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Children (n = 130; M,g. = 8.51-15.68 years) and college-aged adults (n = 72; M,z = 20.50 years) completed
numerosity discrimination and lexical decision tasks. Children produced longer response times (RTs) than
adults. R. Ratcliff's (1978) diffusion model, which divides processing into components (e.g., quality of
evidence, decision criteria settings, nondecision time), was fit to the accuracy and RT distribution data. Differ-
ences in all components were responsible for slowing in children in these tasks. Children extract lower quality
evidence than college-aged adults, unlike older adults who extract a similar quality of evidence as college-
aged adults. Thus, processing components responsible for changes in RTs at the beginning of the life span are
somewhat different from those responsible for changes occurring with healthy aging.

Across a wide range of cognitive tasks, children’s
responses are consistently slower than those of
adults. Whether mentally rotating an alphanumeric
character or a flag (Hale, 1990; Kail, 1986), making
a same—different judgment (Bisanz, Danner, &
Resnick, 1979), judging the direction of an arrow
(Hale, 1990), detecting an auditory tone (Manis,
Keating, & Morrison, 1980), or just visually fixating
on a light (Luna, Garver, Urban, Lazar, & Sweeney,
2004), response times (RTs) decrease from early
childhood to adulthood. A major question is
whether these RTs decrease due to the maturation
of some central limiting mechanism (Kail, 1988,
1991; Luna et al., 2004), due to skill transfer (Stigler,
Nusbaum, & Chalip, 1988), or due to factors such
as semantic knowledge and strategy use that are
correlated with age (Chi, 1977; Roth, 1983).

To address these issues, researchers have sought
a common metric for measuring relative differences
in speed across highly diverse tasks, with most
investigators using m, the slope of the linear regres-
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sion function in which younger subjects’ responses
are plotted against older subjects’ responses (Brin-
ley, 1965; Hale, 1990; Kail, 1991, 1986; Luna et al,,
2004). The slope of this ““Brinley function” is attrac-
tive because it appears to provide a precise quanti-
fication of age differences from early childhood to
late adulthood, is highly consistent across tasks,
and allows the differentiation of developmental
functions from practice functions. For example, in
his review of 72 published studies, Kail (1991)
found that children’s and adolescents’ RTs
increased linearly with adults” RTs in correspond-
ing experimental conditions (R”s ranged from .91 to
.99), and the slope of the Brinley function declined
exponentially, with 3- to 4-year-olds’ responses 3.1
times slower than college students, 7-year-olds” 2.4
times slower, 10-year-olds” 1.8 times slower, and
14-year-olds’ 1.3 times slower.

However, recent work in cognitive aging has
shed new light on the function’s traditional inter-
pretation as “the rate for processing the informa-
tion load” (Jensen, 2006, p. 82). As with children,
older adults consistently perform more slowly than
college-aged adults, and RTs of older and college-
aged adults show a linear relation when plotted
against one another (e.g., Myerson, Ferraro, Hale, &
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Lima, 1992). Within the framework of evidence
accumulation models such as the diffusion model,
Ratcliff and colleagues (Ratcliff, Spieler, & McKoon,
2000; Ratcliff, Thapar, Gomez, & McKoon, 2004;
Ratcliff, Thapar, & McKoon, 2001; Thapar, Ratcliff,
& McKoon, 2003) showed that the Brinley plot
slope could be explained by more conservative
decision criteria for older relative to younger partic-
ipants rather than reduced evidence during the
decision.

The diffusion model (Figure 1, top panel) repre-
sents decision making as a noisy accumulation of
evidence over time. It divides the decision process
into several components, including the quality of
information extracted from stimuli (the drift rate,
v); the criteria used to make a decision (0 and a,
starting at z); nondecision time including encoding,
memory access, and response execution (Te,); and
estimates of the trial-to-trial variability in these
components of processing. These components
together produce traditional measures of process-
ing speed, as well as predictions for accuracy and
RT distributions for correct and error responses.
The model has been found to offer an accurate

Correct RT Distribution

“A” Decision Criterion

Correct
esponse

Evidence

Time —»

Error RT Distribution B” Decision Criterion
/V1 Vo \2 Vo
a v _ /
ART Young
ART Young
b4 Z|
Vi v
a / /vz a X V2
ART Older ART Older
z
Z|

Lower Drift Rates, Same Boundaries Same Drift Rates, Wider Boundaries

Figure 1. An illustration of the diffusion model.

Note. Parameters of the decision process are shown in the bottom
panel: a = boundary separation, z = starting point, and v = drift
rate. The bottom panel illustrates two different ways that young
and older participants might differ in processing, yet produce
the same difference in reaction times (RTs) between two
conditions. The left-hand side shows an overall decrease in drift
rates with the difference in drift rates held constant (although
this distance could also increase). The right-hand side shows a
larger boundary separation for older relative to college-aged
adults.

explanation of accuracy and RT data when applied
to a wide variety of perceptual and memory tasks,
and populations that include aphasics, depressed
and anxious participants, and participants under
the effects of sleep deprivation or reduced blood
sugar (Geddes et al., 2010; Ratcliff, Perea, Colan-
gelo, & Buchanan, 2004; Ratcliff & Van Dongen,
2009; White, Ratcliff, Vasey, & McKoon, 2010).

Within this framework, the slope of the Brinley
plot is a measurement of relative spread in RTs
across conditions that can come about in different
ways. Figure 1 shows two such scenarios. The left
side shows the same distance between the starting
point and the decision boundary, but lower drift
rates for older relative to young adults. The right
side shows the same drift rates for older and young
adults, but with a greater starting point to bound-
ary distance for older adults. In both cases, older
adults have a larger difference in mean RTs
between the two conditions. In addition, for the
lower drift-rate case (left side), there would be a
substantial difference in accuracy between the two
conditions (e.g., Thapar et al., 2003), but in the
equal drift-rate case (right side), this difference
would be much smaller, with older adults perform-
ing only a few percentage points better because
they allow more time for evidence accumulation
(Ratcliff et al., 2001).

This reappraisal of the Brinley function has a
number of implications for cognitive development.
First, it means that the developmental patterns
revealed by Brinley functions provide only a mini-
mal constraint on explanations of age-related differ-
ences in RTs (see also Fisher & Glaser, 1996).
Second, it means that the target for theories of cog-
nitive development must be an understanding of
the cognitive mechanisms underlying both accuracy
and the entire RT distributions for correct and error
responses for a cognitive task, not just the mean
correct RTs that are plotted in Brinley functions
(see also Siegler, 1987). Once the mechanisms are
understood, it is then possible to examine how
these mechanisms might change with age.

The diffusion model has been applied previously
to data from older and younger adults for both
tasks described in this article. For the numerosity
discrimination task, Ratcliff et al. (2001; see also
Ratcliff, Thapar, & McKoon, 2010) used Ratcliff’s
diffusion model (see Ratcliff, 1978; Ratcliff, Van
Zandt, & McKoon, 1999) to model data from two
experiments with college-aged adults and 60- to 74-
year-old adults. Participants were instructed to
decide whether the number of asterisks on a com-
puter screen was “large’” or “small” (Experiment 1)



or whether the distance between two dots was
“large” or ““small” (Experiment 2), and responses
and latencies were collected. Results showed that
only some aspects of the response process were
affected by age; namely, there was a 50-ms slow-
down in the nondecision component of the RT, and
the older adults adopted higher (more conserva-
tive) decision criteria. Critically, older adults did
not show a decrease in the drift rate, the quality of
evidence extracted from the arrays of asterisks or
pairs of dots. Thus, although older adults did show
slower (and more variable) RTs across conditions,
there is no evidence that a deficit in central process-
ing abilities is to blame. In fact, when both age
groups were specifically encouraged to adopt a less
conservative response style (i.e., when speed rather
than accuracy was stressed in the instructions), the
difference in RTs between the older and younger
participants decreased. In a lexical decision task,
where letter strings were presented and partici-
pants had to respond “word” or ‘“nonword,”
Ratcliff and colleagues (Ratcliff, Perea, et al. 2004;
Ratcliff, Thapar, et al. 2004) also found an effect of
age on the nondecision component and on bound-
ary setting, but not an effect of age on the drift rate.

Applications of the diffusion model to data from
older and young adults have thus posed serious
challenges to theories of cognitive aging that pro-
pose that a decline in mental processing speed is
responsible for the slowdown seen in RTs. In this
article, we applied the diffusion model to children’s
data for the first time with three goals in mind.
First, we wished to see whether the diffusion model
could adequately fit children’s speeded response
data. Second, we wanted to determine which com-
ponents of the decision process are responsible for
the widely reported decreases in RTs associated
with development. Third, we address the possibility
that the same decision components are responsible
for slowing on both ends of the developmental U-
shaped curve. As Cerella and Hale (1994) comment
in their review, “The parallel between [the] conclu-
sions on children, and those drawn earlier on
elderly adults, is striking. They suggest that human
cognition can be regarded quite generally as a rate-
limited process, and that both maturation and
senescence can be characterized as a transformation
on processing rate” (p. 127). Given the long-
standing interest in this possibility—it has been
described as “one of the main questions for empiri-
cal inquiry” (Jensen, 2006, p. 97)—we wanted to
know whether children are slower than young
adults because they are worse at extracting informa-
tion from stimuli, or whether, like the older adults
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in Ratcliff and colleagues (2001; Ratcliff, Perea, et al.
2004; Ratcliff, Thapar, et al. 2004), they are slower
for other reasons. In the sections that follow, we
begin with a description of the diffusion model, and
then we present two experiments. For both experi-
ments, we first report the data using traditional
methodologies, and we then follow with the diffu-
sion model’s analysis. To preview, our data suggest
that children, unlike older adults, do in fact extract
information from the stimulus (or from memory) at
a lower rate than do college-aged young adults.

Why the Diffusion Model: Limitations of Traditional
Analyses

Both of the tasks described in this article—a
numerosity discrimination and a lexical decision
task—are speeded response tasks that involve fast,
two-choice decisions about stimuli that vary along a
single dimension. Both tasks produce three depen-
dent measures: accuracy, correct RTs, and error
RTs. Researchers traditionally have focused either
on accuracy data or on correct RTs, neglecting RTs
for error responses. By excluding one or more of the
dependent measures altogether, explanations are
incomplete. Furthermore, sometimes RTs show a
deficit, but accuracy does not. In the absence of a
processing model, this can be seen as contradictory.

In the present study, we focus on the diffusion
model (Ratcliff, 1978; Ratcliff & McKoon, 2008), a
member of the class of sequential-sampling models.
It uses correct and error RT distributions as well as
accuracy information from behavioral data to
estimate the relative contributions of each of the
components involved in the task. In a speeded two-
choice decision task, participants first encode the
stimulus (e.g., build a visual representation of the
asterisks or letter string), use encoded information
to make a decision, and then make a key press.

As mentioned earlier, the actual decision process
is represented as a noisy accumulation of evidence
over time. For the numerosity discrimination task
described in Experiment 1, a large positive or nega-
tive drift rate would indicate that the encoded rep-
resentation of the asterisks is good evidence for
either a “large” or “small” number of asterisks,
respectively, whereas a smaller absolute value drift
rate would indicate that the encoded representation
provides poorer evidence. For the lexical decision
task described in Experiment 2, a high positive or
negative drift rate would indicate that the encoded
representation of the letter string was either a very
good or very poor match, respectively, to lexical
memory. Thus, if one experimental condition is
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more difficult than another (e.g., the nonwords are
pronounceable rather than random letter strings in
lexical decision), the data in this condition would
reflect a value of drift rate nearer zero. Because the
drift rate represents the evaluation of evidence, it is
the processing component that aligns most closely
with traditional ideas of central processing. How-
ever, outside of the model, it is not sufficient to
make RT predictions.

Within each trial, there is noise, or variability, in
the information accumulation process, represented
by the highly variable line in Figure 1. Thus, pro-
cesses with the same mean drift rate may reach the
same boundary at different times, producing RT
distributions, or even reach different boundaries,
thereby producing errors. In this way, the diffusion
model predicts the positively skewed RT distribu-
tions that characterize behavioral data.

The diffusion model also models differences in
participants” individual response styles, specifically
addressing speed-accuracy trade-off and response
bias. A conservative response style, which tends to
produce slower but more accurate responses, is
indexed by a large distance between the boundaries
(a—0 or a in Figure 1; see also Ratcliff et al., 2001;
Thapar etal, 2003). A liberal response style,
producing quicker but less accurate responses, is
represented with a small distance between the
boundaries (Figure 1, bottom right panel). If a
participant is biased toward one or the other
responses, this is modeled by positioning the start-
ing point (z) closer to that boundary (Ratcliff &
McKoon, 2008; Voss, Rothermund, & Voss, 2004;
Wagenmakers, Ratcliff, Gomez, & McKoon, 2008).
Eliminating effects of an individual’s response style
allows for an uncontaminated estimate of the indi-
vidual’s information accumulation from stimuli (v).

Participants are assumed not to be able to set
parameters at identical values from trial to trial. To
model this, there are also three variability parame-
ters, which represent variability in components of
processing across trials: s; is the range in T,,, s, is
the range of the starting point, and n is the stan-
dard deviation in the mean drift rate (for more on
the variability parameters, including how the vari-
ability assumption allows the model to account for
correct vs. error RT differences, see Ratcliff & Tuer-
linckx, 2002; Ratcliff & McKoon, 2008).

Experiment 1: Numerosity Discrimination

Experiment 1 used a numerosity discrimination
paradigm (e.g., Espinoza-Varas & Watson, 1994;

Lee & Janke, 1964; Ratcliff et al., 1999; Ratcliff et al.,
2001, 2010). Participants were instructed to decide
whether a display of asterisks presented on a laptop
contained a “small” or “large” number of asterisks,
and they were presented with feedback after each
trial. Responses and RTs were recorded. This task
was chosen because it is very similar to experiments
in Ratcliff et al. (2001, 2010), which allows us to
compare any differences between children and
young adults with those found between young
adults and older adults.

Method

Participants. Three groups of students partici-
pated in the asterisk task during the middle and
end of the academic year: 44 second and third
graders (M = 8.51 years, SD = 0.64; 22 females), 36
fourth and fifth graders (M = 10.24 years,
SD =0.60; 21 females), and 24 ninth and tenth
graders (M = 15.68 years, SD = 0.76; 14 females).
Students were predominantly Caucasian and were
recruited from elementary and high schools located
in middle-class neighborhoods in central Ohio and
southwestern Pennsylvania. Additionally, a com-
parison group of 31 college-aged adults partici-
pated in partial fulfillment of the requirements for
an introductory psychology class at The Ohio State
University. Although we do not have demographic
information about the specific young adults who
participated in our study, they were selected from a
subject pool that was 62% female and had a mean
age of 20.50 years (SD = 3.3).

Stimuli. White asterisks were displayed against
a black background in a 10 x 10 grid in the upper
left corner of a laptop computer monitor, subtend-
ing a visual angle of 4.30° horizontally and 7.20°
vertically. There were 30 blocks, each of which con-
tained 40 trials. For each block, the number of aster-
isks presented on a given trial was selected
randomly without replacement from a sample of
the numbers 31-70. Thus, each of the arrays in the
31-70 range was presented 30 times across each
experimental session. The display positions for the
asterisks in a given trial were selected randomly
from the 100 possible positions in the 10 x 10 char-
acter grid. For arrays that contained 31-50 asterisks,
the correct response was ‘“‘small,”” whereas for
arrays that contained 51-70 asterisks, the correct
response was “large.”” The entire session, which
consisted of 1,200 trials (i.e., 30 blocks with 40 trials
each), lasted approximately 50 min. Between each
block of trials, participants were encouraged to take
a brief rest break if desired.



Procedure. Elementary school students (Grades
2-5) were tested in small groups of two or three in
a quiet room at their school. Students were told
they were going to play a computer game in which
they would pretend they were workers at a choco-
late factory. Their task was to determine whether
each bag of chocolates (displayed on the screen)
contained a small or large amount of candy. Chil-
dren were told that the candy would look like tiny
stars (i.e., asterisks), and were then shown exam-
ples of “small” (21 asterisks) and “large” (100
asterisks) amounts of candy on a paper printout
that remained permanently displayed so that chil-
dren could reference the examples at any time.
Children were instructed to press the Z key with
their left index finger if the bags contained a small
amount of candy, to press the ? key with their right
index finger if the bags contained a large amount of
candy, and to make their best guess if they were
having difficulty in deciding.

Children were also told that if they correctly clas-
sified the bag as ““small’” or “large,” a smiley face
would appear on the screen, but if they had classified
the bag incorrectly, a frowning face would appear
(using accurate feedback, as in Ratcliff et al., 2010).
Students were instructed to earn as many smiley
faces as possible, to make their judgments as quickly
as possible, and to keep their index fingers over the
appropriate answer keys throughout the game.

High school students and college-aged adults
were given the same basic set of instructions as the
elementary school students, but they did not hear
the chocolate factory cover story. High school stu-
dents were also told that they would receive correc-
tive feedback in the form of smiley and frowning
faces, but college-aged adults received feedback in
the form of “correct’” and ‘“‘error’” messages. As
with the younger children, high school students
and adults were instructed to make their best guess
for difficult problems, to respond as quickly as pos-
sible, and to keep their index fingers over the
appropriate keys throughout the experiment.

For all age groups, a trial began with the presen-
tation of a 10 x 10 grid of asterisks. The asterisks
remained on the screen until the participant made a
judgment. After the participant indicated his or her
response, the screen was erased and feedback
appeared on the screen for 500 ms. The next trial
began 400 ms later.

Results

We present the data analyses in two parts: (a)
traditional analyses of mean RTs and accuracy, and
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(b) corresponding diffusion model parameters. We
examined RT and accuracy for correct “small” and
“large” responses and found that, for all age
groups, they did not differ from each other system-
atically. For example, the probability of responding
“small” to 31 asterisks was about the same as the
probability of responding “large” to 70 asterisks.
This allowed us to collapse the conditions for dis-
playing the data (but not fitting the model).

Accuracy and mean RT data for Experiment 1 is
reported in Figure 2. Overall, accuracy values were
well above chance across ages, suggesting that even
the youngest children (Grades 2-3) were capable of
performing the task. A mixed-design 4 x 4 ANOVA
was performed on correct mean RTs and accuracy
values, with age (Grades 2-3, Grades 4-5, Grades
9-10, and college) as the between factor and task
difficulty (14, see the note in Figure 2) as the
within factor.

Response times. For correct mean RTs, the main
effect of age was significant, F(3, 128) = 88.91,
MSE =557 x 10°, p <.001, with RTs decreasing
with age. The main effect of task difficulty was sig-
nificant as well, F(3, 384) = 112.9, MSE = 2.45 x 10°,
p < .001, with RTs increasing with difficulty. The
interaction between age and difficulty was not
significant, F < 1, MSE = 1,810, p = .586.

Accuracy. For accuracy, both main effects were
significant as well. The main effect of age was sig-
nificant, F(3, 128) = 14.34, MSE = 0.260, p < .001,
with accuracy increasing as age increased, and the
main effect of task difficulty was significant, F(3,
384) = 1632.4, MSE = 2.21, p < .001, with accuracy
decreasing as difficulty increased. The interaction
between age and difficulty also reached signifi-
cance, F(9, 384) = 4.39, MSE = 0.006, p < .001, with
task difficulty affecting the older age groups
(Grades 9-10 and college) more than the younger
age groups.

Application of the diffusion model to experimental
data. The diffusion model was fit to each individual
participant’s data, and parameter values were aver-
aged across all participants in an age group and
condition. For Experiment 1, all RTs < 300 ms and
> 3,000 ms were excluded to eliminate fast guesses
and slow outliers (about 9% of data for Grades 2-3
[40% of the eliminated data were fast guesses by
just 4 participants], 5% of the data for Grades 4-5,
2.5% of the data for Grade 9, and 1% of the data for
college-aged adults). For Experiment 2, the lexical
decision experiment, the cutoffs were the same, and
eliminated < 2% of the third graders’ data and
< 1% of the college-aged adults’ data. The model
was fit to the data by minimizing a chi-square



372 Ratcliff, Love, Thompson, and Opfer

1.0
0.9
>
S 0.8 A
2
< 0.7 - 1=College
2=9/10 Grade
0.6 4 3=4/5 Grade
4=2/3 Grade
05 i ) I I )
1100
2 1000-%/3’4
= 900 -
S 800 -
(]
= 700 A
3 1
2 600 - /
o
© 500 -
) I I )
1100
g 1000 -
= 900 -
I
— 800
o
2 700 - 1
S 600 - /
L
500
) I I )
1 2 3 4

Stimulus Grouping

Figure 2. Accuracy and mean correct and error reaction time
(RT) across participants for Experiment 1.

Note. Stimulus Group 1 collapsed “small” responses to 31-35
asterisks with “large” responses to 66-70 asterisks, Group 2
collapsed “’small” responses to 36—40 asterisks with “large”
responses to 61-65 asterisks, Group 3 collapsed “small”
responses to 41-45 asterisks with “large” responses to 56-60
asterisks, and Group 4 collapsed ““small” responses to 46-50
asterisks with “large’” responses to 51-55 asterisks.

value with a general SIMPLEX minimization rou-
tine (Nelder & Mead, 1965) that adjusts the model
parameters to find values that provide the mini-
mum chi-square value (for a full description, see
Ratcliff & Tuerlinckx, 2002). The data entered into
the minimization routine for each experimental
age/condition group were the RTs at each of the
five quantiles for correct and error responses (rep-
resenting the times at which .1, .3, .5, .7, and .9 of

the responses had terminated), the accuracy values,
and the number of observations.

The chi-square values used in the minimization
routine provide a quantitative assessment of good-
ness of fit. Goodness of fit was measured with
(K'x11) — M degrees of freedom, where K was the
number of experimental conditions (eight for
Experiment 1 and two for Experiment 2) and M
was the total number of model parameters. For
Experiment 1, mean chi-squares for each age group
are between 114 and 139 (see Table 1), just above
the critical value, 97.4 (df = 76). Mean chi-square
values for Experiment 2 range from 29 to 40, just
above the critical value of 22.4 (df = 13). However,
the just significant values of chi-square do not nec-
essarily reflect large inconsistencies in the model’s
predictions of the data (see Ratcliff, Perea, et al.
2004; Ratcliff, Thapar, et al. 2004; for a demonstra-
tion of how relatively small systematic deviations
can lead to large increases in chi-square). These fits
are comparable in quality to previous applications
of the diffusion model (e.g., Ratcliff et al., 2001,
2010). In Figure 3, quantile probability plots com-
paring actual data to theoretical fits of the diffusion
model are shown for each age group for Experi-
ment 1. The model fits the data reasonably well for
both experiments, so the parameter values can be
meaningfully interpreted.

Diffusion model parameters. Mean values and
standard deviations for the drift-rate parameters
across participants in Experiment 1 are displayed
in Table 1. Drift rates for individual participants
are plotted in Figure 4. We will focus here on the
parameters that are important for understanding
developmental differences between childhood and
young adulthood: the drift rate for each difficulty
level (v), the criterion used to make a decision (the
boundary separation [4]), and the nondecision com-
ponents (T;). We also address the variability
parameters for each.

Most notably, the drift rates at each of the four
difficulty levels did increase with age. A mixed-
design 4 x 4 ANOVA run on the drift-rate parame-
ters, with age (Grades 2-3, Grades 4-5, Grades
9-10, and college) as the between factor and diffi-
culty level as the within factor, found that the main
effect of age was significant, F(3, 128) = 33.82,
MSE = 0.661, p < .001. The main effect of difficulty
was also significant, F(3, 384) = 434.4, MSE = 1.00,
p < .001. The interaction between age and task diffi-
culty was significant as well, F(9, 384) = 23.56,
MSE = 0.0545, p < .001, with task difficulty having
a stronger effect on the drift-rate parameter among
students in Grades 9-10 and college than among
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Table 1
Mean and Standard Deviations in Diffusion Model Parameters Across Participants for Experiments 1 and 2
Expt. Age group a z Ter n S, St Yo U1 Up U3 Uy Ve xz
Numerosity 2-3 0.176 0.085 0.448 0.070 0.080 0.324 0.004 0.135 0109 0.074 0.021 0.001 138
M 4-5 0.165 0.080 0.493 0.090 0.087 0.340 0.007 0.183  0.145 0.094 0.024 -0.008 125
9-10 0.144 0.068 0422 0.157 0.073 0204 0011 0.359 0.293 0.184 0.061 -0.009 114
College 0.117 0.057 0375 0.113 0.070 0.175 0.002 0.350 0.279 0.177 0.062  0.005 139
Numerosity —2-3 0.021 0.010 0.104 0.077 0.044 0.106 0.007 0.072  0.068 0.047 0.026  0.020 28
SD 4-5 0.030 0.015 0.069 0.096 0.036 0.065 0.013 0.119 0.094 0.102 0.018 0.026 42
9-10 0.038 0.017 0.058 0.079 0.043 0.094 0.019 0.151 0.116 0.064 0.029 0.030 26
College 0.020 0.012 0.032 0.061 0.031 0.029 0.010 0.116  0.090 0.057 0.024 0.028 120
Lexical Children 0.119 0.063 0528 0.049 0.057 0246 0.049 0233 -0.234 30
M pronounceable
nonwords
Children random  0.158 0.093 0528 0.077 0.069 0.216 0.081 0.178 -0.178 29
letter nonwords
College 0.107 0.054 0385 0.074 0.048 0.154 0.034 0.360 -0.329 30
pronounceable
nonwords
College random 0.125 0.073 0425 0.138 0.050 0.159 0.078 0316 -0.317 40
letter nonwords
Lexical Children 0.015 0.012 0.054 0.044 0.027 0.060 0.088 0.064  0.054 16
SD pronounceable
nonwords
Children, random 0.034 0.021 0.055 0.051 0.040 0.087 0.153 0.048  0.072 10
letter nonwords
College 0.018 0.013 0.030 0.065 0.025 0.033 0.017 0.059  0.069 18
pronounceable
nonwords
College random 0.027 0.019 0.029 0.073 0.022 0.054 0250 0.081 0.077 20

letter nonwords

Note. a = boundary separation, z = starting point, T, = nondecision component of response time, | = standard deviation in drift across
trials, s, = range of the distribution of starting point (z), p, = proportion of contaminants, s; = range of the distribution of nondecision
times. Drift rates for numerosity task are grouped as in the caption to Figure 2 and v, is the drift criterion (drift rate for 31-35 asterisks is
minus the drift rate for 66-70 m asterisks minus v.). For lexical decision, drift rate v, is for words and v, is for nonwords. % is the chi-
square goodness-of-fit measure with critical values of 97.4, df = 76, for numerosity discrimination and 22.4, df = 13, for lexical decision.

younger students. The 4 x 1 between-factor ANO-
VAs were run to see if age had a significant effect
on any of the remaining model parameters of inter-
est. There was a significant effect of age on bound-
ary separation, a, F(3, 128) = 31.01, MSE = 0.0227,
p < .001, with boundary separation decreasing with
age. There was also a significant effect of age on the
nondecision components, T, F(3, 128) = 14.59,
MSE = 0.0808, p < .001, with the nondecision com-
ponents also decreasing as age increased.

There was also a significant effect of age on drift-
rate variability, n, F(3, 128) = 6.47, MSE = 0.0415,
p < .001, with n increasing with age, and of variabil-
ity in the nondecision component, s;, F(3, 128) =
35.15, MSE = 0.226, p < .001, with s; decreasing with
age. There was no significant effect of age on the var-
iability in starting point, s,, F(3, 128) = 1.22, MSE =
1.88 x 1072, p = .304. Overall, these results suggest

that, from childhood to early adulthood, there are
changes to all aspects of the decision process.

Discussion

Traditional analyses thus show strong effects of
age on both RT and accuracy measures of perfor-
mance. Collapsing across difficulty levels, mean
RTs decrease from 979 ms (Grades 2-3) to 956 ms
(Grades 4-5), to 748 ms (Grades 9-10), and to
604 ms (college). This speedup is accompanied by
higher accuracy. These data are consistent with the
developmental trends generally cited as evidence
for an increase in the speed of processing.

The diffusion model analysis of data from Exper-
iment 1 reveals that multiple components of the
decision process are responsible for the speedup in
RTs. Some of the age-related differences between
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Figure 3. Quantile probability plots for the three tasks for data
averaged over all subject groups.

Note. The xs are the data and the os are the predictions joined by
the lines. The five lines stacked vertically above each other are
the values predicted by the diffusion model for the .1, .3, .5, .7,
and .9 quantile reaction times (RTs) as a function of response
proportion for the conditions of the experiments.

children and adults are explained by wider bound-
ary separation, a, and longer nondecision compo-
nents, T, for children relative to adults. Younger
children have a more conservative response style,
waiting for more evidence before making a
response, and also spend more time on aspects of
the response process that are not related to decision
making, such as stimulus encoding and response
execution.

However, the large significant effect of age on
the drift-rate parameter suggests that the age dif-
ference in RTs between children and adults is also
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Figure 4. Drift rates for individual participants for Experiments 1
and 2.

Note. The plots for v, are not shown because performance is near
floor for all individuals.

partly explained by differences in the ability to
process information. More specifically, age differ-
ences in drift rate indicate that older adults extract
numerosity information that is 2.5 times higher in
quality than the information extracted by second-
and third-grade children. Interestingly, the drift-
rate parameter reaches adult-like values by Grades
9-10, although overall RTs are still slower (see
Table 1). As Figure 4 demonstrates, the entire dis-
tribution of drift rates increases with age (i.e., it is
not the case that this effect is driven only by some
participants). Thus, results from Experiment 1
suggest that children do experience a large devel-
opmental increase in their ability to process



meaningful, decision-related information in a num-
erosity discrimination task, unlike older adults who
show no change in decision-related information
(Ratcliff et al., 2001, 2010).

Experiment 2: Changes in Speed of Lexical
Decisions

Experiment 2 used a lexical decision paradigm,
where participants were instructed to decide
whether a string of letters presented visually was a
real word in English or not. The lexical decision
paradigm has been used extensively in the adult
literature, but it has not been used as often with
children due to fears that developmental differ-
ences in performance may simply reflect children’s
reduced lexical knowledge. However, a number of
standard lexical decision effects have been demon-
strated with children, suggesting that the paradigm
is more sensitive (and children’s lexical knowledge
more impressive) than is generally credited. For
instance, Betjemann and Keenan (2008) found
differences in phonological and semantic priming
between children with reading disabilities and age-
matched controls (average age: 11.5 years) using a
visual lexical decision task. Dufabeitia and Vidal-
Abarca (2008) and Acha and Perea (2008) also used
the task to find robust neighborhood and length
effects in children as young as third graders. The
lexical decision task was chosen, in part, because of
how different it is from the asterisk task; fitting
data from two very different tasks (one of which
may be especially challenging for children) pro-
vides a stringent test of the applicability of the
diffusion model to children’s data.

Experiment 2 had two conditions. In one condi-
tion, the “easy”’ condition, the nonwords consisted
of random letter strings. In the second condition, the
“hard” condition, the nonwords were pronounce-
able. The English words used were the same in both
conditions. Feedback in the form of smiley and
frowning faces was provided after each trial, and
responses and response latencies were collected.

Method

Participants. Twenty-six predominantly Cauca-
sian third graders (M = 9.29 years, SD = 0.36; 14
females) were recruited from two elementary
schools located in middle-class neighborhoods in
central Ohio to participate in the lexical decision
task. A group of 41 college-aged adults from the
same population as Experiment 1 served as a com-
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parison group. These adults participated in partial
fulfillment of the requirements of an introductory
psychology class at The Ohio State University.

Stimuli. Letter strings, constituting words or
nonwords, were displayed against a black back-
ground in the upper left corner of a laptop com-
puter. The 352 English words used in Experiment 2
were selected nonrandomly from the first 400 of
1,000 Instant Words (Fry, 2004), which lists the
most common words used in teaching children
how to read, write, and spell. Words were selected
from Fry (2004) in order to be as recognizable as
possible to third graders, and indeed children’s lex-
ical decision accuracy (above 90% overall), as well
as informal questioning after each session, suggests
that they were sufficiently well known to the chil-
dren. Words were selected nonrandomly so as to
eliminate words containing apostrophes (e.g., I'll)
and one- and two-letter words (e.g., 4, of, to, he, at,
be) in the test list. The words ranged from three to
eight letters in length. For the third graders, they
were divided randomly into two lists of 176 words,
and the lists were counterbalanced across session
order. For the college-aged adults, all 352 words
appeared in a single session. Both third graders
and young adults saw each English word exactly
one time.

Each test list comprised an equal number of
words and nonwords. For the easy condition, non-
words were random letter strings and unpro-
nounceable (e.g., xIsvrz), whereas for the hard
condition, nonwords were pronounceable in Eng-
lish, and were typically created by replacing one or
more of the vowels in a standard English word
(e.g., merch), or one or more of the consonants (e.g.,
bipper). Both types of nonwords ranged from three
to eight letters in length.

Procedure. For the convenience of classroom
teachers, students participated in two separate ses-
sions, each lasting approximately 20 min. For half
of these students (1 = 13), both sessions were in the
same condition (either easy or hard), and for the
other half, the first session was in the easy condi-
tion and the second session was in the hard condi-
tion. The young adults completed both test lists in
a single session that lasted approximately 40 min.
Twelve young adults received the easy condition,
and the remainder received the hard condition.

The third graders were tested one at a time for
two sessions in a quiet room in their school.
Instructions were the same for each session. Chil-
dren were told that words would appear on a com-
puter screen, that only some of them would be real
words in English, and that others would be words
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from a different alien language. They were told that
it was their job to determine whether the word was
a real word in English, and they were encouraged
to make their best guess if they remained uncertain.
They were also instructed to press the Z key with
their left index finger to indicate that ‘“No, the
word is not a real word in English” or the ? key
with their index finger to indicate that ““Yes, the
word is a real word in English.” The appropriate
keys were modeled by the experimenter before
each session. The children were told that if they
responded correctly, a smiley face would appear on
the screen, but that if they responded incorrectly, a
frowning face would appear instead. They were
instructed to earn as many smiley faces as possible.
Then children were encouraged to make their deci-
sion as quickly as possible and, in order to stress
this point, were told that it was better for them to
make a few mistakes than to wait for several sec-
onds before pressing a key. They were told to keep
their fingers over the correct keys to help them go
as fast as possible.

The same set of instructions was given to the col-
lege-aged young adults, except that no alien lan-
guage was mentioned. They were told they would
be seeing strings of letters on the screen, and their
task was to determine whether the strings of letters
made a real word in English. They were instructed
to use the Z and ? keys to make a response, to
respond as quickly and accurately as possible, and
to rest their fingers on the keys to facilitate this. They
were also told that they would receive corrective
feedback in the form of smiley and frowning faces.

For both age groups, the experiment began with
16 practice strings appearing one at a time in the
upper left-hand corner of the computer. The word
remained on the screen until a response was given.
Then the screen cleared for 50 ms and either a smi-
ley face (if the response was correct) or a frowning
face (if incorrect) appeared on the screen for
500 ms. Then the screen cleared once more for

Table 2
Accuracy and Mean Reaction Time (RT) for Experiment 2

50 ms before the next word appeared. For the chil-
dren, this practice was followed by eight blocks,
each consisting of 44 strings (22 words and 22 non-
words). Each session lasted approximately 20 min.
For the college-aged adults, who were given the
strings from both sessions at once, practice was fol-
lowed by 16 blocks, each consisting of 44 strings
(22 words and 22 nonwords), and the experiment
took approximately 40 min to complete. Between
each block, all participants were encouraged to take
a brief rest break if desired.

Results

As in Experiment 1, both children and college-
aged adults performed with high accuracy. In the
easy condition, with nonwords chosen from ran-
dom letter strings, children responded correctly to
91% of words and 93% of nonwords. Even in the
more difficult condition, where nonwords were
pronounceable, children responded correctly to
91% of words and 86% of nonwords (compared to
college-aged adults” 95% accuracy for words and
94% for nonwords). Given our concern that third
graders might find the nature of the lexical decision
task to be prohibitively difficult, their high accuracy
is particularly reassuring.

Accuracy and RTs. Accuracy and mean RT data
for Experiment 2 is presented in Table 2. As
described in the Procedure section, 13 children par-
ticipated in one difficulty condition (either easy or
hard), whereas the other 13 children participated
in both difficulty conditions (the easy condition for
Session 1 and the hard condition for Session 2).
Because all 13 of the students who contributed data
to both difficulty conditions began in the easy
condition and ended in the hard condition (i.e., dif-
ficulty was not counterbalanced across session
order), we performed a post hoc analysis on their
data to determine how much they improved with
practice. Paired ¢ tests revealed no significant

Word stimuli

Nonword stimuli

Correct Error Correct Error
Participants and condition Accuracy mean RT mean RT Accuracy mean RT mean RT
Children, pronounceable nonwords 0.919 856.3 971.1 0.863 1,001.4 964.8
Children, random letter string nonwords 0.911 743.9 705.4 0.926 783.4 681.6
College age, pronounceable nonwords 0.945 585.1 637.6 0.942 658.4 637.0
College age, random letter string nonwords 0.950 531.9 489.8 0.966 549.0 463.2




improvement in performance from the first session
to the second for either RT, #(12) = 0.89, p = .38, or
accuracy, £(12) = 1.3, p = .22. Because we expected
any practice effects to be, if anything, even smaller
for the participants who switched conditions after
the first session, we decided to collapse data across
sessions, and to combine the data from same-condi-
tion and different-condition participants for the
analysis. Although this means that some of the chil-
dren are contributing twice as much data as others
for a particular difficulty condition, the large
amount of data collected in each session still allows
us to produce individual diffusion model fits for all
children.

A 2x2 ANOVA was run on accuracy values
and mean RTs for words and nonwords, with age
(third grade, college) and condition (easy, difficult)
as between factors. For words, the main effect of
age on accuracy values was significant, F(1, 76) =
21.88, MSE =0.0196, p <.001, with college-aged
adults responding more accurately than third grad-
ers. The main effect of condition was not significant,
F(1,76) = 1.31, MSE = 1.18 x 1072, p = .256, and nei-
ther was the interaction between age and condition,
F(1,76) < 1.0, MSE = 8.13 x 107*, p = .345.

There was, however, a significant main effect of
condition on accuracy values for nonwords, F(1, 76) =
6.08, MSE = 0.0225, p < .05, with accuracy lower for
the pronounceable nonwords. The main effect of age
was also significant for nonwords, F(1, 76) = 26.40,
MSE = 0.0978, p < .001. The interaction between age
and condition does not reach significance, F(1, 76) =
244, MSE =9.04x107°, p=.122. Thus, traditional
analyses found only the effect of condition difficulty
in participants’ responses to nonwords.

For words, the main effect of age on mean RT
was significant, F(1, 76) = 140.4, MSE = 1.10 x 109,
p <.001, with responses faster for college-aged
adults. The main effect of condition, however, did
not quite reach significance, F(1, 76) = 3.18, MSE =
2.49 x 10, p = .079. There was no interaction between
age and condition, F(1, 76) = 1.31, MSE = 1.03 x 10%,
p = .256.

For nonwords, the pattern of RT data is different.
The main effects of both age and condition were
significant, F(1, 76) = 138.54, MSE = 1.67 x 10°, p <
.001 for age, and F(1, 76) = 19.18, MSE = 2.32 x 10°,
p <.001 for condition. Mean RTs for nonwords
were faster for college-aged adults than for third
graders, and faster for random letter strings (easy
condition) than for pronounceable nonwords (hard
condition). The interaction between age and condi-
tion barely missed significance at the .05 level,
F(1,76) =3.79, MSE = 4.58 x 10*, p = .056.
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Diffusion model parameters. As for Experiment 1,
we will only discuss the diffusion model parameter
values most responsible for RT and accuracy differ-
ences. Means and standard deviations for diffusion
model parameters across participants in Experi-
ment 2 are displayed in Table 1.

Drift-rate parameters for college-aged adults
were higher than for the third graders. A 2 x 2
ANOVA was run on the drift-rate parameters, with
age (third grade, college) and condition (easy, hard)
as between subjects factors, and found a significant
effect of age for both words, F(1, 76) =71.09,
MSE = 0.317, p < .001, and, in a separate analysis,
for nonwords, F(1, 76) = 55.48, MSE = 0.270, p <
.001. Drift-rate parameters for individual partici-
pants are plotted in Figure 4. As in Experiment 1,
the children extracted lower quality information
from the match between the stimulus and memory
than did the adults. There was also a significant
main effect of condition on the drift-rate parameter
for words, F(1, 76) = 10.03, MSE = 0.0447, p < .01,
and, in a separate analysis, for nonwords, F(1, 76) =
4.65, MSE =0.0226, p <.05. No significant inter-
action between age and condition was found for
either words or nonwords (all Fs < 2), suggesting
that our difficulty manipulation equally affected
both third graders’ and college-aged adults” ability
to extract meaningful information from the letter
strings.

A 2x2 ANOVA was also run on the other
parameters of interest, with age and condition as
between factors. There were significant main effects
of both age, F(1, 76) = 11.87, MSE = 8.10 x 107>, p <
.001, and condition, F(1, 76) = 22.41, MSE = 0.0153,
p < .001, on boundary separation, a4, with children
generally adopting more conservative (wider)
boundaries than adults, and both children and
adults adopting wider boundaries in the easy con-
dition than in the hard condition. There was no
significant interaction between age and condition,
F(1, 76) =2.83, MSE =193 x 107, p = .097. There
was also a significant main effect of age on the
nondecision components, T., F(1, 76) = 140.34,
MSE =0.263, p <.001, with the duration of this
component longer for children than adults. The
main effect of condition barely missed significance
at the .05 level, F(1, 76) = 3.42, MSE = 6.42 x 107,
p =.068, as did as the interaction between age
and condition, F(1, 76) = 3.93, MSE =737 x 107,
p = .051.

Age also had a significant main effect on our
three variability parameters of interest: drift-rate
variability, n, F(1, 76) = 16.33, MSE = 0.0602, p <
.001; variability in the starting point, s, (a measure
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of decision criterion), F(1, 76) = 4.73, MSE = 3.98 x
10_3, p < .05; and variability in the nondecision
components, s;, F(1, 76) = 26.34, MSE = 0.106, p <
.001. Children had less variability in drift rate but
more variability in starting point and nondecision
component, from trial to trial. Condition had a
significant main effect only on drift-rate variability,
n, F(@1, 76) = 9.59, MSE = 0.0353, p < .01, with the
value of n higher in the easy condition than the
hard condition, and the interaction between age
and condition had no significant effects on any of
the variability parameters (all Fs < 1.6).

Discussion

In general, these results parallel those from
Experiment 1. Third graders were a little less accu-
rate than college-aged adults, and their responses
were slower. They responded to our difficulty
manipulation (i.e., random letter string nonwords
vs. pronounceable nonwords) in a similar manner
to adults and became both slower and less accurate
on the nonwords, but not the words. In short, tradi-
tional data analyses demonstrate systematically
poorer performance for third graders than for col-
lege students.

The diffusion model analysis also mirrored that
from Experiment 1: Third graders were slower at
lexical decision than were college-aged adults
because they adopted a more conservative decision
criterion (i.e.,, required more evidence to make a
decision) and because they were slower at stimulus
encoding, memory access, and response output.
Critically, they also extracted poorer information
from the letter strings, with drift rates about 1.5
times lower (unlike older adults; Ratcliff et al.,
2001, 2010).

General Discussion

The results from Experiment 1 showed the rise in
accuracy from children to college-aged adults
(roughly increasing from 75% for participants in
Grades 2-3 to 85% for college-aged participants)
and a large decrease in mean RT (roughly falling
from 1,000 ms for participants in Grades 2-3 to
600 ms for college-aged participants). Similarly, in
the lexical decision task in Experiment 2, accuracy
values increased from 90% to 95%, and the decrease
in mean RT was from 900 to 550 ms. These results
are consistent with many others in the literature.

In applying the diffusion model to children’s
data for the first time, we had three aims: to see

whether the diffusion model could successfully
capture children’s speeded RT data, to discover
which components of the decision process are
responsible for performance differences between
children and young adults, and to compare these
components with those affected during healthy
aging. First, our results show that the diffusion
model can be extended to data from children in sec-
ond and third grades: As our fits in Figure 4 and
Table 1 demonstrate, the diffusion model was capa-
ble of fitting data from young children for both
numerosity discrimination (Experiment 1) and lexi-
cal decision (Experiment 2) tasks.

Second, drift-rate parameters, as well as nondeci-
sion and boundary separation parameters, changed
with age. Thus, all aspects of the decision process
are responsible for performance differences. To
further look at the relative contribution of each to
RT differences in Experiment 1, we first set all
diffusion model parameters to the values for the
college-aged participants and then, one at a time,
changed both the boundary separation and drift-
rate parameters to the values for the second and
third graders. Boundary separation alone changed
mean correct RT from 594 to 975 ms, and drift rate
changed mean correct RT from 594 to 644 ms.
Therefore, most of the slowing for second and third
graders versus college students was due to the chil-
dren adopting more conservative decision criteria
(e.g., 380 ms). But there were also contributions
from drift rate (50 ms) and nondecision compo-
nents (70 ms). Because increasing boundary separa-
tion increases accuracy, only the drift rate is
responsible for the lower accuracy for the second
and third graders relative to college students. For
Experiment 2, the same analysis finds a 70-ms con-
tribution of boundary separation, a 55-ms contribu-
tion of drift rate, and a 100-ms contribution of the
nondecision component. Thus, for the two tasks,
the size of the effects for the different components
of processing differs. Any simple single-process
account for the developmental changes in perfor-
mance cannot accommodate these results (cf. Kail,
1986).

Our findings also pose a problem for theories of
speed of processing that claim that the mechanisms
responsible for developmental changes in perfor-
mance and those responsible for individual differ-
ences within the same age group are separate (e.g.,
Anderson, 1992). In a recent set of studies, Ratcliff
et al. (2010) tested three different age groups (col-
lege age, 60- to 74-year-olds, and 75- to 90-year-
olds) with a range of IQ scores (83-146) on three
different tasks: the numerosity discrimination and



lexical decision tasks described previously and a
word recognition task. Ratcliff and colleagues
found an effect of age, but no effect of IQ, on the
nondecision component and the decision criterion,
and an effect of IQ, but no effect of age, on the drift
rate. This body of research reinforces the fact that
very different components of the response process
can be responsible for longer RTs. Importantly,
though, it also demonstrates that drift rate corre-
sponds well to individual differences in IQ and
developmental differences. Perhaps, this is not fatal
for Anderson’s (1992) theory, as the drift rate could
presumably encompass both information process-
ing and the strategy use that Anderson advocates.
Any further decomposition of drift rate, however,
would require detailed task-specific models (e.g.,
models that specify how numerosity judgments are
extracted from asterisks, or models of lexical pro-
cessing) as in Ratcliff (1981) and Smith and Ratcliff
(2009).

We can draw definitive conclusions, however,
regarding our third aim. Results from Experiments
1 and 2, combined with those from earlier studies
by Ratcliff and colleagues, suggest that the develop-
mental increase and subsequent slowdown of RTs
recorded at both ends of the life span do not origi-
nate from the same source. For the numerosity dis-
crimination task, children did experience a
developmental increase in their ability to process
meaningful, decision-related information. In con-
trast, the slowdown older adults experienced on
the same task (Ratcliff et al., 2001, 2010) could be
attributed to increased decision criteria and non-
decision components, but not to a developmental
decline in ability to process decision-related infor-
mation. For lexical decision, the story is simi-
lar—although it should be noted that our stimuli
were chosen to accommodate the average third gra-
der’s vocabulary and do not directly match the
words and nonwords used in Ratcliff et al. (2010).
In these tasks, we find that the quality of the infor-
mation extracted from the stimulus—the drift
rate—increases from early childhood until young
adulthood, but does not decrease with normal
aging. This set of results challenges any theory of
speed of processing across the life span that relies
on a single mechanism or set of processes to
explain both development and aging. (For some
tasks, though, there is a decrement in drift rate; see
Thapar et al., 2003, which also makes any single
process account impossible.)

Although the difference in drift rate is an impor-
tant one, there are also some notable similarities in
the response components of children and older
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adults. First, both groups were slower in the non-
decision aspects of responding than were college-
aged adults. As visual and motor development and
decline are well documented in the literature (e.g.,
Faubert, 2002; Getchell, 2006; Stelmach, Goggin, &
Amrhein, 1988), this is not surprising, although it
need not imply a change in the speed of cognitive
processing. Second, both children and older adults
adopted more conservative decision criteria than
do young adults. Unlike the drift-rate parameter
(v), which participants are generally unable to
change at will, the boundary separation parameter
(a) indicates response style, and the specific instruc-
tions given (e.g., instructions that stress either
speed or accuracy) can influence participants’
response styles quite drastically (Ratcliff et al.,
2001; Thapar et al., 2003). Thus, the adoption of
wider boundaries (i.e., a conservative decision crite-
rion) by both young children and older adults
should be considered a preference rather than an
inherent characteristic of the developing informa-
tion-processing system. Starns and Ratcliff (2010)
suggest that older adults are unwilling to make
avoidable errors (such as accidentally pressing the
wrong key) because they prioritize accuracy. That
young children behave similarly, though, suggests
that both age groups may be more self-conscious
about, or less confident in, their ability to perform a
new task well and so play it safe by adopting con-
servative speed-accuracy decision criteria.

Implications of Diffusion Model Analysis

Our analysis using the diffusion model has sev-
eral theoretical and methodological implications
regarding developmental changes in speeded
responses. Theoretically, the diffusion model analy-
sis reveals that the U-shaped decline and rise in
RTs over the life span mask a crucial difference
between children’s and older adults’ RTs, as well
as an unexpected similarity. The crucial difference
is that in these tasks, children showed lower rates
of evidence accumulation than college students,
whereas drift rates for older and college-aged
adults were quite similar. The surprising similarity
is that children—Ilike older adults—adopt much
more conservative decision criteria than college stu-
dents. This suggests that it may be possible to
greatly reduce the relative difference between chil-
dren and college-aged adults simply by providing
children with instructions that emphasize speed
and by providing adults with instructions that
emphasize accuracy. Finally, on a methodological
note, we believe that the diffusion model is useful
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for analyzing all components of the decision pro-
cess. In our view, use of the diffusion model repre-
sents an exciting direction for future research on
child development.
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