the
two stimuli cues in the tasks, there is competition for processing
resources.

Similar results have been demonstrated in other paradigms such
as emotional Stroop and dichotic listening tasks, both of which
involve competition for processing resources (see Bar-Haim et al.,
2007). In the emotional Stroop task, participants must name the
color of presented words, some of which are threatening or emo-
tional. In this task, individuals high in anxiety show slower re-
sponses to the colors of threatening compared to nonthreatening
words (e.g., Fox, 1993). Although only one stimulus is presented
at a time, the meaning of the word can compete with the color of
the word and affect responses. In dichotic listening tasks partici-
pants must attend to one of two auditory streams that are presented
simultaneously in different ears, so the two streams compete for
attention. Participants who are anxious show significant interfer-
ence when threat-related words are presented in the unattended
stream (e.g., Mathews & MacLeod, 1986; Wenzel, 2006).

Each of the above tasks involves processing competition, and
each reliably reveals threat bias. In contrast, evidence for threat
bias in tasks that do not involve competition is rare, providing
further support for the claim that processing competition is nec-
essary for threat bias. Perhaps the most consistent support for this
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claim comes from lexical decision tasks, in which participants
must determine if letter-strings are words or not. MacLeod and
Mathews (1991) compared patients diagnosed with generalized
anxiety disorder (GAD) and healthy controls on two versions of
lexical decision and showed threat bias for the patients, but only
when there was processing competition. The critical distinction in
the study was between single- and double-string versions of the
task. In the single-string version, one string of letters was pre-
sented at a time and participants responded word or nonword. In
the double-string version two letter-strings were presented simul-
taneously and participants responded word if one or both of the
strings was a word, or nonword if neither was a word. For both
versions of the task, threat bias was defined as faster responses to
trials with one threatening word compared to trials with one
nonthreatening word.

In the double-string design there are two inputs that compete for
attention. In the single-string design, on the other hand, there is
only one stimulus to process so there was no competition among
inputs. MacLeod and Mathews’ (1991) results showed a threat bias
for patients with GAD, but only in the double-string version.
Individuals who are anxious had faster responses to trials contain-
ing a threatening word paired with a nonword relative to trials with
a nonthreatening word paired with a threatening word. In contrast,
participants who are anxious did not show faster responses to
threatening words relative to nonthreatening words when they
were presented by themselves. The authors took this as evidence
that, for individuals who are anxious, threatening information is
assigned processing priority over competing input, but it is not
more accessible than nonthreatening information in general. Thus
the advantage for threatening information is only present when
there is competition for processing resources.

It is important to be clear on the type of competition implied by
MacLeod and Mathews’ (1991) results. Although there is compe-
tition between the responses (word and nonword) it is present in
both versions of the task. There is also competition among internal
representations, in that the decision depends on whether a letter-
string sufficiently matches a word in lexical memory. However,
this type of competition is also present in both versions of the task.
The type of competition that does differ between the two versions
of the task is input competition: In the double-string task there are
two inputs that can be processed, whereas in the single-string tasks
there is only one. Thus we refer to MacLeod and Mathews’ (1991)
hypothesis as the input competition hypothesis for clarity. This
hypothesis states that anxiety affects the cognitive control systems
involved in selecting threatening over neutral stimuli for process-
ing, but it does not facilitate the availability of threat-related
information in general. Consequently, threat bias will only mani-
fest in conditions involving multiple, competing inputs.

In support of the input competition hypothesis, several other
studies with lexical decision have failed to demonstrate a threat
bias in individuals who are anxious. Mogg, Mathews, Eysenck,
and May (1991) found a threat bias in participants who are anxious
when comparing threatening and categorized nonthreatening
words in double- but not single-string lexical decision. Hill and
Kemp-Wheeler (1989) used positive and threatening words in
single-string lexical decision and found no threat bias in partici-
pants who are anxious. Calvo, Eysenck, and Estevez (1994) found
larger semantic priming of threatening words as a function of test
anxiety, but no effects in the basic single-string lexical decision

task. Pauli, Dengler, and Wiedemann (2005) had patients with
panic disorder and healthy controls study threatening and neutral
words and used single-string lexical decision to assess implicit
memory for the studied words, and they did not find a threat bias
in the patients with panic disorder. Ferraro, Christopherson, and
Douglas (2006) used single-string lexical decision to compare
blood-fearful, spider-fearful, and nonfearful controls, but failed to
find any threat bias to spider- or blood-related words. Mathews and
Milroy (1994) had participants with high- and low-anxiety make
valence decisions (e.g., “is this word pleasant or unpleasant?”)
about threatening and neutral words, but found no differences in
response times (RTs) as a function of anxiety. Similar tasks with-
out input competition, like affective decision or identification,
have shown evidence of response bias for threat in participants with
high anxiety, but no evidence of greater discriminability or accessi-
bility for threatening stimuli (Becker & Rinck, 2004; Eysenck, 1992;
Manguno-Mire, Constans, & Geer, 2005; Windmann & Kruger,
1998; Winton, Clark, & Edelmann, 1995).

Taken together, these studies suggest that the anxiety-related
threat bias does not occur unless threatening information competes
with other input for processing resources. However, recent studies
have demonstrated anxiety-related threat bias using a variant of the
probe detection task in which only one stimulus cues the potential
probe location. Thus rather than displaying one threatening and
one nonthreatening stimulus simultaneously to cue the probe lo-
cation, only one stimulus is presented that can correctly or incor-
rectly cue the location of the upcoming probe. Threat bias has been
demonstrated for individuals who are anxious in this task with both
threatening words (Amir, Elias, Klumpp, & Przeworski, 2003;
Fox, Russo, Bowles, & Dutton, 2001) and threatening pictures
(Koster, Crombez, Verscheure, Van Damme, & Wiersema, 2006).
At first glance these findings might be taken to challenge the input
competition hypothesis because only one stimulus is used to cue
the probe location; thus the threatening stimulus does not compete
with a nonthreatening stimulus for processing resources. However,
there is still potential input competition between the cue and the
probe. In fact, one proposed source of threat bias in this task, an
impaired ability to disengage attention from the threatening stim-
ulus, implies competition between the threatening stimulus and the
probe (Amir et al., 2003; Fox et al., 2001). Thus there is potentially
some input competition in this task, so it cannot strongly challenge
the input competition hypothesis.

As noted above, the input competition hypothesis is an explicit
component of several theories of threat bias (Mathews, 1990;
Mathews & Mackintosh, 1998; Williams et al., 1997). It also
appears to be implicit in other models, including those of Eysenck
(1992); Beck and Clark (1997); Mogg and Bradley (1998); and
Frewen, Dozois, Joanisse, and Neufeld (2008), in that these mod-
els have been formulated to account for why attention is selec-
tively allocated to threat cues over neutral cues and thus imply
competition between such cues.

However, in many of these theories input competition is not
necessarily a core component. In their simplest form, these models
all appear to include some form of what Williams et al. (1997)
termed the affective decision mechanism (ADM), which deter-
mines the threat value of input and which triggers a secondary
resource allocation mechanism (RAM), which assigns priority to
processing of stimuli deemed potentially threatening. As noted by
Mathews and Mackintosh (1998), the 1988 version of the Williams
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et al. model “seemed to predict that high trait/state anxious indi-
viduals should be faster to respond to threatening stimuli even in
the absence of competing stimuli” (p. 541). They noted that the
1997 revised model was altered to accommodate the apparent
requirement for processing competition. Specifically, they concep-
tualized the ADM as a parallel distributed processing network in
which the activation of representations of threatening stimuli is
strengthened by adding an emotional “tag.” This tag gives such
representations an advantage over competing stimulus representa-
tions. Mathews and Mackintosh (1998) noted, “Without any com-
petition, however, no particular advantage would be apparent,
because a single threat stimulus would always effectively control
the output from that network, regardless of whether it carried a tag
or not” (p. 541).

Although the consistent failure to find evidence of threat bias
using tasks not involving input competition (e.g., lexical decision)
suggests a need for this hypothesis, we note that it rests on a
pattern of null findings that are not conclusive. We suggest this
pattern may be an artifact of insensitive measures and so suggest
that enhanced processing of threatening stimuli in individuals who
are anxious should be expected even in the absence of processing
competition.

To illustrate this point, we focus on a recent neurocognitive
model of anxiety (Bishop, 2007). This model was chosen because
it was informed by research on attentional biases and is formalized
in terms of underlying neural substrates (see Frewen et al., 2008,
for similar principles in a neural-network model). Bishop’s (2007)
model builds on the hypothesis of Mathews and Mackintosh
(1998) that individuals who are anxious have more sensitive threat
appraisal than their nonanxious counterparts. In brief, the model
posits that individuals who are anxious are characterized by
heightened responsiveness of the amygdala, and this leads to
increased activation of the representations of threatening cues in
the temporal cortex, effectively enhancing the saliency of threat in
the environment. This element of Bishop’s model parallels the
ADM in the Williams et al. model. This increased amygdala activity
is coupled with decreased attentional regulation from prefrontal cor-
tex, which reduces the ability to inhibit processing of threatening
distractors. Consequently, cortical representations of threatening in-
formation are more easily activated relative to nonthreatening infor-
mation for anxious individuals, leading those individuals to selec-
tively attend to threat. In terms of attentional biases, enhanced
activation of the amygdala facilitates engagement, whereas impaired
regulation from prefrontal cortex delays disengagement.

In Bishop’s (2007) model the increased activity of threat repre-
sentations leads to preferential processing of threat over competing
input for anxious individuals. When there are multiple inputs
competing for attentional resources, the model predicts that threat-
ening information will win the competition, consistent with the
results reviewed above. However, the central mechanisms of the
model should presumably operate with or without input competi-
tion. In particular, there is no apparent reason why the amygdala
would respond to threat when two or more inputs are presented,
but not when one threatening stimulus is presented in isolation. It
would be more parsimonious to assume that anxious individuals
have hyperactivity of the amygdala in response to threatening
information, regardless of whether there are other concurrent in-
puts. Similarly, we should expect the ADM to lead to enhanced
processing of threat regardless of concurrent inputs. If so, threat

bias should still occur with multiple-competing inputs, but it
should also occur in the absence of additional inputs. That is, the
cortical representations of threatening information should be more
active relative to neutral information, even if only one stimulus is
being processed. Of course, such an account does not address why
threat bias is not found without competition among inputs, which
we investigated in the present study.

The failure to find reliable threat bias in tasks without input
competition suggests that models such as Bishop’s (2007) should
only be formulated for situations with multiple inputs. In contrast,
we hypothesize that threat bias is present regardless of input
competition, but the effects are smaller, and thus more difficult to
detect, when there is no input competition. According to this
hypothesis, there are small effects of threat bias in noncompetition
tasks, but traditional analytical methods are not sensitive enough to
detect them. If this were true, it would allow for broader and more
parsimonious models of anxiety in which selective processing of
threat over concurrent input is simply one manifestation of more
general underlying processes.

In support of our hypothesis, there is some evidence for anxiety-
related differences in lexical decision without input competition.
Hill and Kemp-Wheeler (1989) found a nonsignificant trend sug-
gesting an advantage for positive words in participants with low-
anxiety but not participants with high anxiety. Pauli and colleagues
(1997) showed a marginally significant difference between pa-
tients with panic disorder and healthy controls in identifying
rapidly presented threatening words, however, they failed to rep-
licate the effect (see Becker & Rinck, 2004). Last, Vythilingam et
al. (2007) compared patients with posttraumatic stress disorder
(PTSD) to healthy controls on single-string lexical decision and
showed a significant threat bias in patients only.

These studies support the claim that there might be small effects
in noncompetition tasks that are hard to detect. There are several
aspects of research in this domain that can limit statistical power,
thus reducing the ability to detect such small effects. First, there
are often practical limitations to participant recruitment with clin-
ical populations, resulting in relatively small sample size. For
example, in the MacLeod and Mathews (1991) study, there were
only 16 participants in each group. Although this size of sample
might be sufficient to show large effects of a manipulation, small
effects could require more participants to reach significance. Sec-
ond, there is often a limit to the number of relevant stimuli that are
available. Although researchers might use a large pool of threat-
ening words in an experiment, it is unlikely that every word is
equally salient to anxious participants. Thus although the word
cancer is deemed threatening by the experimenter, it might not be
sufficiently threatening or relevant to a particular individual who is
anxious. Last, the dependent measure used to assess threat bias,
typically mean RT, is not a direct measure of difficulty of stimulus
processing. As we will discuss in the next section, response speed
across individuals is determined by several factors that are inde-
pendent of the stimulus, so RTs might not be precise enough to
detect small effects.

Given the limitations to research discussed above, it is possible
that there are small effects of threat bias in noncompetition tasks
that are undetected. A straightforward way to test this is to increase
the power of a design and assess whether threat bias emerges. The
present study employed this approach to determine if threat bias
could be reliably demonstrated in single-string lexical decision.
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Based on the limitations listed above, there are three primary
methods to increase the chance of significance in lexical decision:
increase sample size, increase the number of critical stimuli, or use
a more sensitive dependent measure. Because there are practical
limitations to increasing the number of participants with high
anxiety or threat-related stimuli that are relevant to those partici-
pants, we focused on using a more sensitive dependent measure.
We used a cognitive decision model, the diffusion model (Ratcliff,
1978; Ratcliff & Smith, 2004), to produce a more direct measure
of lexical processing than traditional RTs and accuracy values.
Before the diffusion model is introduced we review the limitations
of traditional analyses of lexical decision and how they can ob-
scure effects.

Dependent Measures for Lexical Decision

Lexical decision involves two dependent measures, accuracy
and RTs. We focus primarily on RTs because accuracy is rarely
compared in lexical decision due to ceiling effects, though the
following concerns hold for both measures. If certain stimuli, such
as threatening words, provide a strong match to lexical memory,
responses to them will be fast and accurate. Thus RTs are used to
assess the speed or quality of access to lexical representations.
Unfortunately, RTs are affected by other components of the deci-
sion that are not related to the construct of interest. For example,
some individuals tend to perform these tasks relatively slowly, not
because they are slow to process the information, but because they
are more cautious when responding. Although this difference in
response caution is presumably independent of word accessibility,
it is absorbed into the measures used to assess lexical processing.
Therefore, two participants who have similar lexical processing
could still have substantially different RTs. Other aspects of an
individual’s response style can affect the behavioral data as well.
Some individuals might be slower at the response stage of the task
(e.g., pressing the button), whereas others might have a bias for
one response (e.g., prefer to respond word), making it faster and
more probable than the other.

In this sense, RTs are only an indirect measure of lexical
processing because they reflect more than just the quality of
information extracted from a stimulus (Ratcliff, Van Zandt, &
McKoon, 1999; White, Ratcliff, Vasey, & McKoon, 2009). If the
size of an effect between conditions or groups is relatively small,
such an indirect measure might be too obscured to detect the effect.
Thus RT and accuracy comparisons can show null differences
even when there is an underlying effect. This limitation holds for
other two-choice response time tasks, not just lexical decision.

The potential problem of different levels of response caution,
reflected in speed/accuracy tradeoffs, is typically addressed by
regressing accuracy on RTs to assess a systematic relationship.
Although this method can detect group differences in response
caution, it does not produce a direct measure of lexical processing;
RTs still reflect more than lexical access. Even if there are no
apparent group differences in speed/accuracy settings, individual
differences in response style can still affect RTs (Ratcliff et al.,
1999; White et al., 2009).

Ideally, an individual’s response style would be identified and
separated out to produce a more direct measure of lexical process-
ing. Sequential sampling models allow for such analyses. Sequen-
tial sampling models are designed to account for the processes

involved in making a simple decision (Ratcliff & Smith, 2004).
One of the most widely applied models within this class is the
diffusion model, which decomposes data from two-choice tasks
into processing components (Ratcliff, 1978; Ratcliff & Rouder,
1998; Ratcliff et al., 1999). The model provides estimates for the
several components of the decision process: response caution,
response bias, encoding and response output time, and the quality
of information provided by a stimulus. As a result, the effects of
the components are disentangled, allowing more direct compari-
sons than are possible with the RTs and accuracy alone. In the next
section, we provide a brief explanation of the diffusion model. For
a more detailed description, readers should see Ratcliff and Tuer-
linckx (2002); Ratcliff and Smith (2004); Ratcliff and McKoon
(2008), or Wagenmakers (2009).

The Diffusion Model

The diffusion model (Ratcliff, 1978) is a sequential sampling
model designed to explain the processes involved in making sim-
ple decisions. The model is designed to apply to fast (RTs under 1
to 1.5 s) two-choice decisions that involve a single-stage decision
process. A schematic of the model is shown in Figure 1. Panel A
of Figure 1 shows the entire process from presentation of the
stimulus to the execution of a response. When making a decision
in a two-choice task, an individual must encode the information,
make a decision, and produce a response. The diffusion model
does not address encoding and response, but it incorporates a
parameter for these nondecision components, Ter (mean time for
encoding and response), that estimates the total time for these
processes.

The main focus of the model is the decision component of the
response, shown in Figure 1B. The diffusion model assumes that
information is accumulated until there is sufficient evidence for a
response. The process starts at some point, z, and evidence is
sampled over time until the process reaches a boundary (a or 0), at
which point a response is initiated. The evidence is noisy so
although the mean rate of accumulation (i.e., the slope of the line,
v) always approaches the top boundary, the actual process is
stochastic, represented by the nonmonotonic line in Figure 1B.
Because evidence accumulation is noisy, responses with the same
accumulation rate terminate at different times, producing RT dis-
tributions. Further, sometimes the noise drives the process to the
wrong boundary, producing errors.

The main parameters of the model are the nondecision compo-
nent, Ter, the starting point of the decision process, z, the distance
between the two boundaries, a (i.e., a – 0), and a drift rate, v, for
each condition in an experiment. These parameters have straight-
forward behavioral interpretations. Drift rate indexes the quality of
information from the stimulus. A high value of drift rate means
that the process reaches the boundary sooner and is less likely to
be driven across the wrong boundary by noise, producing fast
responses and few errors. Boundary separation, a, indexes the
amount of information an individual requires to reach a decision
(i.e., speed/accuracy settings or level of caution). A large boundary
separation is indicative of a cautious response style and means that
processes take longer to reach a boundary, but are less likely to
cross the wrong boundary by mistake, leading to slower but more
accurate responses. The position of the starting point, z, indexes
response bias. If the starting point is closer to the top boundary
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those responses will be faster and more probable than those cor-
responding to the other boundary.

The components are assumed to have variability associated with
them, based on the assumption that they fluctuate throughout the
course of an experiment. The parameter st captures variability in
the nondecision component, sz captures variability in the starting
point, and � captures variability in drift rates across trials. The
parameter po represents the proportion of contaminants in the data
(e.g., due to lapses in attention), which allows the model to
accommodate outlier responses that are not removed through data
trimming (see Results).

The diffusion model is fit to all aspects of the behavioral data,
including accuracy and the correct and error RT distributions for
each condition. In this regard it is highly constrained by the data,
and all possible effects are captured. To fit the model, researchers
need the quantile RTs for correct and error responses and accuracy
for each condition (see Ratcliff & Tuerlinckx, 2002, for a full
description of the fitting method). To ease use of the model, it has
recently been implemented in a MATLAB toolbox (Vanderkerch-
khove & Tuerlinckx, 2008).

The diffusion model provides several advantages over analyses
of RTs and accuracy. First, all of the data are used by the model.
Whereas a traditional analysis might only compare mean RTs for
correct responses, the model incorporates accuracy values and the
RT distributions for both correct and error responses. Second, the
model separates components of processing, allowing researchers to
compare measures of response caution, response bias, nondecision
time, and stimulus evidence across groups of subjects. Third, and
most important for present purposes, the variability associated with
each component does not affect the other measures. It has been

shown empirically and through simulations that individual differ-
ences in response caution and bias can affect RTs and accuracy but
not drift rates (Voss, Rothermund, & Voss, 2004; White, Ratcliff,
Vasey, & McKoon, 2010). Also, the correlations among parame-
ters across subjects are typically small, suggesting that components
extracted by the model are relatively independent of each other
(see Ratcliff, Thapar, & McKoon, 2010). Further support for the
use of drift rates to index differences in lexical processing comes
from Ratcliff, Gomez, and McKoon (2004), who analyzed a series
of lexical decision experiments with the diffusion model and
showed that manipulations of word frequency, word repetition,
nonword type, and stimulus proportionality all mapped onto
changes in drift rates. Thus each of the manipulations in that study
produced changes in the quality of evidence in the decision pro-
cess. Taken together, these studies suggested that compared to RTs
or accuracy values, drift rates provide a more direct measure of
lexical processing that is not contaminated by other decision
components.

Another advantage of a diffusion model analysis is that it can be
applied to conditions with relatively few observations. This is
particularly relevant here because researchers often have a limited
pool of threatening words to use when assessing threat bias. With
a limited number of observations for these conditions there will be
greater variability in the estimates used to compare processing.
This limitation can be overcome with the diffusion model by
including filler conditions with hundreds of observations. By fit-
ting the model to all conditions simultaneously, the filler condi-
tions with many observations constrain estimates for the target
conditions with fewer observations (e.g., threatening words), as we
describe in more detail in the Model Fitting section.

Figure 1. An illustration of the diffusion model. Panel A shows the total response process, including encoding
and response output. Panel B shows the diffusion process for the decision component of the response process.
Parameters of the model are: a, boundary separation; z, starting point: Ter, mean value of the nondecision
component of reaction time; �, SD in drift across trials; sz, range of the distribution of starting point (z) across
trials; v, drift rate; p0, proportion of contaminants; st, range of the distribution of nondecision times across trials;
and s, SD in variability in drift within trials.
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With the diffusion model to assess anxiety-related differences in
threat processing, two questions can be addressed. First will drift
rates reveal a threat bias for anxious participants in a lexical-
decision task without input competition? Second, are there differ-
ences between participants with high anxiety and low anxiety in
response criteria or nondecision time? More generally, this ap-
proach can demonstrate the utility of applying cognitive modeling
techniques, encouraging their use in the exploration of other clin-
ical phenomena.

Experiment 1: Threat Bias in Single-String
Lexical Decision

Experiment 1 was designed to determine if individuals with
high-trait anxiety show a processing advantage for threatening
information in a lexical-decision task. Threatening and matched
nonthreatening words were presented sporadically among many
neutral fillers. The sporadic presentation of these words was in-
tended to reduce the probability that they would be noticed as the
stimuli of interest and to prevent the threatening words from
priming each other. The study was replicated with two separate
sets of participants to ensure that the results were robust across
participants. Rather than combine the participants into one large
group, we chose to treat them as separate groups because studies
involving psychopathology are often limited to a small sample of
participants, and we wanted to ensure that our findings were
replicable in typical samples. However, the pattern of data was the
same for the two groups.

Method

Stimuli. The stimuli were divided into two categories, filler
and target. Filler stimuli were included to constrain the model
fitting and hide the target words as stimuli of interest. There were
three filler stimuli pools: 366 high frequency words with frequen-
cies from 78 to 10,600 per million (M � 287.5, SD � 476, Kucera
& Francis, 1967), 599 low frequency words with frequencies of
four and five per million (M � 4.41, SD � 0.017), and 434
nonwords, which were created by replacing all of the vowels with
other vowels (except for u after q) from the word pools.

Target stimuli consisted of threatening words and matched
nonthreatening words. The words were taken from a previous
study investigating memory bias in anxiety (Mathews, Mogg,
May, & Eysenck, 1989) and an online database for the attentional
probe task (www.psy.uwa.edu.au/labs/cogemo/AttProbe1.html).
There were two, 120 word pools, one threatening (e.g., cancer,
embarrassment) and one nonthreating (e.g., planet, avacado), that
were matched for letter-length and frequency of usage. Target and
filler stimuli were chosen randomly from the word pools without
replacement for use in the task.

Anxiety measure. The trait portion of the Spielberger Trait
Anxiety Inventory (STAI, Spielberger, Gorsuch, & Lushene,
1970) was used to assess differences in anxiety. Trait scores from
the STAI were used to group participants, with the upper and lower
third of scores grouped as high- and low-anxiety, respectively. The
lower cutoff for the high-anxiety group was 43 and the upper
cutoff for the low-anxiety group was 34.

Participants. All participants were Ohio State University stu-
dents who received credit in an introductory psychology course for

participation. In the first set there were 63 total participants. The
low-anxious group consisted of 21 participants (12 women) with
mean STAI 28.2 (SD � 2.3), and the high-anxious group consisted
of 21 participants (14 women) with mean STAI 47.2 (SD � 4.9).
In the second set there were 57 total participants, with 21 partic-
ipants (13 women) in the low-anxious group, mean STAI 30.3
(SD � 3.4), and 21 participants (14 women) in the high-anxious
group, mean STAI 48.9 (SD � 6.1).

Procedure. Participants performed a lexical-decision task in
which they were shown single strings of letters and told to respond
word if the letters formed an English word or nonword if they did
not. Stimuli remained on the screen until a key was pressed. To
discourage guessing, the word ERROR was shown for 750 ms after
incorrect responses. There were 12 blocks consisting of 36 words
and 36 nonwords each. Of the 36 words in each block, there were
24 filler words (12 high frequency, 12 low frequency) and 12
target words (six threatening words, six nonthreatening). Each
target word was separated by at least four trials of filler stimuli to
avoid priming effects and each was preceded by a high frequency
word to control sequential effects. After finishing the task partic-
ipants completed the STAI–T.

Model fitting. All responses faster than 250 ms or slower than
3 s were excluded from the analyses (less than 0.7% of the data)
to remove apparent outliers. Although the diffusion model incor-
porates a parameter, po, to account for lapses in attention, data
trimming is still performed to remove responses that are substan-
tially outside of the range of normal responses. Thus po captures
any responses (e.g., due to lapses of attention) that fall within the
normal response window.

The diffusion model was fit individually to each participant’s
data, which allowed the parameters to be subjected to analysis of
variances (ANOVAs) in the same manner as RTs and accuracy
values. The data entered into the fitting routine for each condition
were the accuracy value and the five quantiles of the RT distribu-
tion for correct and error responses (see Appendix). The model
was fit to all conditions simultaneously, including the filler and
target conditions. The use of all of the conditions is an important
methodological advantage afforded by the model. Because there
were relatively few observations in the target conditions, RT and
accuracy estimates for threat and nonthreat conditions have higher
variability. However, by using hundreds of observations from the
filler conditions to constrain estimates for response criteria and
nondecision time in the diffusion model, the drift rates for the
target conditions can be accurately estimated (White et al., 2009).
In other words, the model was used to determine an individual’s
nondecision time and response caution based on hundreds of
responses to filler conditions, and that information was then used
as a reference to determine the quality of evidence (drift rates) for
the target conditions with fewer observations. Thus we were able
to decrease the variability of the drift-rate estimates without adding
more target observations.

The quality of fit can be assessed by the chi-square values
reported in Table 2. With five conditions and 12 model parameters,
the degrees of freedom were 43 with a critical value of 59 (see
Appendix). Thus Table 2 shows there are significant misfits of the
model. However, the power of the chi-square statistic increases
with the number of observations, meaning a small misfit can
produce a significant chi-square (see Ratcliff, Thapar, Gomez, &
McKoon, 2004). As a rule of thumb, we generally find that for
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experiments with up to 1,000 observations, chi-square values that
are less than twice the critical value indicate good accord with the
data, so long as there are no systematic misses from the model’s
predictions (see Appendix). In the present experiment, all of the
values were well under twice the critical value, and were compa-
rable to previous applications of the model to lexical decision
(Ratcliff et al., 2004; White et al., 2009), allowing for confident
comparison of the parameter values. The appendix includes a more
detailed account of fit quality, including visual assessment of the
fits.

Results

Differences in lexical processing were assessed by comparisons
of mean RTs, accuracy, and drift rates. The two sets of participants
are presented separately (Group 1 and Group 2). The behavioral
data are shown in Table 1 and the diffusion model parameters are
shown in Table 2. We performed ANOVAs on the filler stimuli,
but there were no main effects or interactions involving anxiety so
they are not discussed further.

When comparing threatening and nonthreatening words, we
found evidence for a threat bias in both of the high-anxiety groups.
Specifically, participants with high anxiety had larger drift rates
for threatening compared to nonthreatening words whereas partic-
ipants with low anxiety did not. More important, these effects were
only significant in drift rate comparisons, though RT and accuracy
comparisons showed small, nonsignificant differences in the ex-
pected direction.

Comparisons of target stimuli were performed using 2 � 2
mixed ANOVAs on each measure (mean RTs, accuracy values,
and drift rates), with stimulus type (threatening, nonthreatening) as
the within-factor and anxiety group as the between-factor. Overall,
participants had an advantage for threatening compared to non-
threatening words. For accuracy comparisons, there was a main
effect of stimulus type, with more accurate responses to threaten-
ing words in Group 1, F(1, 40) � 7.57, p � .01, �2 � .16, but the

effect did not reach significance in Group 2, F(1, 40) � 1.5, p .1,
�2 � .04. Similar results were found with RT comparisons; Group
1 showed faster responses to threatening words, F(1, 40) � 9.62,
p � .01, �2 � .19, but the difference was not quite significant for
Group 2, F(1, 40) � 3.16, p � .08, �2 � .07. Consistent with these
results, drift rates were significantly higher for threatening com-
pared to nonthreatening words in Group 1, F(1, 40) � 23.63, p �
.001, �2 � .35, and Group 2, F(1, 40) � 7.25, p � .01, �2 � .13.

The primary effect of interest was the interaction between anxiety
and stimulus type. Figure 2 shows the results plotted as the difference
between threat and nonthreat conditions (i.e., threat bias) for mean
RTs, accuracy, and drift rates. Although there were small differences
in the direction of a larger threat bias for the high-anxious groups with
RTs and accuracy, the interactions were not significant for either
measure (all Fs � 1). However, drift rate comparisons did show the
predicted interaction in both groups: Group 1, F(1, 40) � 4.72, p �
.05, �2 � .07; Group 2, F(1, 40) � 4.92, p � .05, �2 � .09.
Subsequent paired t tests confirmed that both of the high-anxious
groups had significantly higher drift rates for threatening compared to
nonthreatening words: Group 1, vthreat – vnonthreat � .064, t(20) �
4.84, p � .001, �2 � .539; Group 2, vthreat – vnonthreat � .034, t(20) �
3.26, p � .01, �2 � .347, whereas the difference did not reach
significance for the either of the low-anxious groups: Group 1,
vthreat – vnonthreat � .023, t(20) � 1.77, p � .09, �2 � .061; Group 2,
vthreat – vnonthreat � �.001, t(20) � �.29, p � .1, �2 � .004.

To assess differences in response criteria and nondecision time,
we performed direct comparisons between the low- and high-
anxious groups on each of the components listed in Table 2. None
of the components differed between participants with high anxiety
and low anxiety (all ts � 1.5).

Discussion

Consistent with predictions, the results from Experiment 1 dem-
onstrate enhanced processing of threatening words for participants
with high anxiety. Drift rate comparisons revealed a significant

Table 1
Accuracy and Reaction Times Averaged Across Participants for Experiment 1

Low anxiety High anxiety

Accuracy Mean correct RT Mean error RT Accuracy Mean correct RT Mean error RT

Group 1
Fillers

HF .963 (.03) 611 (217) 609 (290) .964 (.03) 629 (231) 565 (178)
LF .832 (.05) 726 (283) 738 (327) .839 (.06) 752 (312) 759 (367)
NW .922 (.04) 703 (288) 771 (358) .937 (.03) 733 (305) 748 (351)

Targets
Threat .924 (.03) 654 (232) 784 (336) .935 (.03) 675 (240) 713 (286)
Nonthreat .911 (.03) 673 (258) 825 (372) .908 (.04) 699 (280) 821 (392)

Group 2
Fillers

HF .975 (.02) 627 (264) 599 (184) .977 (.02) 609 (212) 570 (190)
LF .833 (.06) 732 (307) 732 (350) .854 (.07) 724 (276) 785 (375)
NW .926 (.04) 712 (292) 762 (378) .930 (.03) 722 (277) 777 (382)

Targets
Threat .891 (.03) 693 (268) 701 (333) .915 (.03) 691 (261) 700 (398)
Nonthreat .886 (.04) 700 (274) 756 (351) .900 (.03) 711 (280) 850 (436)

Note. Standard deviations are given in parentheses. Groups 1 and 2 refer to separate groups of participants. RT � response time; HF � high-frequency
words; LF � low-frequency words; NW � nonwords.
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processing advantage for the threatening words in the high-anxious
but not the low-anxious groups. The interaction between stimulus
type and anxiety group was significant only for drift rates, though
accuracy and RTs showed small differences in the expected direc-
tion. Because there are large individual differences in the process-
ing components (e.g., nondecision time and response caution) that
affect RTs and accuracy values (Ratcliff & McKoon, 2008), these
measures are less sensitive than drift rates when used to assess
lexical processing, accounting for the discrepant findings among
the measures.

The present results indicate that input competition is not neces-
sary to demonstrate anxiety-related biases for threatening informa-
tion, consistent with recent results with patients with PTSD
(Vythilingham et al., 2007). Demonstrating this effect in nonclini-
cal participants with high anxiety suggests that it is a general
phenomenon for anxiety that is not restricted to patients with
PTSD. Although the threat bias was in the right direction with RTs
and accuracy, it was not strong enough to be statistically signifi-
cant.

Comparisons of the processing components extracted through
the diffusion model show that there were no differences between
low- and high- anxious groups in boundary separation (caution),
nondecision time (encoding and response output), or starting point
(response bias). However, because the experiments were designed
with many more filler than target stimuli, these processing com-

ponents were determined more heavily by nonthreatening infor-
mation in the model fits. In other words, the trials with threatening
words did not greatly contribute to the estimates for the response
components (aside from drift rates for those conditions), so we
cannot make any claims about how or if threatening information
affects these components of processing. To address this, we also fit
the diffusion model to the target conditions alone, without con-
straints from the filler conditions. In short, the results were con-
sistent with fits to the full data set: There were no differences in
response criteria or nondecision time between participants with
high and low anxiety. Regardless, we designed Experiment 2 to
further explore the possibility of differences in decision compo-
nents associated with threatening words.

Experiment 2: Response Criteria and
Threatening Information

The results of Experiment 1 show one advantage of using the
diffusion model to analyze data from these tasks. The between-
groups differences in threat processing were consistently signifi-
cant in comparisons of drift rates, but not in comparisons of RTs
and accuracy. Because drift rates are a direct measure of lexical
processing, small differences that were not apparent in traditional
analyses were able to be detected. Further, because the diffusion
model incorporates accuracy values and RT distributions for both

Table 2
Diffusion Model Parameters Averaged Across Participants for Experiment 1

Group 1

Filler stimuli Target stimuli

High frequency Low frequency Nonword Threat Nonthreat

Drift rates
Low anxiety .438 (.12) .189 (.06) .275 (.09) .277 (.10) .254 (.08)
High anxiety .469 (.11) .211 (.05) .285 (.05) .331 (.10) .267 (.07)

a Ter z st sz � po �2

Response parameters
Low anxiety .137 (.02) .437 (.04) .068 (.01) .159 (.06) .060 (.03) .123 (.05) .011 (.02) 62 (27)
High anxiety .148 (.03) .448 (.04) .074 (.01) .162 (.06) .082 (0.04) .135 (.04) .013 (.03) 63 (30)

Group 2

Filler stimuli Target stimuli

High frequency Low frequency Nonword Threat Nonthreat

Drift rates
Low anxiety .474 (.12) .207(.05) .278 (.06) .262 (.08) .263 (.08)
High anxiety .444 (.09) .184 (.06) .276 (.06) .259 (.08) .225 (.06)

a Ter z st sz � po �2

Response parameters
Low anxiety .137 (.03) .444 (.03) .069 (.01) .151 (.07) .068 (.04) .125 (.06) .015 (.02) 68 (26)
High anxiety .141 (.03) .442 (.04) .066 (.01) .155 (.04) .048 (.03) .113 (.05) .016 (.03) 63 (23)

Note. Standard deviations are shown in parenthesis. Groups 1 and 2 refer to separate sets of participants. Drift rates for nonwords are originally negative
(corresponding to the bottom boundary of the diffusion process), but the absolute values are presented for display purposes. a � boundary separation;
Ter � nondecision component; z � starting point; st � variability in the nondecision component; sz � variability in starting point; � � variability in drift
across trials; po � probability of an outlier.
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correct and error responses, all of the behavioral data were taken
into account when estimating the processing components, whereas
a comparison of RTs does not account for effects in accuracy (and
vice versa).

In addition to extracting drift rates that are more direct measures
of lexical processing than accuracy or RTs, the diffusion model
allows comparison of response components. One goal was to
assess if threatening information differentially affects nondecision
time, response caution, or response bias in participants with low
and high anxiety. However, the design of Experiment 1 was not
conducive to this type of comparison. As previously mentioned,
the filler stimuli greatly outnumbered the target stimuli and had a
greater influence on the estimates for the decision components.
Thus the response criteria estimates obtained in Experiment 1 did
not reflect any potential effects of the threatening words. Further,
response criteria usually do not systematically change from trial to
trial (e.g., Ratcliff et al., 1999), so we would not expect large
differences based on the sporadic presentation of threatening
words. However, a block of trials (e.g., 60) that contained a larger
proportion of threatening words could be sufficient to induce
criteria shifts in the high-anxious group.

Method

Experiment 2 increased the proportion of the target stimuli in
the blocks to assess potential criteria changes. In the experiment,
half of the blocks contained a relatively high proportion of threat-
ening words (threat blocks), whereas the other half contained a
high proportion of matched nonthreatening words (nonthreat
blocks). Under this design, threat and nonthreat blocks could be
modeled separately to compare processing components, allowing
us to assess differences in response criteria and nondecision time
as a function of threatening stimuli. The reasoning is as follows:
Although the sporadic presentation of threatening words in Exper-

iment 1 did not result in differences between participants with high
and low anxiety in nondecision time, response caution, or response
bias, grouped presentation of threatening words could result in
differential changes in these components. Further, we could also
assess threat bias in the same manner as Experiment 1 to determine
if the results replicate in a third group of participants.

Procedure. The lexical-decision task in Experiment 2 was the
same as the task in Experiment 1, except for the blocking manip-
ulation and the exclusion of low frequency words. The entire
experiment consisted of 12 blocks of 60 trials. Half of the blocks
were threat blocks, in which the proportion of threatening words
was high, and the other half were nonthreat blocks, in which the
proportion of matched nonthreatening words was high. Threat and
nonthreat blocks were presented in randomized order. Each block
consisted of 30 words and 30 nonwords. Threat blocks consisted of
10 high frequency words and 20 threatening words, whereas non-
threat blocks consisted of 10 high frequency words and 20 non-
threatening words. Thus one third of the total trials and two thirds
of the words in each block were target words. The same presen-
tation rate and error feedback were used as in Experiment 1. After
completing the task, participants filled out the STAI. The entire
experiment lasted less than 30 min.

Stimuli. The same filler stimuli were used, except that low
frequency words were no longer included in the test list. The low
frequency words were excluded because the new design required
fewer filler observations than Experiment 1 because the proportion
of target trials was increased. To allow for more responses to target
words, all of the 120 words from the threatening and nonthreat-
ening pools were shown to each participant (compared to 72 in
Experiment 1).

Participants. There were 61 total participants, all students at
Ohio State University who participated for credit in an introduc-
tory psychology course. The low-anxious group consisted of 21
participants (15 women), mean STAI � 29.4 (SD � 3.1), and the

Figure 2. Plots of the threat bias in each measure across groups of participants. Groups 1 and 2 were from
Experiment 1, Group 3 was from Experiment 2. Threat bias is computed as the difference between responses to
threatening and matched nonthreatening words, with a bigger difference indicating a bigger advantage for the
threatening words. Differences are shown for reaction times (RTs), accuracy, and drift rates extracted by the
diffusion model (see text). Error bars are �2 SEs. � Significant difference in threat bias between high and low
anxiety groups ( p � .05). Anx � anxiety.
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high-anxious group consisted of 21 participants (13 women), mean
STAI � 47.1 (SD � 6.3).

Results

The diffusion model was fit in the same manner as Experiment
1, except that threat and nonthreat blocks were modeled separately
for each participant. Behavioral data are shown in Table 3 and
diffusion model parameters are shown in Table 4. The fit quality
was similar to Experiment 1. The ANOVAs for filler conditions
had anxiety group (low, high) as the between-factor, and stimulus
type (high frequency word, nonwords) and block (threat, non-
threat) as within-factors. Consistent with Experiment 1, there were
no main effects or interactions involving anxiety group for filler
conditions (all Fs � 2.5). Although we found no group differences
in response criteria or nondecision time, drift rates were signifi-
cantly higher for threatening words compared to nonthreatening
words in the participants with high anxiety but not participants
with low anxiety, replicating the results from Experiment 1. Sim-
ilar to Experiment 1, this threat advantage was only significant for
drift rate comparisons, though RTs showed a small difference in
that direction.

Threat bias was assessed by a 2 � 2 mixed ANOVA, with
anxiety group as the between-factor and stimulus type (threaten-
ing, nonthreatening) as the within-factor. The results were consis-
tent with Experiment 1. The main effect of stimulus type was
significant for all three measures: RT, F(1, 40) � 10.55, p � .01,
� 2 � .20; accuracy, F(1, 40) � 7.57, p � .01, �2 � .11; drift rates,
F(1, 40) � 6.98, p � .01, �2 � .09, showing an advantage for
threatening compared to nonthreatening words. There were no
main effects of anxiety group for any measure (Fs � 1).

For the interaction between anxiety group and stimulus type,
there was a small difference in RTs that did not reach signifi-
cance, F(1, 40) � 2.3, p � .1, �2 � .04, and no significant
difference in accuracy (F � 1). More important, the interaction
was significant for drift rates, F(1, 40) � 4.40, p � .04, �2 �
.13. Subsequent paired t tests on drift rates confirmed a threat
advantage in the high-anxious group, vthreat – vnonthreat � .063,
t(20) � 3.52, p � .01, �2 � .382, but no advantage in the
low-anxious group, vthreat – vnonthreat � .007, t(20) � .328, p �
.1, �2 � .005. Thus Experiment 2 provides a replication of the
threat bias found in Experiment 1.

Differences in response criteria were assessed by performing
2 � 2 mixed ANOVAs on response caution (a), response bias
(z/a), and nondecision time (Ter), with anxiety group as the be-
tween factor and block (threat, nonthreat) as the within factor.
There were no significant main effects or interactions for any of
the parameters (all Fs � 2), suggesting that the threat blocks did
not differentially affect these components for the high- and low-
anxious groups.

Because each participant performed both threat and nonthreat
blocks, we were able to compare parameter values between the two
to assess the stability of response style. We expected that an
individual’s settings on these response components would be sim-
ilar for both the threat and nonthreat blocks. There were strong
correlations ( p � .01) between the blocks for boundary separation
(a), r(40) � .65, nondecision time (Ter), r(40) � .80, bias for a
response (z/a), r(40) � .66, and average drift rates collapsed across
target and filler conditions, r(40) � .40. These results show that
the individual differences in response style and overall perfor-
mance were highly stable between the threat and neutral blocks.

Discussion

The blocking manipulation did not produce different decision
criteria for participants with low and high anxiety. This might
be due to the fact that the target stimuli, though more prominent
than in the first two experiments, still only accounted for one
third of trials in each block. It would be hard to increase this
proportion significantly while still maintaining an equal number
of word and nonword stimuli and providing different conditions
to constrain the model parameters. Alternatively, the null dif-
ferences in processing components might reflect the fact that
processing of threatening words does not differentially alter
response criteria in participants who are anxious. However,
previous research has shown increased response bias associated
with anxiety and threatening words (e.g., Windmann & Kruger,
1998), thus the null findings from the present study should be
interpreted cautiously.

Although we did not find any differences in response criteria,
the experiment did replicate the processing advantage for
threatening information in the high-anxious group, whose drift
rates were significantly higher for threatening compared to
nonthreatening words. Again, this processing bias was only

Table 3
Behavioral Data Averaged Across Participants From Experiment 2

Low anxiety High anxiety

Accuracy Mean correct RT Mean error RT Accuracy Mean correct RT Mean error RT

Fillers
HF–N .958 (.04) 642 (203) 586 (197) .948 (.04) 636 (216) 553 (245)
HF–T .939 (.04) 646 (214) 604 (279) .943 (.04) 635 (212) 550 (175)
NW–N .952 (.02) 686 (232) 691 (291) .939 (.04) 699 (247) 741 (275)
NW–T .960 (.02) 689 (235) 648 (268) .946 (.04) 696 (248) 742 (376)

Targets
Threat .946 (.03) 681 (240) 646 (249) .925 (.07) 678 (240) 756 (423)
Nonthreat .937 (.03) 690 (235) 754 (351) .909 (.06) 701 (265) 790 (425)

Note. Standard deviations are shown in parentheses. RT � response time; HF–N � high frequency words in nonthreat blocks; HF–T � high-frequency
words in threat blocks; NW–N � nonwords in nonthreat blocks; NW–T � nonwords in threat blocks.
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significant in comparisons of drift rates, though the differences
approached significance in RTs. It could be argued that there
was a confound related to word categorization effects, in that
the threat blocks contained many words from the same cate-
gory, whereas the nonthreat blocks did not (e.g., Mogg et al.,
1991). Although this possibility cannot be ruled out completely,
it should not detract from the findings. First, the pattern of
threat bias in Experiment 2 was similar to the pattern in Ex-
periment 1, where categorization effects were reduced by spo-
radic presentation of the target stimuli. Second, word categori-
zation effects would not account for the difference in threat bias
between anxious and nonanxious participants, unless anxious
individuals have a more developed category of threatening
meanings, which is certainly plausible. This last point remains
an open possibility worthy of further investigation.

General Discussion

The most important finding from this study was that individuals
with high trait anxiety had a processing advantage for threatening
words in single-string lexical decision. A processing advantage for
threatening words in anxious participants has been shown numer-
ous times before, but as far as we know it has never been dem-
onstrated in a nonclinical sample using a task that does not involve
competition among multiple inputs. Although Vythilingam et al.
(2007) reported enhanced processing of threat cues in patients with
PTSD using such a task, the present study makes it clear that this
effect is not specific to patients with PTSD, but rather character-
izes high levels of anxiety more generally. Thus input competition
for processing priority is not essential to explanations of threat
advantage in anxiety.

This finding allows for more parsimonious models of anxiety
that no longer need to account for why threat bias only manifests

with processing competition. Instead, tasks with input competition
can be considered one type of situation in which more general
underlying processes lead to biased threat processing in individu-
als with high anxiety. The other interesting result from the present
study is that there were no anxiety-related differences in response
criteria or nondecision time, even when blocks of trials contained
a higher proportion of threatening words. We expected that the
blocking manipulation would produce differences in response cau-
tion or bias, but the results did not support our hypothesis. How-
ever, because anxiety-related differences in response bias have
been shown elsewhere (e.g., Windmann & Kruger, 1998), and the
decisions in the present study were based on the lexicality, not
the threat value of the words, the failure to find response bias in the
present study should not be taken to challenge previous findings of
bias.

It is important to note that differences in threat bias between
participants with high and low anxiety were not significant in
comparisons of RTs or accuracy, though the differences were in
the expected direction. We attribute this to the insensitivity of the
behavioral measures coupled with relatively small effects. In fact,
our results suggest that we might find a significant threat bias in
RTs if we replicated the experiment with very large samples.
Fortunately, the diffusion model provided a substantial increase in
sensitivity without recourse to very large samples, which are
particularly unlikely to be feasible when studying clinical popula-
tions. This can best be shown by assessing the relative diagnostic
utility of each measure (see Wenger, Negash, Petersen, & Petersen,
2010). Figure 3 shows the relevant values for accuracy, mean RTs,
median RTs, and drift rates. The values in the figure were calcu-
lated as follows: Threat bias was calculated for each measure (e.g.,
threat_accuracy – nonthreat_accuracy) for all 126 participants.
Then a discriminant function analysis (DFA, e.g., Rao, 1973;

Table 4
Diffusion Model Parameters Averaged Across Subjects for Experiment 2

Filler stimuli

High frequency Nonword Target stimuli

Drift rates
Low anxiety
Threat Bl .359 (.12) .300 (.10) .309 (.11)
Nonthreat Bl .396 (.14) .311 (.10) .302 (.11)
High anxiety
Threat Bl .400 (.13) .309 (.11) .324 (.10)
Nonthreat Bl .394 (.17) .285 (.08) .261 (.07)

a Ter z st sz � po �2

Response parameters
Low anxiety
Threat Bl .131 (.02) .446 (.04) .065 (.01) .161 (.05) .081 (.04) .105 (.09) .007 (.02) 30 (18)
Nonthreat Bl .132 (.03) .451 (.03) .066 (.02) .154 (.04) .086 (.04) .131 (.08) .006 (.02) 32 (19)
High anxiety
Threat Bl .140 (.03) .442 (.03) .070 (.02) .172 (.03) .081 (.04) .139 (.08) .009 (.02) 33 (21)
Nonthreat Bl .133 (.02) .444 (.03) .066 (.02) .161 (.04) .082 (.04) .124 (.08) .008 (.02) 28 (18)

Note. Standard deviations are shown in parentheses. Drift rates for nonwords are originally negative (corresponding to the bottom boundary of the
diffusion process), but the absolute values are presented for display purposes. Threat Bl � threat blocks; nonthreat Bl � nonthreat blocks; a � boundary
separation; Ter � nondecision component; z � starting point; st � variability in Ter; sz � variability in starting point; � � variability in drift across trials;
po � probability of an outlier.
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Wenger et al., 2010) was performed to determine how well each
measure could classify participants as either high or low anxiety.
With only one predictor variable for each function analysis, this
amounted to a linear regression with the coefficients used to group
the participants.

Figure 3 is meant to illustrate the relative diagnostic utility of
each measure. Effect sizes from this and related studies are suffi-
ciently small that they do not provide practical diagnostic utility,
but the relationship among the different measures can still provide
insight into their relative utility in other circumstances. Panel A of
Figure 3 shows the sensitivity and specificity of each measure.
Drift rates produce the highest sensitivity and specificity, and show
no apparent bias. Panel B shows the positive and negative predic-
tive value of each measure, again with drift rates showing better
positive and negative predictive power than the other measures.
Finally, Panel C shows that drift rates provide the highest discrim-
inability with minimal bias.

The threat bias found in this study challenges the null results
from previous studies (e.g., Ferraro et al., 2006; Hill & Kemp-
Wheeler, 1989; MacLeod & Mathews, 1991; Mogg et al., 1991),
but there are reasons to believe that such a bias is present for
anxious individuals. The methodology employed in the present
study was specifically designed to increase the sensitivity of the

analyses. Both priming and sequential effects were reduced by
presenting the threatening words sporadically and always after
an unrelated high frequency word (Experiment 1). Further, the
diffusion model analysis utilized all of the data and separated
out variability related to each of the response components,
providing a more sensitive measure of lexical processing, as
shown in Figure 3.

Although the results of the present study provide evidence
that processing competition is not necessary for a threat bias to
emerge, there is little doubt that processing priority (or selective
attention) plays an important role in threat bias. In fact, there is
reason to believe that threat bias should be larger in tasks with
competition compared to those without, which could explain
why RTs were sensitive enough to show a threat bias in the
double-string but not the single-string lexical-decision task
(MacLeod & Mathews, 1991; Mogg et al., 1991). For both
versions of the lexical-decision task, enhanced processing of
threatening words relative to nonthreatening words (e.g., due to
increased activity of the amygdala) would produce stronger
evidence for threatening words, and thus an advantage over
nonthreatening words. A further advantage would arise in the
double-string version because of preferential attention to the
threatening word. As a reminder, in the double-string task

Figure 3. Diagnostic utility for each dependent measure, derived from the discriminant function analysis.
Results were derived from all participants across the three experiments. RT � reaction time.
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the word response should be given if one or both of the
letter-strings is a word. If we assumed that the two letter strings
were processed serially, then on critical trials in which a threat-
ening word is presented with a nonword, anxious individuals
should attend to the threatening word before the nonword
(because it wins the input competition) and thus would have
sufficient evidence for the word response without needing to
check the other letter-string. Conversely, on critical trials with
a nonthreatening word and a nonword, the nonword will be
attended to first on some proportion of trials. Because the
nonword response is only correct if both letter-strings are
nonwords, RTs will be slower on these trials because the other
letter-string would need to be inspected before a decision could
be made. Thus threat bias in the double-string version reflects
the benefit of attending to the word first and enhanced lexical
processing of threatening words, whereas the single-string ver-
sion reflects only the latter. This extra benefit in the double-
string version can account for the fact that RT comparisons
were sensitive enough to detect the bias in only the double-
string version (MacLeod & Mathews, 1991; Mogg et al., 1991).

Although the advantage for threatening words in the double-
string task has been discussed within a serial-processing frame-
work, there would be a similar advantage for threatening words
if we assumed that both strings were processed in parallel in a
system with limited capacity (e.g., Neufeld & McCarty, 1994;
Neufeld, Townsend, & Jette, 2007). Suppose the double-string
stimulus was processed as a single target and that for individ-
uals who are anxious, processing of threatening words is facil-
itated. Facilitated processing of threatening words would lead to
a smaller reduction in capacity. Thus for participants who are
anxious, trials with neutral words would reduce processing
capacity more than trials with threatening words, leading to
faster RTs for threat trials. Such a reduction in capacity might
not produce as large of behavioral effects when only one
letter-string is being processed, potentially accounting for the
larger effects of threat bias in double-string lexical decision.

Engagement and Disengagement

There have been several studies investigating whether threat
bias is due to facilitated engagement or delayed disengagement.
Results from probe tasks suggest that individuals who are anxious
have difficulty disengaging their attention from threatening stimuli
(Amir et al., 2003; Fox, Russo, & Dutton, 2002). It has been
argued that the probe task is not well suited to assess facilitated
engagement (see Koster, Crombez, Verschuere, & De Houwer,
2004), but there is still evidence that facilitated engagement con-
tributes meaningfully to threat bias (Bannon, Gonsalvez, & Croft,
2008; Koster et al., 2006).

The results from the present study and previous work involv-
ing lexical decision support the role of facilitated engagement
in threat bias as well, as it is unclear how delayed disengage-
ment would improve responding in either single- or double-
string lexical decision tasks. Enhanced processing of threaten-
ing words in lexical decision could result from two different
processes. As mentioned above, the advantage for threatening
words could reflect an attentional boost to those words from the
amygdala. That is, early processing in the amygdala identifies

threatening words as salient, and thus more resources are di-
rected toward further processing that is required to determine
the lexicality of the words. Conversely, threatening words
might be more frequently encountered for individuals who are
anxious, and thus they are better represented internally and
provide a stronger lexical match. In this regard, lexical decision
might not reflect attentional processes, but rather simply the
strength of the lexical representation.

Regardless of the underlying cause, enhanced lexical processing
of threatening words supports the role of facilitated engagement of
threat in anxiety. Combined with the results from dot-probe tasks,
it seems that both facilitated engagement and delayed disengage-
ment are involved in threat bias in anxiety. Indeed, the combina-
tion of these phenomena would be much more detrimental than
either alone.

Conclusions

The present study demonstrated a reliable threat bias for
participants with high-trait anxiety in a task that does not
involve processing competition among multiple inputs. This
indicates that input competition is not required for enhanced
processing of threat. Consequently, models of anxiety can posit
a more general account of threat bias that is not restricted to
situations with multiple-competing inputs. The diffusion model
proved to be a valuable asset for data analysis in this study, and
we recommend that future research involving two-choice tasks
consider the model as an alternative to comparisons of RTs and
accuracy. Quantitative models like the diffusion model can
improve analyses of behavioral data by explicitly formulating
the relationship between the data and the underlying processes.
We suggest that null results should be interpreted cautiously as
they might reflect an underpowered design rather than a true
lack of differences, especially when there are a limited number
of participants and/or stimuli. The diffusion model provides a
practical approach to increase the power of the design without
needing to add participants or critical stimuli, making it a
promising analytical tool for future exploration of processing
differences associated with psychopathology.
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Appendix

Quality of Fit

The diffusion model predicts both the accuracy values and the
RT distribution shapes for correct and error responses, which are
compared against the behavioral data to assess fit quality. The RT
distribution is typically represented by the .1, .3, .5 (median), .7,
and .9 quantile RTs, which provide a good approximation of the
distribution shape. The five quantiles divide the correct and error
RT distributions into six bins each, resulting in 11 (12 – 1) degrees
of freedom from the data for each condition (see Ratcliff, Thapar,
& McKoon, 2009; Ratcliff & Tuerlinckx, 2002). The total degrees
of freedom for the chi-square are given as (K � 11) – M, where K
is the number of conditions in the experiment and M is the number
of model parameters.

The quality of model fits can be assessed qualitatively in
addition to the quantitative assessment described above. We can
plot the actual and predicted values to determine if there are any

systematic misses. Figure A1 shows the actual data plotted
against the predicted values produced by the diffusion model
parameters (collapsed across all conditions). For simplicity,
only the accuracy and RT quantiles for correct responses are
shown from Experiment 1, though similar results were found
for all of the fits. The diagonal line in each of the plots
represents perfect correspondence between actual and predicted
values. As the figure shows, all of the values fall on or near the
line, showing good fits to the data. Further, though not shown
here, the residuals are normally distributed around 0, indicating
that there are no systematic biases in the model predictions. The
diffusion model captures the accuracy values and RT distribu-
tion shapes across a number of conditions, which is a powerful
constraint for the model that supports confidence in the ex-
tracted parameter values.

(Appendix continues)
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Figure A1. Goodness-of-fit plots from Experiment 1. The real values are plotted against the predicted values
from the diffusion model for accuracy (A), and the reaction times (RTs) for the .1 (B), .3 (C), .5 (D), .7 (E), and
.9 (F) quantiles of the RT distribution. See text for details.
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