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a b s t r a c t

The effects of aging and IQ on performance were examined in three
two-choice tasks: numerosity discrimination, recognition memory,
and lexical decision. The experimental data, accuracy, correct and
error response times, and response time distributions, were well
explained by Ratcliff’s (1978) diffusion model. The components of
processing identified by the model were compared across levels
of IQ (ranging from 83 to 146) and age (college students, 60–74,
and 75–90 year olds). Declines in performance with age were not
significantly different for low compared to high IQ subjects. IQ
but not age had large effects on the quality of the evidence that
was obtained from a stimulus or memory, that is, the evidence
upon which decisions were based. Applying the model to individ-
ual subjects, the components of processing identified by the model
for individuals correlated across tasks. In addition, the model’s pre-
dictions and the data were examined for the ‘‘worst performance
rule”, the finding that age and IQ have larger effects on slower
responses than faster responses.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

A central finding in research on aging is that as people age, their response times (RTs) increase. In
several simple two-choice tasks such as numerosity discrimination, recognition memory, and lexical
decision, as well as in some perceptual tasks, the increase in RTs is coupled with little or no decrease in
accuracy. This provides a puzzle: if RTs are used as the dependent measure, there appears to be a def-
icit in processing, but if accuracy is the dependent measure, there appears to be little or no deficit.
Adding to the puzzle, RTs are sometimes, but not always, shorter for subjects with high IQs than sub-
jects with low IQs, and accuracy is sometimes, but not always, greater (Jensen, 1987).
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Much of the work on ability and aging has employed global measures of ability. However, for any
specific ability, there is no standard set of tests to measure it (see Bowles & Salthouse, 2008, for dis-
cussion of this issue). Moreover, sometimes a single task, for example, the WAIS digit/symbol coding
task, is used as a measure of both speed of processing ability and reasoning ability. For any particular
ability, it is often the case that different investigators choose different tests, and some of the tests have
several variants. Because individual tests may have idiosyncrasies, the use of multiple subtests is rec-
ommended to attempt to average idiosyncrasies out (Bowles & Salthouse, 2008; Little, Lindenberger, &
Nesselroade, 1999; Oberauer, Sub, Wilhelm, & Wittmann, 2003; Tucker-Drob & Salthouse, 2008).

Our aim in this article was to conduct a study of aging, abilities, and individual differences that was
at the same time both modest and comprehensive. The study was modest in that we selected only
three tasks, three age groups, and two IQ measures. The study was comprehensive in that a processing
model, Ratcliff’s diffusion model (1978), was used to provide a complete analysis of the behavioral
data, including accuracy and RTs for correct and error responses and the shapes of RT distributions.
The study was also comprehensive in that we examined a wide range of IQs and a wide range of ages.
We analyzed the data at the individual subject level, using individual subjects’ data and components
of processing (as identified by the model) in calculating correlations and in structural equation
modeling.

Specifically, we tested three groups of subjects: college age, 60–74 year olds, and 75–90 year olds.
Each subject participated in three tasks: a control task that makes little or no perceptual or memory
demands (numerosity discrimination), a simple memory task (item recognition), and a task that as-
sesses lexical knowledge (lexical decision). For the numerosity task, a number of asterisks (between
31 and 70) were displayed on a PC monitor and subjects were asked to judge whether the number
was ‘‘large” or ‘‘small.” For item recognition, subjects studied lists of single words and they were asked
to judge whether test words had or had not occurred in a just-studied list. For lexical decision, subjects
were asked to judge whether strings of letters were words. The subjects varied in IQ from 83 to 146, as
measured by the WAIS-R matrix reasoning and vocabulary scales, a broader range than we have used
in previous applications of the diffusion model to aging issues. We set 83 as the lower bound so that
the subjects that were included in the study had low IQs but were still in the normal functioning range
and would have no trouble with instructions. For these subjects and tasks, the aim was that the dif-
fusion model provide a unified account of the effects of age and IQ.

In the study reported here, the memory task was item recognition, not other memory tasks such as
associative memory or source memory. We used item recognition because the diffusion model has
provided complete explanation of data in our earlier experiments (Thapar, Ratcliff, & McKoon,
2003; Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff, Thapar, & McKoon, 2001; Ratcliff, Thapar,
& McKoon, 2003; Ratcliff, Thapar, & McKoon, 2004; Ratcliff, Thapar, & McKoon, 2006a; Ratcliff, Thapar,
& McKoon, 2006b; Ratcliff, Thapar, & McKoon, 2007, henceforth referenced as RTM). For item recog-
nition, other studies have found only small effects of age on memory (e.g., Balota, Dolan, & Duchek,
2000; Bowles & Poon, 1982; Craik, 1994; Craik & Jennings, 1992; Erber, 1974; Gordon & Clark,
1974; Kausler, 1994; Naveh-Benjamin, 2000; Neath, 1998, chap. 16; Old & Naveh-Benjamin, 2008;
Rabinowitz, 1984; Schonfield & Robertson, 1966). However, most of these studies measured only
accuracy, not RTs, even though older adults are typically slower than young adults. Slowing for older
adults has often been interpreted as a deficit such that, for example, cognitive operations are not fully
completed in the available time and so the products of earlier operations are not fully available for
later operations (e.g., Salthouse, 1996). In this context, findings that older adults show no deficits in
accuracy for item recognition are surprising. In contrast to item recognition, age has a large effect
on other memory tasks, such as associative recognition, cued and free recall, and source memory.
Apart from associative recognition, these tasks are not amenable to diffusion model analyses and
we focus on item recognition in this article (see Ratcliff, Thapar, & McKoon, in preparation, for an anal-
ysis of such memory paradigms).

Lexical decision has been a popular task with which to examine speed of processing. In contrast to
many other tasks, it might be expected that lexical knowledge would improve with age. Over a life-
time of 60–70 years, the number of encounters for many words must greatly exceed the number of
encounters in the first 20 years. Yet despite so many years of practice, lexical decision RTs increase
with age. For example, Allen, Madden, and Crozier (1991) found average RTs of 800 ms for older
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adults, compared with 500 ms for young adults. However, while responses slow with age, accuracy
does not change. Averaging over 22 lexical decision experiments, Myerson, Ferraro, Hale, and Lima
(1992) found that error rates were about the same for old and young subjects. Thus, in lexical decision,
like item recognition, older adults show a deficit in RTs but not accuracy.

Our third task, numerosity discrimination, has become a useful benchmark paradigm for examining
experimental factors such as biases, optimality, and training, as well as the effects of such manipula-
tions as sleep deprivation (e.g., Ratcliff & Van Dongen, 2009; Starns & Ratcliff, in press). We hypothe-
sized that IQ effects would be smaller for this task because it does not require memory or vocabulary
as item recognition and lexical decision do. The task shows the same patterns of results for young ver-
sus old subjects as item recognition memory and lexical decision, namely large changes in RT but
small or non-existent changes in accuracy as a function of age. For all three tasks, the inclusion of
the lower IQ subjects allows us to examine whether the lack of a deficit in accuracy as a function of
age generalizes to lower IQ subjects.

In our previous work on aging and speed of processing (RTM papers), we have systematically exam-
ined the effects of aging on RTs and accuracy in a number of two-choice tasks, including the ones used
here (see also Spaniol, Madden, & Voss, 2006). The data are well-described by Ratcliff’s diffusion model
for two-choice decisions (Ratcliff, 1978; Ratcliff, 1981; Ratcliff, 1985; Ratcliff, 1988; Ratcliff, 2002;
Ratcliff, 2006; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Ratcliff & Rouder, 2000; Ratcliff & Smith,
2004; Ratcliff, Van Zandt, & McKoon, 1999; Smith, 2000; Smith & Ratcliff, 2009; Smith, Ratcliff, &
Wolfgang, 2004). From RTs and accuracy, the model abstracts estimates of the components of process-
ing that underlie decisions: the quality of the information on which a decision is based, the criterial
amounts of evidence that must be accumulated before a decision is made, and the time taken up
by nondecision processes such as stimulus encoding, memory access, and response output. The model
provides a framework in which to understand mappings from speed and accuracy measures of perfor-
mance to components of processing. In addition to the tasks used in this study, the model has been
successful in explaining performance for signal detection-like tasks, brightness discrimination with
masked stimuli, recognition memory, lexical decision, and letter discrimination with masked stimuli
(Gomez, Ratcliff, & Perea, 2007; Ratcliff, 2008a; Ratcliff, Gomez, & McKoon, 2004; Ratcliff et al., 1999;
Smith et al., 2004; Voss, Rothermund, & Voss, 2004; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008).

However, the diffusion model has not yet been used to evaluate effects of IQ on performance or
interactions between IQ and aging (but see Schmiedek, Oberauer, Wilhelm, Sub, & Wittmann, 2007,
for some preliminary investigations). More generally, there is a need for studies that incorporate both
a wide range of IQs and a wide range of ages (Deary, Der, & Ford; 2001; Roberts & Stankov, 1999).

RTM’s experiments showed that older subjects (60–90 year olds) typically adopt more conservative
decision criteria than college-age subjects, that is, they accumulate more evidence before making a
response. In addition, the duration of the nondecision component is longer for them. However, most
notably, the quality of the evidence upon which their decisions are based is often as good as that for
college students. For numerosity discrimination, length discrimination, lexical decision, and recogni-
tion memory, RTM found, at most, slight decreases with age. There were significant declines only in
two perceptual tasks, masked letter discrimination and masked brightness discrimination. 60–74 year
olds showed a deficit for letter discrimination and 75–90 year olds showed deficits for both letter and
brightness discrimination. These latter two findings are predictable from psychophysical research
where it has been shown that deficits occur at earlier ages for high spatial frequency information like
that used in masked letter discrimination than for low spatial frequency information like that used in
brightness discrimination (Coyne, 1981; Fozard, 1990; Owsley, Sekuler, & Siemsen, 1983; Spear,
1993).

The diffusion model is especially useful in that it can be applied to data for individual subjects, sep-
arating out the components of processing for each one. Ratcliff et al. (2006a), for example, examined
individual differences in performance in and across four tasks (numerosity discrimination, letter and
brightness discrimination, and recognition memory) for 10 college students and two groups of 10 old-
er subjects (60–74 and 75–90 year olds). Applying the model to the individual subjects’ data, correla-
tions were calculated across the four tasks for the three processing components (quality of evidence,
criterial amounts of evidence, nondecision). The correlations were moderately high across the tasks for
all three components. In other words, if a subject had a high value for one of the components in one
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task, he or she tended to have a high value for that component on the other tasks. In contrast, within
tasks, RTM have routinely found little correlation between components of processing.

In RTM’s studies, older subjects were matched to college students in terms of IQ, so the range of IQ
values was relatively restricted (the lowest IQs were around 100) and most of the correlations with IQ
were small. For the experiment reported here, the range of IQ values was larger (83–146, as mentioned
above). We expected the model analyses to show larger individual differences among parameter val-
ues than in the RTM studies and thus to give a better understanding of which components of process-
ing are consistent across tasks for what types of individuals. The broader range of IQ’s and wider range
of performance across individuals also provided stringent tests of the diffusion model.

Beyond individual differences, the experiment addressed two important issues. The first was the
‘‘worst performance” rule (Coyle, 2003). Often, it has been found that IQ correlates more strongly with
longer RTs than shorter RTs. This has been labeled the worst performance rule because the longer RTs
are assumed to come from more difficult test items. Below, we show how the diffusion model can pre-
dict this finding. We examined whether the rule applies across the large set of data provided by the
experiment – the three tasks, the three age groups, and the wide range of IQs.

The second issue was age and IQ interactions. It could be that performance declines differentially at
a slower rate for higher than lower IQ subjects as it might according to the cognitive reserve hypoth-
esis (Satz, 1993; Stern, 2002). This hypothesis states that factors such as education and IQ may serve as
a protective factor to mitigate the effects of aging on cognitive function. Alternatively, it could be that
the decline is the same for all levels of IQ (cf. Salthouse, 2006). To anticipate the results of the exper-
iment, we found that any decline is about the same for all subjects, both higher and lower IQ.

2. Experiment

The numerosity judgment task was used to provide a baseline against which lexical decision and
recognition memory could be compared because it requires little perceptual or cognitive resources.
On each trial an array of asterisks was displayed on a PC monitor screen and subjects were asked to
judge whether the number was larger or smaller than 50. The other two tasks, recognition memory
and lexical decision, are tasks that engage more central cognitive processes – memory and knowledge
of words. In all three tasks, the independent variables were manipulated such that accuracy ranged
from high to moderately low. Sweeping out RTs over a wide range of accuracy values provides max-
imal constraints on fitting the diffusion model to data (Ratcliff & Tuerlinckx, 2002).

2.1. Method

2.1.1. Subjects
Forty-five college-age subjects, 43 subjects from 60–74 years old, and 42 subjects from 75–90 years

old participated in the experiment. The college-age subjects were recruited at Bryn Mawr College and
in surrounding areas. The older adults were community-dwelling volunteers from the Bryn Mawr, PA,
and Columbus, OH, areas. All subjects were paid for their participation. All subjects met the following
inclusion criteria: a score of 26 or above on the Mini-Mental State Examination (Folstein, Folstein, &
McHugh, 1975) and no evidence of disturbances in consciousness, medical or neurological disease
causing cognitive impairment, history of head injury with loss of consciousness, or current psychiatric
disorder. The subjects in both older adult age groups completed the Alzheimer Disease Assessment
Scale – Cognitive Portion (ADAS-Cog; Rosen, Mohs, & Davis, 1984) and all had scores below 15. They
also completed the Center for Epidemiological Studies – Depression scale (Radloff, 1977) and the only
significant difference was that the CES-D score was higher for the college age students than for the
60–74 and 75–90 year old subjects. For IQ, subjects completed the Vocabulary and Matrix Reasoning
subtests of the Wechsler Adult Intelligence Scale – 3rd Edition (WAIS-III; Wechsler, 1997). There were
no differences among scaled Matrix Reasoning scores, but there was a difference between the unscaled
(raw) scores for the college age group and the 60–74 and 75–90 year old groups. There were no other
significant differences on any of the measures. The means and standard deviations of all these measures
are shown in Table 1.
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Each subject participated in four sessions, one to collect demographic and IQ information (i.e., the
above measures) and one on each of the three tasks, in counterbalanced order. For all three tasks, sub-
jects were instructed to respond quickly but not at the expense of making avoidable errors.

2.1.2. Stimuli
For recognition memory and lexical decision, the stimuli were high, low, and, only for lexical deci-

sion, very low frequency words. There were 800 high frequency words with frequencies from 78 to
10,600 per million (mean = 325, SD = 645, Kucera & Francis, 1967); 800 low frequency words, with fre-
quencies of 4 and 5 per million (mean = 4.41, SD = 0.19); and 741 very low frequency words, with fre-
quencies of 1 per million or no occurrence in the Kucera and Francis’ corpus (mean = 0.365; SD = 0.48).
All of the very low frequency words occurred in the Merriam-Webster Ninth Collegiate Dictionary
(1990), and they were screened by three Northwestern undergraduate students; any words that they
did not know were eliminated. For all three tasks, stimuli were chosen randomly without replacement
from these pools. The stimuli were presented on the screen of a PC and responses were collected on
the PC’s keyboard.

2.1.3. Numerosity discrimination
On each trial, between 31 and 70 asterisks were placed in random positions in a 10 � 10 array of

blank characters. Subjects were asked to press the ‘‘/” key if the number of displayed asterisks was
‘‘large” and the ‘‘z” key if the number was ‘‘small.” There were 30 blocks of 40 trials with all stimuli
presented once in each block. For data analyses, the numbers of asterisks were grouped into eight
experimental conditions such that the mean RTs and accuracy values for the numbers grouped to-
gether were similar. ‘‘Small” responses to 31–50 asterisks and ‘‘large” responses to 51–70 asterisks
were counted as correct. Subjects were given examples of large and small numbers of asterisks at
the beginning of the session. There was one practice block of trials for which there was error feedback
to aid subjects in calibration of the large–small dimension but there was no feedback in later blocks.

2.1.4. Recognition memory
There were 26 study-test blocks. For each block, the study list consisted of eight high and eight low

frequency words displayed for 1 s each. Four of the high and four of the low frequency words were
presented once and four of each were presented twice. One additional filler word, a very low fre-
quency word, was placed at the end of the study list to serve as a buffer item. The test list immediately
followed the study list and consisted of the 16 studied words plus 16 new words, eight high and eight
low frequency. The first two test words in the test list were fillers, either two new very low frequency
words or one new very low frequency word and the last, filler, item of the study list. Subjects were
asked to press the ‘‘/” if the test word had been presented in the immediately preceding study list
and the ‘‘z” key if not. There was no error feedback.

Table 1
Subject characteristics.

Measure Young 18–25 Old 60–74 Very old 75–90

M SD M SD M SD

Mean age 20.8 1.7 68.6 4.1 81.5 3.9
Years education 13.8 1.2 15.0 2.6 14.6 2.9
MMSE 28.6 1.3 27.9 1.6 27.3 1.3
WAIS-III vocabulary 12.6 2.9 11.7 2.9 12.6 3.4
WAIS-III matrix reasoning (scaled) 11.6 3.0 11.7 3.2 13.0 3.8
WAIS-III matrix reasoning (raw) 18.7 4.4 13.8 5.6 12.7 6.1
WAIS-III IQ 112.1 14.2 109.7 14.4 115.8 17.8
CES-D 13.7 7.8 9.5 7.1 10.3 8.1
ADAS-Cog N/A N/A 5.3 2.7 5.9 2.4

Note. MMSE = Mini-Mental State Examination; WAIS-III = Wechsler Adult Intelligence Scale-3rd edition; CES-D = Center for
Epidemiological Studies-Depression Scale.
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2.1.5. Lexical decision
Words were selected from the high, low, and very low frequency pools and nonwords were se-

lected from a pool of 2341 pseudowords that were generated from words by randomly replacing all
the vowels with other vowels (except for ‘‘u” after ‘‘q”). There were 70 blocks of trials with each block
containing 30 letter strings: five high frequency words, five low frequency words, five very low fre-
quency words, and 15 pseudo words. Subjects were asked to press the ‘‘/” key if the letter string
was a word and the ’z’ key if it was not. There was no error feedback.

3. Diffusion model

The diffusion model is designed to explain the cognitive processes involved in making simple two-
choice decisions. As described above, the model separates the quality of evidence entering a decision
from the decision criteria and from nondecision processes. Decisions are made by a noisy process that
accumulates information over time from a starting point z toward one of two response criteria, or
boundaries, a and 0. When a boundary is reached, a response is initiated. The rate of accumulation
of information is called the drift rate (v), and it is determined by the quality of the information ex-
tracted from the stimulus in perceptual tasks and the quality of match between the test item and
memory in memory and lexical decision tasks. The mean of the distribution of times taken up by
the nondecision component (the combination of encoding, response execution, and so on) is labeled
Ter. Within trial variability (noise) in the accumulation of information from the starting point toward
the boundaries results in processes with the same mean drift rate terminating at different times (pro-
ducing RT distributions) and sometimes at the wrong boundary (producing errors).

The values of the components of processing vary from trial to trial, under the assumption that sub-
jects cannot accurately set the same parameter values from one trial to another (e.g., Laming, 1968;
Ratcliff, 1978). Across trial variability in drift rate is normally distributed with SD g, across trial
variability in starting point is uniformly distributed with range sz, and across trial variability in the
nondecision component is uniformly distributed with range st. Also, there are ‘‘contaminant” responses
– slow outlier response times as well as responses that are spurious in that they do not come from the
decision process of interest (e.g., distraction, lack of attention). To accommodate these responses, we
assume that, on some proportion of trials (po), a uniform distributed random delay between the min-
imum and maximum RT for the condition is added to the decision RT (see Ratcliff & Tuerlinckx, 2002).
The assumption of a uniform distribution is not critical; recovery of diffusion model parameters is
robust to the form of the distribution (Ratcliff, 2008b).

The values of all the parameters, including the variability parameters, are estimated simultaneously
from data by fitting the model to all the data from all the conditions of an experiment. The model can
successfully fit data from single subjects if there are around 400–1000 total observations per subject,
which typically takes about 45 min for the kinds of tasks considered in this article. Variability in the
parameter estimates is much less than differences in the parameters across subjects so that correla-
tions are meaningful and not contaminated by noise to a high degree. The model can be understood
as decomposing accuracy and RT data for correct and error responses into components of processing.

For the numerosity discrimination experiment, we initially assumed that drift rates were equal and
opposite for ‘‘small” responses to small stimuli and ‘‘large” responses to large stimuli. For example, the
drift rate for 31–35 asterisks would have the opposite sign but the same numerical value as the drift
rate for 66–70 asterisks. However, for many of the subjects, the zero point of drift was biased. Some
subjects put the zero point of drift toward 60 asterisks and some put it toward 40 asterisks. To accom-
modate these biases, we used a drift criterion, a value added or subtracted from the drift rate (like the
criterion in signal detection theory; see Ratcliff & McKoon, 2008, for a detailed discussion). The addi-
tion of a drift criterion can, for example, make the drift rate for the condition with 31–35 asterisks lar-
ger numerically than the drift rate for the condition with 66–70 asterisks.

The diffusion model was fit to the data for each task and each subject by minimizing a chi-square
value with a general SIMPLEX minimization routine that adjusts the parameters of the model until it
finds the parameter estimates that give the minimum chi-square value (see Ratcliff & Tuerlinckx,
2002, for a full description of the method). The data entered into the minimization routine for each
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experimental condition were the 0.1, 0.3, 0.5, 0.7, 0.9 quantile RTs for correct and error responses and
the corresponding accuracy values. The quantile RTs and the diffusion model were used to generate
the predicted cumulative probability of a response by that quantile response time. Subtracting the
cumulative probabilities for each successive quantile from the next higher quantile gives the propor-
tion of responses between adjacent quantiles. For the chi-square computation, these are the expected
values, to be compared to the observed proportions of responses between the quantiles (i.e., the pro-
portions between 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0, which are 0.1, 0.2, 0.2, 0.2, 0.2, and 0.1) multiplied by
the number of observations. Summing over (observed–expected)2/expected for all conditions gives a
single chi-square value to be minimized.

The diffusion model is tightly constrained. The most powerful constraint comes from the require-
ment that the model fit the right-skewed shape of RT distributions (Ratcliff, 1978; Ratcliff & McKoon,
2008; Ratcliff et al., 1999). In addition, changes in response probabilities, quantile RTs, and the relative
speeds of correct and error responses across experimental conditions that vary in difficulty are all cap-
tured by changes in only one parameter of the model, drift rate. The other parameters cannot vary
across levels of difficulty. For the response criteria, subjects could only set them as a function of dif-
ficulty if they already knew, before the accumulation process started, what the level of difficulty
would be. For the nondecision component, we usually assume that the duration of stimulus encoding,
matching against memory, response output, and other such nondecision processes do not vary with
difficulty.

4. Results: RTs and accuracy

For the college students, correct RTs less than 300 ms and greater than 3000 ms were eliminated
from analyses. This excluded 2.3%, 3.7% (one subject contributed 1.3% of the 3.7%) and 2.9% (the same
subject contributed 1.2% of the 2.9%) of the data for the numerosity, recognition memory, and lexical
decision tasks, respectively. For the 60–74 year old subjects, the cutoffs were 300 ms and 3500 ms,
excluding 3.2%, 0.6%, and 1.4% of the data, and for the 75–90 year old subjects, the cutoffs were
300 ms and 4500 ms, excluding 4.1%, 0.6%, and 1.3% of the data from the numerosity, recognition
memory, and lexical decision tasks, respectively.

Overall, the effects of age on performance replicated those obtained by RTM. Fig. 1 shows how
accuracy and median RTs varied across experimental conditions as a function of age. Plots are shown
for the two responses for each task (‘‘large” and ‘‘small” numbers of asterisks, ‘‘old” and ‘‘new” re-
sponses in recognition memory, and ‘‘word” and ‘‘nonword” in lexical decision).

For the numerosity task, the RT functions for ‘‘large” and ‘‘small” responses appear to be different
from each other but (as mentioned above) this is because many of the subjects were biased, setting the
average midpoint at around 55 asterisks rather than the correct value, 50. If the functions for ‘‘large”
and ‘‘small” responses were flipped left to right and the midpoint set to around 55, the two functions
would be similar, with six out of the eight points on each function aligning with each other. For rec-
ognition memory and lexical decision, positive responses could not mirror negative responses because
there were different numbers of conditions for positive and negative responses and the stimuli were
not inherently symmetrical.

Overall, there was little difference among the age groups in accuracy. For these analyses, all the
conditions of each experiment were averaged. For numerosity discrimination, mean accuracy values
were 0.80, 0.83, and 0.81, for the college-age, 60–74, and 75–90 year olds, respectively,
F(2, 127) = 3.72, p < 0.05, for recognition memory, the means were 0.75, 0.76, and 0.75, for the col-
lege-age, 60–74, and 75–90 year olds, respectively, F(2, 127) = 0.17, p > 0.05, but for lexical decision,
the means were 0.86, 0.93, and 0.93, for the college-age, 60–74, and 75–90 year olds, respectively,
F(2, 127) = 18.07, p < 0.05.

There were large differences among the age groups in median RTs, with college students faster than
60–74 year olds and 60–74 year olds faster than 75–90 year olds (for numerosity discrimination,
medians 605, 883, and 1028 ms, respectively, F(2, 127) = 33.12, p < 0.05, for recognition memory,
medians of 668, 866, and 934 ms, respectively, F(2, 127) = 41.34, p < 0.05, and for lexical decision,
medians of 659, 893, and 948 ms, respectively, F(2, 127) = 433.22, p < 0.05).
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For all three groups of subjects, median RTs for correct responses increased as accuracy decreased,
as would be expected. The pattern for error responses is more complicated: median error RTs de-
creased as error rate decreased in numerosity discrimination and in lexical decision for ‘‘nonword” re-
sponses. But they increased as error rate decreased in recognition memory and for ‘‘word” responses
in lexical decision.

Fig. 2 shows how accuracy and median RTs varied with age, task, and IQ, averaged over the more
accurate conditions for each task (i.e., excluding the conditions for which accuracy was near chance).
The conditions were: the ranges of asterisks with means of 33, 38, 43, 58, 63, and 68 in numerosity
discrimination; new items and twice presented old items in recognition memory, and all of the con-
ditions for lexical decision.

The main findings for IQ are that accuracy increased with IQ for lexical decision and recognition,
but there were at most only small changes in correct median RTs as a function of IQ. For the numer-
osity task, used as a baseline, IQ did not significantly affect accuracy or speed.

Figs. 1 and 2 summarize the data that the diffusion model must explain: performance on multiple
conditions in each of three tasks for a wide range of ages and a wide range of IQs. In all cases, the mod-
el must explain accuracy, the shapes of the RT distributions for correct and error responses, and the
relative speeds of correct and error responses.

Fig. 1. Accuracy and median RT as a function of experimental condition for the three tasks (numerosity discrimination,
recognition memory, and lexical decision) for the three subject groups, college age (‘‘Y”), 60–74 year olds (‘‘O”), and 75–
90 year olds (‘‘V”). HF = high frequency words, LF = low frequency words, VLF = very low frequency words, and NW = non-
words. For recognition memory, the digits 1 and 2 (in front of HF and LF) refer to the number of presentations and N refers to
new words.
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5. Diffusion model analyses

In this section, we show that the model fit the data well. In the sections following, interpretations
of the data and the components of processing identified by the model for aging and IQ are discussed.

The model was applied to the data for each task for each subject individually. To show all of the
empirical data and all of the model’s predicted data for all of the conditions for all three tasks for
all of the subjects would require far too many figures or tables. Instead, we illustrate that the model’s
predicted data match the empirical data in two ways. First, for each experimental condition for each
task, we averaged the data from all the subjects. In most of the RTM papers, comparisons have been
made between the average of model parameters across fits to individuals, and fits to group data. There
have been almost no cases for individual parameters in which the means were significantly different.
Second, we picked one condition with average accuracy lower than ceiling (to provide the widest
range across subjects) for each task to compare the empirical data and predicted values in plots of
accuracy values and each of the quantile RTs for each of the individual subjects.

The model fit the data well, and it did so conforming to the crucial assumption mentioned above
that only drift rate, not the nondecision component or the criteria, was allowed to vary with the dif-
ficulty of experimental conditions. For instance, the slower and less accurate RTs for low compared to
high frequency words in lexical decision should be explained only by a difference in their drift rates. It
is assumed that boundary separation and the nondecision component do not vary with difficulty be-
cause it is assumed that they are not adjustable as a function of the amount of evidence accumulated

Fig. 2. Accuracy and median RT as a function of IQ. Subjects were divided into three groups by IQ, task, and age group.
Conditions for which accuracy was near chance were excluded. The conditions used were: the ranges of asterisks with means of
33, 38, 43, 58, 63, and 68 for numerosity discrimination; new items and twice presented old items for recognition memory, and
all of the conditions for lexical decision.
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early during the decision process. Also, because the decision process is highly stochastic, using early
accumulated evidence would be a very inaccurate way of adjusting their values.

5.1. Averaged data: quantile probability functions

We use quantile probability functions to display the quality of the model’s fits to data. For each
condition in each task, the 0.1, 0.3, 0.5, 0.7, and 0.9 quantile RTs are plotted as a function of the pro-
portions of correct and error responses for that condition. Fig. 3 shows the quantile probability func-
tions averaged over subjects for each condition in each task with x’s for the data and o’s for the values
predicted from the model’s best-fitting parameter values. Each column of RTs (the 0.1, 0.3, 0.5, 0.7, and
0.9 quantiles) represents one experimental condition. The points to the right for each plot represent
correct responses and those to the left, error responses. For example, in lexical decision the proportion
of ‘‘word” responses for very low frequency words was about 0.8, on the right, and the proportion of
‘‘nonword” responses was about 0.2, on the left. Responses to high frequency words have the highest
probability of correct responses and so their quantiles for correct responses are farthest right and their
quantiles for error responses are farthest left.

For numerosity discrimination, all the conditions in the experiment are displayed in a single plot.
There are 16 columns of RT quantiles. The eight on the right half are correct responses to ‘‘small” num-
bers and correct responses to ‘‘large” numbers. The eight on the left are errors, ‘‘small” responses for
‘‘large” numbers and ‘‘large” responses for ‘‘small” numbers. Plotting all the data together like this was
possible because the starting point of the diffusion process (z) was about halfway between the two

Fig. 3. Quantile probability plots for the three tasks for data averaged over all subject groups. The x’s are the data and the o’s are
the predictions joined by the lines. The five lines stacked vertically above each other are the values predicted by the diffusion
model for the 0.1, 0.3, 0.5, 0.7, and 0.9 quantile RTs as a function of response proportion for the conditions of the experiments.
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boundaries, making the functions for ‘‘small” responses and ‘‘large” responses nearly symmetric
(though shifted on the drift rate scale to have a zero point of drift about 55, averaged across subjects).

In contrast, the recognition memory and lexical decision functions are shown in two panels, one for
‘‘old” or ‘‘word” responses and one for ‘‘new” or ‘‘nonword” responses, because the estimate of the
starting point was not halfway between the boundaries and so ‘‘old” and ‘‘new” responses and ‘‘word”
and ‘‘nonword” responses have different vertical locations on the quantile probability plots, with the
location on the x-axis for each of the experimental conditions determined by its difficulty.

The data predicted by the model, derived from the model parameter values that provided the best
fit to the empirical data, match the empirical values well. Predicted response proportions are within a
few percent of the empirical values and quantile RTs are within 10’s of milliseconds of the empirical
values. There were only two exceptions: in the numerosity task, the 0.9 quantiles for errors for three of
the conditions missed by 50–200 ms, and in the recognition memory task, the 0.9 quantiles for correct
‘‘old” responses missed by about 50 ms. It is not surprising that the model’s predictions miss in a few
cases. The range of data combined over ages and IQ levels is wide, so the good fit of the model to the
average data is impressive.

For some of the error conditions, some subjects had fewer than the five responses needed to com-
pute five quantiles and so only the median is plotted in the figures. The subjects for whom there were
fewer than five error responses were the slower, more accurate subjects, so leaving them out of the
analyses would have led to a bias in parameter estimates toward the faster, less accurate subjects.

5.2. Individual subjects

For each subject, there were eight conditions for numerosity discrimination, six for recognition
memory, and four for lexical decision. To illustrate the fits of the model to the data, for each task,
we chose one condition for which average accuracy was not at ceiling (1.0) or floor (0.5). The condi-
tions were 41–45 asterisks for numerosity discrimination, high frequency words presented twice for
recognition memory, and very low frequency words for lexical decision. For all 130 subjects, Figs. 4
and 5 plot the empirical values of accuracy and RT quantiles against the values predicted from the
best-fitting parameters of the diffusion model.

If the data and predictions matched exactly, the slopes would have a slope of 1.0. The functions are
close to 1.0, which is especially impressive given that there was only one session of data per task, that
there were 130 subjects, and that there were large individual differences among the subjects with re-
sponse proportions varying from 0.5 to close to 1.0, 0.1 quantile RTs varying from 400 ms to 1000 ms,
and 0.9 quantile RTs varying from 800 ms to 3000 ms. The match between the data and the diffusion
model predictions was equally close for all the other conditions that are not plotted in the figure.

In general, there were more observations for correct responses, so deviations between the model
and data for correct responses are more serious than deviations for error responses. There were only
a few subjects for whom the model’s miss was larger than 10% (Fig. 4): five subjects for numerosity
discrimination, six for recognition memory, and none for lexical decision.

Overall, the lower RT quantiles were less variable than the higher quantiles so deviations between
experimental and predicted 0.1 quantiles are more serious than for the higher quantiles. There were
again only a few instances in which the model predictions seriously missed the data.

For correct responses for numerosity discrimination (Fig. 4), there were 5 subjects for whom there
were serious misses in the 0.1 and 0.3 quantile RTs. These misses occurred for 60–74 and 75–90 year
olds who appear to have adopted a strategy not consistent with the diffusion model: For the easy con-
ditions, they responded relatively quickly, but for the more difficult conditions (e.g., 45–55 asterisks),
their responses were delayed by 200–300 ms. The model had to average over these conditions, leading
to predicted 0.1 and 0.3 quantile RTs larger than the empirical values. There were also three subjects
with large misses in the 0.9 quantile RTs.

For correct responses for recognition memory (Fig. 4), there were no serious misses between pre-
dictions and data in the 0.1 and 0.3 quantile RTs and only 3 or 4 misses in the higher quantiles. For
correct responses for lexical decision (Fig. 4), there are 4 misses in the 0.1 and 0.3 quantile RTs and
4 misses in the higher quantiles.
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Fig. 4. Plots of accuracy and RT quantiles for data (y-axis) and predicted values from fits of the diffusion model (x-axis) for
correct responses for a single condition for each of the three tasks for all subjects in the three age groups.
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Fig. 5. Plots of accuracy and RT quantiles for data (y-axis) and predicted values from fits of the diffusion model (x-axis) for error
responses for a single condition for each of the three tasks for all subjects in the three age groups.
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The RT quantiles for errors, Fig. 5, show about the same quality of fits as for the correct RT quantiles
but with much greater variability than for correct responses. For numerosity discrimination and rec-
ognition memory, some of the conditions had five or fewer error RTs and their RTs were excluded and
so the variability in the data was much greater than for correct RT quantiles. This was less of a problem
for lexical decision, for which there were at least 12 observations for each of the quantile RTs.

5.3. Chi-square goodness-of-fit

We calculated chi-square goodness-of-fit values for each task for each subject and the means and
SDs of the chi-square values are shown in Table 2. The means are similar to values reported in previous
studies (RTM). The degrees of freedom for the chi-square values were calculated as follows: for the five
quantile RTs, there are six bins: two outside the 0.1 and 0.9 quantiles and four between the pairs of
quantiles. This gives 12 degrees of freedom, �1 because the total probability adds to 1. Thus, for
the numerosity discrimination task with eight conditions, the number of degrees of freedom is 76:
88 in the eight conditions �12 for the number of parameters for the model. For recognition memory
with six conditions and 13 model parameters, there were 53 degrees of freedom, and for lexical deci-
sion with four conditions and 11 parameters, there were 33. The 0.95 critical value for the numerosity
task is 97.4, for the recognition memory task it is 71.0, and for the lexical decision task it is 47.4. The
average chi-square values (Table 2) range from the critical value up to two times the critical value.

The chi-square statistic has the property that as the number of observations increases, the power of
the test increases so that even the smallest deviation can lead to significance. To illustrate this: The
chi-square value is the sum over all frequency classes of (O–E)2/E where O and E are the observed
and expected frequencies. Suppose in our computations, the observed and expected proportions be-
tween two adjacent bins systematically miss by 0.1 (e.g., instead of the proportions being 0.2, one
is 0.1 and the next is 0.3). Then the additional contribution from this miss to the chi-square is
N((0.1 � 0.2)2/0.3 + N(0.3 � 0.2)2/0.1), where N is the number of observations in the condition. For
the numerosity discrimination task with about N = 140 per condition, the contribution to the chi-
square from this systematic deviation would be 18.7. This means that a single systematic miss in
one of the eight conditions’ 10 quantile RTs (one miss out of 80) can add about 19% of the critical value
of the chi-square (in Numerosity). The contributions for the recognition memory and lexical decision

Table 2
Means and SDs in parameter values for subject groups and tasks.

Parameter Task Subjects a z Ter g sz po st v2

Mean Numerosity College 0.170 0.083 0.373 0.191 0.084 0.018 0.165 119
60–74 0.224 0.106 0.484 0.164 0.072 0.018 0.168 146
75–90 0.257 0.128 0.462 0.150 0.078 0.025 0.181 132

Recognition College 0.141 0.069 0.489 0.230 0.063 0.012 0.189 100
60–74 0.170 0.074 0.632 0.237 0.037 0.002 0.194 92
75–90 0.182 0.077 0.643 0.214 0.031 0.009 0.200 88

Lexical College 0.157 0.080 0.429 0.139 0.072 0.029 0.149 97
60–74 0.204 0.095 0.539 0.113 0.028 0.025 0.154 79
75–90 0.213 0.101 0.572 0.129 0.040 0.032 0.143 77

SD Numerosity College 0.057 0.027 0.034 0.064 0.043 0.030 0.050 37
60–74 0.089 0.039 0.102 0.065 0.056 0.026 0.117 92
75–90 0.070 0.038 0.114 0.069 0.060 0.041 0.128 54

Recognition College 0.040 0.019 0.052 0.072 0.042 0.021 0.082 44
60–74 0.047 0.025 0.096 0.076 0.040 0.005 0.082 30
75–90 0.049 0.028 0.087 0.081 0.036 0.020 0.102 26

Lexical College 0.047 0.024 0.043 0.090 0.049 0.034 0.075 37
60–74 0.051 0.025 0.069 0.045 0.031 0.032 0.094 43
75–90 0.048 0.026 0.085 0.069 0.041 0.037 0.087 47

Note: a = boundary separation, z = starting point, Ter = nondecision component of response time, g = standard deviation in drift
across trials, sz = range of the distribution of starting point (z), po = proportion of contaminants, st = range of the distribution of
nondecision times, and v2 is the chi-square goodness-of-fit measure.
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tasks would be greater because there are fewer conditions. This suggests that if the chi-square statistic
is to be used to evaluate goodness-of-fit, then the size of any systematic deviations must be considered
large enough that the model becomes unattractive. For the three tasks in this experiment, we believe
that the chi-square misses are small enough (see the fits in Figs. 4 and 5) that we can assume the mod-
el fits well and proceed to examine aging and IQ effects on the parameters of the model, i.e., on the
components of processing identified by the model.

5.4. Age, IQ, and components of processing

5.4.1. Components of processing as a function of age
Older subjects differed from college students in having higher criteria and longer nondecision

times. Most importantly, they did not differ in drift rates for lexical decision or recognition. This means
that the quality of the information entering the decision process was not significantly affected by age.

Tables 2 and 3 show the best-fitting parameter values for the three subject groups and the three
tasks (averaged over IQ). The tables also show the standard deviations in the values, computed across
subjects. Significance can be assessed by computing z statistics from the means and standard devia-
tions in the tables.

For numerosity discrimination, there were changes in drift rate across the age groups. This does not
replicate other studies with this task (Ratcliff, 2008a; Ratcliff et al., 2001; Ratcliff et al., 2007). How-
ever, the reason drift rates varied here is that variability in drift rate across trials was larger for the
college-age subjects than the 60–74 year old subjects, and larger for the 60–74 year old subjects than
the 75–90 year old subjects (this was not true for recognition memory and lexical decision). The ana-
log to this in signal detection theory is that a larger difference in means and a larger SD can lead to no
change in d’. In the earlier studies, SD in drift across trials did not vary systematically across age
groups.

The findings for lexical decision and recognition broadly replicate those from the RTM articles. They
extend application of the model to a significantly larger range of IQ’s (83–146). For the RTM studies,
older subjects’ IQs were matched to college students’, which limited the IQ range.

Table 3
Means and SDs in drift rates for subject groups and tasks.

Parameter Task Subjects Drift rates Drift criterion

Mean Numerosity College 0.451 0.342 0.206 0.069 – – 0.078
60–74 0.430 0.324 0.197 0.064 – – 0.075
75–90 0.372 0.280 0.169 0.056 – – 0.095

Recognition College 0.159 0.334 0.052 0.168 �0.266 �0.328 –
60–74 0.196 0.297 0.040 0.138 �0.291 �0.352 –
75–90 0.192 0.271 0.044 0.113 �0.249 �0.317 –

Lexical College 0.457 0.227 0.127 �0.240 – – –
60–74 0.412 0.238 0.141 �0.253 – – –
75–90 0.437 0.280 0.169 �0.249 – – –

SD Numerosity College 0.141 0.105 0.062 0.035 – – 0.070
60–74 0.136 0.100 0.060 0.030 – – 0.086
75–90 0.164 0.123 0.072 0.033 – – 0.097

Recognition College 0.115 0.170 0.087 0.103 0.131 0.143 –
60–74 0.172 0.159 0.110 0.114 0.125 0.138 –
75–90 0.143 0.160 0.107 0.099 0.144 0.174 –

Lexical College 0.130 0.083 0.078 0.081 – – –
60–74 0.136 0.102 0.077 0.086 – – –
75–90 0.201 0.145 0.102 0.123 – – –

The drift rate conditions are: for numerosity discrimination, 31–35 and 66–70 asterisks, 36–40 and 61–65 asterisks, 41–45 and
56–60 asterisks, 46–50 and 51–55 asterisks. For recognition memory, 1P low frequency, 2P low frequency, 1P high frequency, 2P
high frequency, new high frequency, new low frequency (where P represents the number of presentations). For lexical decision,
high frequency, low frequency, very low frequency, nonwords. The drift criterion is added to the drift rate for low numbers of
asterisks and taken away from the drift rate for high number of asterisks.
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It might be thought that older subjects would show more variability across trials in their drift rates,
nondecision times, and starting point, but there were differences in variability only for starting point
in recognition and lexical decision, and the differences were such that there was more variability for
the college students than the older subjects.

5.4.2. Correlations between IQ and accuracy and between IQ and median RTs
The correlations in the following subsections were computed for each age group for each task and

then, because the correlations were similar across the age groups, they were averaged.
Table 4 shows the correlations between IQ and accuracy and between IQ and median RT. For IQ and

accuracy, the correlations are positive and quite large for lexical decision and recognition memory. For
IQ and median RTs, the correlations were negative, small for numerosity discrimination and a little
larger for recognition memory and lexical decision. So, overall the higher IQ subjects tended to re-
spond more accurately and more quickly than the lower IQ subjects, but not strongly so for RT.

To assess the significance level of the correlations, a correlation of 0.29 with 42 degrees of freedom
would be significant at the 0.05 level for a two-tailed test (there were 45, 43, and 42 subjects in our
three groups). As a rule of thumb, we considered only correlations larger than this as meaningful.

5.4.3. Correlations between components of processing and accuracy and median RTs
In the diffusion model, larger values of boundary separation and the nondecision component produce

longer median RTs. Also, larger values of drift rate produce higher accuracy and shorter median RTs.
For all three tasks, the data followed this pattern. Drift rate was strongly positively correlated with

accuracy and negatively correlated with median RTs (Table 4). Boundary separation and the nondeci-
sion component were positively and strongly correlated with median RTs but not accuracy.

These findings replicate RTM’s findings except that the correlations of model parameters and data
were larger than in the RTM studies because of the wider range of abilities and performance. For
example, in recognition memory in Ratcliff et al. (2004), SDs across subjects were almost half the size
of those reported in Tables 2 and 3. The correlation between the nondecision component and median
RT was strong here but not in the earlier studies, and correlations between drift rate and median RTs
were strong here but not in the earlier studies.

5.4.4. Correlations between IQ and components of processing
In this section, we report correlations between IQ and components of processing and in later sec-

tions, we show plots of the components as a function of IQ. The correlations were computed for each
age group for each task and then averaged.

As might be expected, IQ correlated with drift rate for the lexical decision and recognition memory
tasks (Table 5), indicating that higher IQ subjects are better at remembering words and better at dis-
criminating words from nonwords. This is not surprising because vocabulary was one of the subtests
of IQ we used. In contrast, for the numerosity discrimination task, the correlation between IQ and drift
rate was weaker, indicating that the ability to judge numerosity is not as highly related to either sub-
test of our IQ measure, matrix reasoning or vocabulary.

IQ did not correlate significantly with the nondecision component or with boundary separation in
lexical decision or recognition. For numerosity discrimination, the IQ-boundary correlation was

Table 4
Correlations of IQ and model parameters with accuracy and median RT.

Experiment Measure IQ a Ter v Median RT

Numerosity discrimination Accuracy 0.242 0.243 0.164 0.441 0.055
Median RT 0.110 0.620 0.303 �0.483

Recognition memory Accuracy 0.502 0.105 0.137 0.861 �0.250
Median RT �0.208 0.468 0.558 �0.430

Lexical decision Accuracy 0.721 0.082 �0.116 0.576 �0.247
Median RT �0.319 0.626 0.446 �0.561
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significant, but much of this was due to a few older, higher IQ subjects who adopted extremely con-
servative decision criteria to avoid errors (in the range of 0.4–0.6 in boundary separation where the
mean was around 0.22).

5.4.5. Correlations between components of processing across tasks
For each age group, correlations were computed between drift rate, boundary separation, and the

nondecision component for each pair of tasks across subjects. The correlations were then averaged
across the age groups. These averages are reported in Table 5.

Perhaps surprisingly, the correlations were positive and significant for all the pairs of tasks, dem-
onstrating that if an individual has a high value for one of the parameters on one task, they likely have
a high value on the other tasks. This pattern replicates that obtained by Ratcliff et al. (2006a), but with
a considerably wider range of IQ values and almost four times as many subjects.

5.4.6. Correlations among the different components of processing
The correlations between drift rate and boundary separation, drift rate and the nondecision com-

ponent, and the nondecision component and boundary separation are shown in Table 6. The correla-
tions were computed across subjects in each age group and then averaged over the three age groups.
Out of the 27 correlations for the separate age groups (three pairs of parameters by three tasks by
three age groups), only one was significant. This shows that the model parameters are determined
by relatively independent aspects of the data, similar to the findings in the RTM studies.

5.5. The Effects of Age and IQ on components of processing

Fig. 6 displays plots of drift rate, boundary separation, and nondecision time as a function of age
and IQ for the three tasks. Y’s designate college-age subjects, O’s 60–74 year olds, and V’s 75–90 year
olds. In each panel, the thick lines are linear regression lines for the nine data points.

There are dramatic differences in drift rates as a function of IQ for lexical decision and recognition
memory. Drift rates decrease by almost a factor of 2 from high to low IQ as IQs change from an average
of 125 to an average of 95. For numerosity discrimination, the decrease is much smaller, only about
1/3.

For all three tasks, the boundary separation and nondecision time parameters show at most small
changes as a function of IQ. There is enough power to detect decreases if they were there because, as
described above, these parameters show consistent changes with age (Table 2).

Fig. 7 shows the same information as Fig. 6 but with all the conditions for all the tasks. The decrease
in drift rate with IQ occurs for most of the conditions, which means that the decrease shown in Fig. 6 is
not the result of averaging a few conditions with a large decrease and other conditions without a

Table 5
Correlations between IQ and components of processing in each task and between the components of processing across the tasks.

IQ/numerosity IQ/recognition IQ/lexical
decision

Numerosity/
recognition

Numerosity/
lexical decision

Recognition/
lexical decision

Boundary separation 0.33 0.12 �0.08 0.42 0.33 0.46
Nondecision

component
�0.22 �0.03 �0.08 0.43 0.47 0.56

Drift rate 0.24 0.55 0.53 0.47 0.47 0.63

Table 6
Correlations among model parameters.

Task a–Ter a–v Ter–v

Numerosity �0.264 �0.001 �0.100
Recognition �0.136 0.047 0.042
Lexical �0.053 �0.124 �0.058
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decrease. We also found that the across trial variability parameters (g, sz, and st did not change as a
function of IQ. Estimates of these variability parameters are more variable than a, Ter, and v, but even
so, there were no trends in the values as a function of IQ.

5.6. The joint effects of IQ and age on drift rates

Fig. 8 shows one of the most important results of this research: there is no differential decrease in
drift rate as a function of age for low versus high IQ subjects. The left hand side of the figure shows two
possibilities. In the top panel, there is a larger decrease in drift rate with age for low IQ subjects than
high IQ subjects. In the bottom panel, the decreases are the same. The right hand panels show the re-
sults from Fig. 6 re-plotted to show drift rate as a function of age and IQ for the three tasks. The dif-
ferences in drift rate between high and low IQ subjects are not larger for the 75–90 year olds than for
the college students. (Note that there is no problem with floor effects because there is little decrease in
drift rate across age groups.)

6. Structural equation modeling

Structural equation modeling fits a regression model simultaneously to the nondecision compo-
nent, boundary separation and drift rate parameters and two IQ measures to investigate whether a

Fig. 6. Plots of average drift rate, boundary separation, and nondecision time as a function of IQ for the three age groups and the
three tasks. The subjects were divided into three groups as a function of IQ.
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common factor can account for relationships among tasks and how these common factors are associ-
ated with the two IQ measures. For example, if task A is correlated with task B and task B with task C,
then there may be a common factor underlying the three tasks. Structural equation modeling also
explicitly takes into account measurement error.

Schmiedek et al. (2007) applied structural equation modeling to the data from 8 two-choice RT
tasks with 80 observations per task for 135 subjects (from Oberauer et al., 2003). They fit the exGaus-
sian distribution (Hohle, 1965; Ratcliff, 1979; Ratcliff & Murdock, 1976) and a simplified version of the
diffusion model to the data (using the EZ method, Wagenmakers, Van Der Maas, & Grassman, 2007;
but see Ratcliff, 2008b). Oberauer et al. had collected six different measures of working memory along
with RT data. Schmiedek et al. applied structural equation modeling to the exGaussian parameters ob-
tained from the RT data and working memory measures and also to the diffusion model parameters
from the RT data and working memory measures. For the diffusion model parameters, there was a
strong relationship between the working memory measures and drift rate. They also found that stan-
dardized regression parameters for the latent diffusion model parameters (i.e., single parameters for

Fig. 7. Plots of the drift rates for all the individual conditions of each task as a function of IQ. Conditions with negative drift rates
(e.g., nonwords in lexical decision) had the sign changed to positive. The thick line is the average linear regression line to all the
data.
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nondecision component, boundary separation and drift rate that represent those parameters for all the
tasks, c.f., the ellipses in Fig. 9) and the diffusion model parameters for the individual tasks were po-
sitive. This means that common diffusion model parameters were able to account for individual dif-
ferences common to all the tasks.

We applied structural equation modeling (using LISREL 8.8, Joreskog & Sorbom, 1993) to the three
main diffusion model parameters for the three tasks and the two components of IQ that we measured
(matrix reasoning and vocabulary). This provides an analysis to show whether common factors account
for individual differences in model parameters and to what extent the common factors can be identified
with the matrix reasoning (fluid intelligence) and vocabulary (crystallized intelligence) components of
IQ. Because the model parameters correlate across tasks, we expect that common factors will represent
model parameters across tasks in the structural equation models. Due to model identification issues,
the IQ variables were included in the model using the pseudo-variable approach described in Bollen
(1989, p.173). There were three latent common factors representing boundary separation (a), the non-
decision component (Ter), and drift rate (v). Fig. 9 shows the model structure. The observed variables are
shown in the square boxes at the bottom (with the letters N, R, and L representing the numerosity, rec-
ognition, and lexical decision tasks). For each link and for the residuals, there are three numbers; these
are the values for college age, 60–74 year old, and 75–90 year old subjects, respectively.

The sample sizes used here are on the extreme lower end of acceptability (e.g., Schumaker &
Lomax, 1996), however, it is likely that the clear dissociations between the model parameters and
IQ allow the model to fit acceptably. The fits of the model for the three subject groups were

Fig. 8. Plots of drift rate for high, medium, and low IQ groups as a function of age.
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v2 = 60.2 (RMSEA = 0.12, CFI = 0.76, SRMR = 0.15), 49.5 (RMSEA = 0.09, CFI = 0.91, SRMR = 0.10), and
40.1 (RMSEA = 0.05, CFI = 0.89, SRMR = 0.11) for the college age, 60–74 year old, and 75–90 year old
subjects, respectively, with 37 degrees of freedom. The chi-square value for young subjects is signif-
icant, probably because the range of values across subjects is smaller, but the chi-square values for the
other two groups are not significant. Evaluation of goodness-of-fit for structural equation modeling is
not as straightforward as other methods. The LISREL program produces around 20 goodness-of-fit
indices (several closely related) and most of the measures have recommended ranges rather than sta-
tistical tests for significance. Apart from the fit for young subjects, the CFI value is around the recom-
mended value for a good fit, 0.9, (but this is qualified of course by the low sample size).

As reflected in the correlation analyses, the standardized regression coefficients or factor loadings
between each latent diffusion model parameter and the corresponding parameter for each task are po-
sitive and vary from 0.37 to 0.96 with a mean of 0.66 and all are significant at the 0.05 level. The coef-
ficients for the numerosity discrimination drift rates are lower than for the other two tasks which,
along with the lower correlations between numerosity drift rate and both IQ and drift rates for the
other tasks, suggests that numerosity discrimination performance is not as strongly related to IQ
and the other cognitive tasks. The results show that common model parameters can account for much
of the variability across subjects in the separate tasks. This provides the same interpretation that is
suggested by the simple correlations shown in Table 6 but fits the whole data set rather than just pair-
wise correlations.

The standardized gamma coefficients between the latent diffusion model parameters and the two
IQ measures are consistently above zero for the six values of drift rate, that is, for the two IQ measures
by three subject groups, and all are significant at the 0.05 level. However, the standardized gamma
coefficients for boundary separation and the nondecision component and the two IQ measures are
not consistently of the same sign; only six of the twelve are significant and one has the opposite sign
from the others. This result again supports the interpretation from Table 6 that drift rate and not the
other parameters correlates reliably with overall IQ.

Fig. 9. A graphical presentation of a structural equation model for diffusion model parameters and two IQ components.
Numbers in squares are the normalized regression coefficients (Gamma coefficients for the numbers just below the IQ measure
boxes and Lambda-x coefficients for the numbers below the latent diffusion model parameters). The three numbers represent in
order: college age, 60–74 year old, and 75–90 year old subjects. The numbers at the bottom are residuals. In the boxes at the
bottom, N refers to numerosity discrimination, R to recognition memory, and L to lexical decision, and a = boundary separation,
Ter = nondecision component, v = drift rate diffusion model parameters.
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We examined two other structural equation models. First, we ran a model with all the subjects
combined and added age as a factor at the same level as the two IQ measures. This resulted in a model
that loaded drift rate onto IQ (standardized gamma coefficients of 0.46 and 0.66 for matrix and vocab-
ulary, respectively) and that loaded boundary separation and the nondecision component onto age
(standardized gamma coefficients of 0.42 and 0.61, respectively). The fit of the model was not as good
in chi-square terms as the analyses above, v2 = 105.2 (RMSEA = 0.10, CFI = 0.92, SRMR = 0.08), with 45
degrees of freedom. But the CFI value was acceptable. In the second analysis, we added age as a factor
at the same level as the IQ measures to produce three separate analyses as in Fig. 9. Drift rate loaded
onto IQ as in Fig. 9, but nothing loaded onto age (standardized gamma coefficients were in the range
�0.27 to 0.26 across the three analyses and goodness-of-fit and other model parameters were within a
few percent of those shown in Fig. 9). Lindenberger and Baltes (1997) found correlations in the range
of �0.4 to �0.6 of age with five different abilities (perceptual speed, reasoning, memory, knowledge,
and fluency). Their study had individuals that ranged from age 70 to age over 100 and had over 500
subjects in the sample. With our smaller samples, we did not have enough power to obtain such
results.

These analyses show that there were no differences in model parameters as a function of age with-
in each group and that age effects were only obtained for the large difference between the groups. The
IQ and common factor results for both of these analyses were similar to those in Fig. 9.

7. The worst performance rule

A puzzling finding in IQ research has been that IQ is sometimes more highly correlated with slow
responses than fast ones, even though slow responses have more variability than fast responses. Evi-
dence for this finding, which occurs in many, but not all studies, has been summarized by Coyle
(2003), also Baumeister and Kellas (1968), Diascro and Brody (1993), Jensen (1982), Kranzler
(1992), Larson and Alderton (1990); but see Salthouse (1998).

With simulations, Ratcliff, Schmiedek, and McKoon (2008; also Schmiedek et al., 2007) demon-
strated the conditions under which the diffusion model predicts the worst performance rule. They as-
sumed (given earlier data as well as the data described above) that IQ corresponds to drift rate.
Accuracy and RT data were simulated by generating model predictions from parameter values that
are typical of those found empirically. RT quantile and accuracy predictions were generated with
200 observations for each experimental condition and correlations were calculated between the five
RT quantiles (0.1, 0.3, 0.5, 0.7, and 0.9) and drift rate, boundary separation, and the nondecision com-
ponent. These were then averaged over experimental conditions in each experiment.

First, consider the drift rate correlations. When there is no across trial variability in any of the com-
ponents of processing, and no across subject variability in boundary separation or the nondecision
component, the model predicts a shallow U-shaped function. The correlation is negative for the 0.1
and 0.3 quantiles, more negative for the 0.5 and 0.7 quantiles, and less negative for the 0.9 quantile.
The model predicts the U-shaped function because of a complicated interaction between differences in
the RT quantiles as a function of drift rate and variability in the RT quantiles (see Ratcliff et al., 2008).

The assumptions that there is no across trial variability and that there is no across subject variabil-
ity in boundary separation or the nondecision component are not realistic. When across trial variabil-
ity in the model parameters is added, again using values typical of fits to earlier data (values of g, sz,
and st), there is little change in the pattern of correlations. However, when across subject variability in
boundary separation and the nondecision component are added, again using values typical of earlier
studies, the pattern of correlations between drift rate and the RT quantiles changes from the U-shaped
function to the worst performance rule. The correlation between drift rate (IQ) and quantiles increases
from the 0.1 to the 0.9 quantile.

This change from a shallow U-shaped function to an almost linear function is straightforward to
explain. Suppose that there are across subject differences only in the nondecision component. Differ-
ences in RT quantiles as a function of drift rate are smaller for the faster quantiles than the slower
quantiles. If the nondecision component varies randomly across subjects, then all of the quantile
RTs are perturbed by the same amount. As a result, the small differences in the 0.1 quantiles as a
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function of drift rate become obscured more than the higher quantiles. Thus the correlation between
faster responses (lower quantile RTs) and drift rate is reduced relative to the correlation between
slower responses (higher quantiles). This same result also holds when there is variability across sub-
jects in boundary separation.

For the correlation between boundary separation and quantiles, the pattern is similar to the pat-
tern for drift rates but with the opposite sign. Without across subject variability in the nondecision
component, the function decreases slightly from a high value of correlation to slightly lower value.
When across subject variability in the nondecision component and drift rate are added, the correla-
tions between RT quantiles and boundary separation increase from the lower to the higher
quantiles.

The pattern for the nondecision component is different. The correlations between the RT quan-
tiles and the nondecision component are positive, but they decrease from the lower to the higher
quantiles (Ratcliff et al., 2008). Differences in Ter across subjects induce shifts in the whole RT dis-
tribution. Because the 0.1 quantile RTs are less variable than the 0.9 quantile RTs, differences in
the 0.1 quantiles are more reliable than differences in the 0.9 quantiles and so the correlations de-
crease over quantiles.

In sum, the model can explain both U-shaped and linear functions and it can do this for drift rate,
boundary separation, and the nondecision component. Whether the functions for real data are more
U-shaped or more like the worst performance rule depends on how much variability there is across
subjects in boundary separation and the nondecision component relative to variability in drift rate.
This can be answered by generating predictions using the model parameters derived from fits to
data.

7.1. Experimental data

Given that the model fits the data well, then the best-fitting parameter values can be used to gen-
erate quantile RTs for individual subjects which then can be used to produce predicted shapes for the
functions relating correlations to RT quantiles. Fig. 10 shows the worst performance rule functions
from the data and Fig. 11 shows the model’s predictions for them.

Fig. 10 shows the functions for the three tasks and the three age groups. Correlations were com-
puted for each condition and then averaged over the conditions. Just as for Fig. 2, only the conditions
for which performance was above chance were included (six conditions for numerosity discrimination
and four each for recognition memory and lexical decision).

For all the tasks and all the age groups, the correlations with boundary separation were positive
and increasing with RT quantiles, and the correlations with the nondecision component were positive
and decreasing with RT quantiles.

In the data (Table 5), IQ and drift rate were positively correlated for lexical decision and recognition
memory. Consequently, their correlation-RT quantile functions should track each other, and Fig. 10
shows that they did. For the numerosity task, IQ and drift rate were not strongly correlated and
Fig. 10 reflects this: the correlation-RT quantile functions for IQ and drift rate did not always show
the same shapes and the correlations of IQ with RT quantiles were close to zero.

For neither drift rate nor IQ did the data for recognition and lexical decision unequivocally show the
worst performance rule. Instead, the correlations with RT quantiles were negative and either they de-
creased with increasing quantiles or they were shallowly U-shaped (although for IQ, many of the cor-
relations were close to zero).

Fig. 11 shows the same plots as Fig. 10 but for the values predicted by the model from the param-
eters that best fit the data. The model predictions match the data closely, which means that the failure
to find strong or consistent evidence for the worst performance rule for IQ is a property of both the
model (based on parameters from fits to data) and the data.

The results from this study show that the worst performance rule is by no means universal. The
results that most nearly conformed to the worst performance rule were obtained in the recognition
memory and lexical decision tasks where IQ effects were large, RTs were long, and accuracy was rel-
atively high (especially for 60–74 and 75–90 year olds). Despite this, there was no significant consis-
tent evidence to support the rule.
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8. General discussion

In this study, we examined the effects of age and IQ on performance in three two-choice tasks.
Numerosity discrimination, which requires little perceptual or memory load, was used as a baseline.
The other two tasks were lexical decision and recognition memory. In previous studies (RTM), the
range of IQs was restricted because older subjects’ IQs were matched to college-age subjects’. Here,
IQ ranged from 83 to 146. Also, the numbers of subjects in the age groups (45 college students,
forty-three 60–74 year olds, and forty-two 75–90 year olds) were reasonably large. In the next para-
graphs, we first review the findings in this study and then relate the results to the wider literature.

The data were interpreted in terms of Ratcliff’s diffusion model. The model explained all of the
data: accuracy, correct and error RT quantiles (i.e., RT distributions), and the relative speeds of correct
and error responses, for each task, experimental condition, age group, and level of IQ individually for
the 130 subjects. For all three tasks, there were several levels of difficulty (e.g., number of asterisks for
numerosity discrimination, word frequency for recognition memory and lexical decision). As would be
expected, increases in difficulty led to decreases in accuracy and increases in RTs. In the model, drift
rate represents the quality of the evidence on which a decision is based and so drift rate should vary
with difficulty. Across levels of difficulty, the model fit the data, i.e., accuracy and RT distributions,
well, with only the single parameter, drift rate, varying. There were only a few systematic deviations
between theory and data (Figs. 3–5).

We note that the diffusion model explained the data well with only a single session of data per task
(45 min of performance). This is impressive because it is rare for computational models in cognitive
psychology to provide reliable estimates of individual differences from only a single session on a single
task.

As a function of age, RTs slowed considerably but the decline in accuracy was minimal for all three
tasks. The model explains the patterns of data for age as follows: older subjects slowed because they

Fig. 10. Correlations between the empirical quantile RTs and diffusion model parameters and empirical quantile RTs and IQ for
the three subject groups and three tasks. a = boundary separation, T = nondecision component, v = drift rate, and I = IQ.
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set wider boundaries and their nondecision component was longer. Accuracy declined only minimally
because drift rate declined only minimally. The finding that drift rate does not noticeably decline with
age is notable and replicates previous findings (RTM). In particular, the results for the 75–90 year old
group replicated results from the Ratcliff et al. (2007) experiments for this age group.

For lower compared to higher IQ subjects, RTs were generally longer and accuracy was lower for
the lexical decision and recognition memory tasks, but less so for the baseline, numerosity judgment
task. In the diffusion model analyses, lower IQ subjects were slower and less accurate than higher IQ
subjects because the quality of evidence on which their decisions were based, drift rate, was poorer.
The magnitude of the difference in drift rates between lower and higher IQ subjects was large, espe-
cially for lexical decision and recognition. In contrast, there was no significant effect of IQ on boundary
separation or the nondecision component.

It might be thought that components of processing would show more variability across trials for old-
er than younger subjects, or lower than higher IQ subjects. For instance, older subjects might have been
more variable in drift rates or starting point from trial to trial. However, this was not the case. None of
the components of processing varied across trials more for the older groups than the young group or
more for the lower than the higher IQ groups. The only two significant variability effects were first, var-
iability in drift rate across trials decreased (not increased) with age for numerosity discrimination, and
second, the range of starting points across trials was larger, not smaller, for the college-age subjects
compared to the 60–74 year olds and 75–90 year olds for recognition memory and lexical decision.

A central claim of the diffusion model is that the three main components of processing tap different
aspects of decision making. This suggests that, within a task, it is possible for drift rate, boundary sep-
aration, and the nondecision component not to correlate with each other (in the absence of other fac-
tors that might affect more than one component), and this is the result we obtained. The result means
that one of the components cannot be predicted from another. For example, a subject’s boundary set-
tings do not predict the duration of the nondecision component or the quality of the evidence that en-
ters the decision process.

Fig. 11. Correlations between the predicted quantile RTs and diffusion model parameters and predicted quantile RTs and IQ for
the three subject groups and three tasks. a = boundary separation, T = nondecision component, v = drift rate, and I = IQ.
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In the model, drift rates are the main determinant of accuracy. Accordingly, we found that, within
each task, drift rate and accuracy were positively correlated. Likewise, boundary separation and the
nondecision component were positively correlated with RT. Furthermore, for each of the three com-
ponents, the values were correlated across tasks. For example, if a subject had a high drift rate on
one task, then she or he also had a high drift rate on the other tasks. Structural equation modeling sup-
ported this pattern of relationships across tasks. Common factors among the model parameters (i.e., a
single value of boundary separation, a single value for the nondecision component, and a single value
for drift rate for a subject across all three tasks) account for a large proportion of the individual differ-
ences within each age group. The results also show that the common drift rate factor explains a large
proportion of the variance across subjects in the two IQ measures, matrix reasoning and vocabulary.
These results are consistent with the results of Schmiedek et al. (2007) who showed that common fac-
tors from several working memory tasks were related to drift rates in eight choice RT tasks.

The worst performance rule (Coyle, 2003) is the finding that IQ is more strongly correlated with
slow than fast responses. We obtained this result for lexical decision and recognition memory, but
not the numerosity task, and only for the two older groups. This suggests that the worst performance
rule is less universal than might be deduced from previous literature (see Salthouse, 1998).

Interactions between IQ and speed of processing have a long history of inquiry. For example,
Woodworth (1938) argued that the correlation between IQ and the speed of performing a task is low
(varying from 0 to 0.35). The majority of studies has found correlations in the same range as Woodworth,
low to moderately negative between IQ and RT (e.g., Deary, Der, & Ford, 2001; Detterman, 1987; Sheppard
& Vernon, 2008). Our results also show moderately weak relationships between IQ and RTs.

With the diffusion model analysis, we can explain the weak relationships. Within a task, drift rate
varies across levels of difficulty and, as difficulty increases, responses become slower. Thus, averaging
over subjects, RT varies with drift rate as in Fig. 3. We would then expect that, because drift rate cor-
relates with IQ, IQ and speed would be correlated at least moderately strongly. However, this is a cor-
relation across subjects between the average drift rate for a subject and the IQ of the subject. The
correlation is low because boundary separation and the duration of the nondecision component vary
across subjects, which produces variability in RTs that is unrelated to drift rate (see also Ratcliff et al.,
2008 for a similar explanation of the worst performance rule).

There have been two different approaches to measuring speed of processing in the aging literature.
One is to examine performance on one or a small number of fairly standard two-choice tasks (e.g.,
Cerella, 1994; Fisk & Fisher, 1994; Myerson, Wagstaff, & Hale, 1994; Myerson et al., 1992; Perfect,
1994). The other is to use several different kinds of tasks in order to average out the idiosyncrasies that
might be tied to any one task. The measures of speed from each task are then taken together as
representative of an overall measure of speed (e.g., Ball et al., 2002; Bowles & Salthouse, 2008;
Lindenberger & Baltes, 1997; Little et al., 1999; Oberauer et al., 2003; Salthouse, 1996; Tucker-Drob
& Salthouse, 2008).

For the first approach to speed of processing, the RTM experiments and the experiment in this arti-
cle examine the components of processing that are affected by age in tasks that require fast, two-
choice decisions. Speed is measured in the same way for all of the experiments, specifically, the RT
for a decision. The main result has been that the slow responses of older subjects are due to the more
conservative decision criteria that they adopt and their longer nondecision times.

In the second approach, when researchers use a variety of tasks to measure speed, the standard
two-choice task might be one of them but others can be quite different. For example, in the digit-sym-
bol task, a list of mappings between symbols and digits is displayed on a PC monitor throughout a ser-
ies of tests. For each test, another digit-symbol pair is displayed and subjects respond according to
whether it is the same or different than one of the pairs in the list. In this task, and others like it, speed
is measured by the number of test items a subject can do in a certain amount of time (e.g., 40 s).
Another, quite different, measure is the minimum stimulus duration at which subjects can attain
75% correct performance under various levels of cognitive demand, with demand implemented by
adding distractor stimuli or a concurrent task (e.g., Ball et al., 2002; Salthouse, 1996).

The digit-symbol and related tasks are likely amenable to theoretical analyses by models such as
the diffusion model because accuracy and RT can be measured for ‘‘same” and ‘‘different” stimuli,
as in other two-choice tasks. In contrast, the stimulus duration that provides enough evidence to
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produce, say, 75% accuracy, is a function of drift rate, much more than boundary separation. This is
logically separate from decision time in two-choice tasks, which is a function of the other two com-
ponents of processing, boundary separation and the nondecision component, as well as drift rate
(see Ratcliff et al., 2003; Thapar et al., 2003). In future research, it will be important to determine
whether these different measures are strongly correlated across subjects when analyzed in a modeling
framework.

Often in past studies, variability in RTs across subjects has been greater for older individuals than
younger individuals (Hale, Myerson, Smith, & Poon, 1988; Hultsch, MacDonald, & Dixon, 2002;
Myerson & Hale, 1993; Myerson, Robertson, & Hale, 2007; Robertson, Myerson, & Hale, 2006;
Williams, Hultsch, Strauss, Hunter, & Tannock, 2005). For example, in the numerosity discrimination
task described here, the SD’s across subjects in mean correct RT are 145 ms, 264 ms, and 319 ms for
college age, 60–74 year olds, and 75–90 year olds, respectively. The diffusion model explains this in
the following way (Ratcliff, Spieler, & McKoon, 2000, Fig. 6): in general, boundary separation is smaller
and less variable for younger than older subjects. The larger separation for older subjects leads to a
larger range of mean RTs across subjects. Although it has been argued that the increased variability
for older subjects’ RTs is a statistical artifact (because SDs increase with mean RTs), the diffusion mod-
el provides an explanation for the finding. Of course, whether the explanation is correct for a particular
data set requires fitting the model to the data and evaluating its goodness-of-fit.

The results in the RTM experiments and the experiment reported here show that older subjects
adopt more conservative decision criteria than young subjects. Starns and Ratcliff (in press) investi-
gated the aspects of performance that the younger compared to older subjects might be trying to opti-
mize with their decision criteria settings. Starns and Ratcliff defined optimality in terms of ‘‘reward
rate” (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006), where reward rate (the term comes from
the animal literature) is the number of responses that are correct per unit time. It is clear from the
earlier RTM studies that subjects adjust their boundary settings to conform to speed instructions or
accuracy instructions; they can trade accuracy for speed or speed for accuracy. Starns and Ratcliff
found that young subjects often set their boundaries at values that give close to optimal performance,
aiming for the most correct responses per unit time. In contrast, older subjects set their boundaries to
obtain close to the maximum accuracy that could be obtained if the boundaries were set very wide
apart. The actual boundary values were set at a point that made accuracy within a percent or two
of this maximum. In other words, they do not set their boundaries to maximize the number correct
per unit time, rather, they set them wide enough so as not to make errors that they could avoid (if they
adopted narrower settings). This provides a further part of the explanation for slowing with age.

Our results speak to the cognitive reserve hypothesis. This is the hypothesis that factors such as
educational attainment, intellectual ability, and/or socioeconomic status play a protective role to mit-
igate the effects of aging on cognitive function (Satz, 1993; Stern, 2002; Stern, Albert, Tang, & Tsai,
1999). A number of studies have demonstrated that these factors are associated with slower rates
of cognitive decline in normal aging (e.g., Albert et al., 1995; Butler, Ashford, & Snowdon, 1996; Evans,
Beckett, Albert, et al., 1993). However, we did not find this trend. In the diffusion model, variations in
cognitive reserve would be implemented as variations in drift rate. Subjects with more cognitive re-
serve (higher IQ in our study) should have larger values of drift rate; our results show that they do.
But the differences in drift rates between higher and lower IQ subjects were not affected by age. Drift
rates declined little with age, but about as much for the higher IQ subjects as for the lower IQ subjects.
This lack of differential decline in drift rates is consistent with work by Lindenberger and Baltes
(1997), Rabbitt, Chetwynd, and McInnes (2003), and Singer, Verhaeghen, Ghisletta, Lindenberger, and
Baltes (2003) who found little differential decline as a function of ability (but see Deary, MacLeannan,
& Starr, 1998, who did find evidence for differential age-related declines as a function of ability). Our
results are also consistent with research investigating the effects of education on age-related cognitive
decline where decreases in cognitive abilities are as large for highly educated subjects as low educated
subjects (Christensen et al., 2007; Tucker-Drob, Johnson, & Jones, 2009; Van Dijk, Van Gerven, Van
Boxtel, Van der Elst, & Jolles, 2008; Van Gerven, Meijer, & Jolles, 2007).

In sum, the diffusion model analysis provides a somewhat different view than some earlier views of
the effects of age and IQ on speed of processing. It separates components of processing from each other
and it specifies dissociations between the components, age, and IQ for the three tasks in this
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experiment. IQ affected drift rate whereas age affected boundary separation and the nondecision com-
ponent. In other work (Ratcliff et al. in press), we have applied the diffusion model to understand age
and IQ effects on associative recognition and in item recognition (the task used here) and compared
the analyses to the effects of age and IQ on cued and free recall performance. IQ affects both recogni-
tion tasks in the same way as here. As this modeling approach begins to address the wider domain that
explores general abilities, we will begin to see alternative interpretations begin to emerge as well as
confirmation of existing views.
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