\,ﬁ;ﬁm Research Methods, Instruments, & Computers
T ee 20 () 119-128

[N BT L NN N | v

TOOLS FOR RESEARCH IN PERCEPTION
AND COGNITION

Mary Beth Rosson, Presider

A flexible programming language for generating
stimulus lists for cognitive
psychology experiments

STEVEN GREENE
(Student Award Winner for 1987)
Yale University, New Haven Connecticut
and Northwestern University, Evanston, Illinois

and

ROGER RATCLIFF and GAIL McKOON
Northwestern University, Evanston, Illinois

Listmaker, a programming language developed to simplify the production of stimulus lists for
cognitive psychology experiments, is described. The user writes a description of the experiment
in the language, and the computer program then generates stimulus lists for the experiment from
files of materials. The language allows the user to manipulate easily a wide variety of stimulus
materials (e.g., single words, sentences, or multiline stories). The language also provides simple
commands that allow even very complex randomized and counterbalanced designs to be im-
plemented. Two examples of programs written in the language are provided and explained in
detail. Finally, an interface to a real-time experimental system is described.

~ Too often, an inordinate amount of an experimenter’s
time and mental resources is spent in the mundane task
of creating stimulus lists for use in experiments. Trans-
lating the experimental design into a computer program
to generate lists for individual subjects from sets of
materials is not always a straightforward task, especially
if the design calls for complex randomizations or coun-
terbalancing. The process is one that is prone to error,
and locating the source of errors can be extremely tedious.

This research was supported by National Science Foundation (NSF)
Grant BNS 85 10361 to Roger Ratcliff, National Institute of Health Grant
HD18812 to Gail McKoon, NSF Grant BNS 85 16350 to Gail McKoon,
and a ‘‘Research Experience for Undergraduates Supplement’” to NSF
Grant BNS 85 10361 for Steven Greene. Roger Ratcliff had the initial
idea for the language and motivated 25% of the commands that were
ﬁn:flly developed. Steven Greene, who is now at Stanford University,
designed the other 75% of the commands and fully implemented the
System while an undergraduate at Yale working as a summer research
assistant at Northwestern. Gail McKoon is the primary user of the
language and helped guide the final design. Reprint requests should be
sent to Roger Ratcliff, Psychology Department, Northwestern Univer-
sity, Evanston, 1L 60208.

119

To reduce the complexity of this task, we have designed
a language to simplify and speed the development of
stimulus lists for psychological experiments. We had three
goals in designing the language: First, the language should
be flexible enough to generate stimulus lists for a wide
variety of experimental paradigms and kinds of materials.
Second, the structure of the language should allow the
design of the experiment to be expressed as directly as
possible. Third, the language should provide a convenient
interface to a real-time experimental system, such as that
described by Ratcliff, Pino, and Burns (1986).

The language, Listmaker, is similar in approach to the
EXPOSE system of Stevens, Levin, Olds, and Rumel-
hart (1977), but is considerably more extensive in its oper-
ators and, therefore, is more flexible. The EXPOSE sys-
tem consists of a collection of nine FORTRAN routines
that randomize and combine files containing experimen-
tal materials in order to generate stimulus lists. The EX-
POSE programmer uses these routines in his or her own
FORTRAN programs to simplify coding.

Listmaker, unlike EXPOSE, is a complete program-
ming language with its own syntax. The entire design of

Copyright 1988 Psychonomic Society, Inc.

120 GREENE, RATCLIFF, AND McKOON

LOAL dar SLASUIEASY . 4 1S LABURIHACST WikCi PO iias paLLoasis
the program and generates the stimulus lists for the ex-
periments. The Listmaker interpreter itself is written in
FORTRAN and runs on a Sun workstation. FORTRAN
was chosen because it is the language used by most peo-
ple in the laboratory and because of its ease of transpor-
tation to other computer systems. The Listmaker inter-
preter was written in standard FORTRAN 77, so it can
be transported to other systems with relatively little

modification.

Program Structure

The basic grouping of data in Listmaker is a “‘set.”” A
set consists of a collection of similar items; for example,
the sentences to be studied in the study phase of a
study-test paradigm may be grouped together in a set.
Each set is named with a capital letter from A to T, op-
tionally followed by a single digit (e.g., A, B6, R7). List-
maker also provides for ‘‘index sets,”” which are similar
to sets except that they contain numeric data and can be
used in numeric calculations. Index sets are often used
to keep track of the locations in one set into which items
drawn from another set were placed. This allows related
materials in different sets to be kept together. (See ex-
amples below.) Each index set is named with a capital
letter from U to Z, optionally followed by a single digit
(e.g., Ul, X2). Individual items in a set are identified by
appending a subscript to the set name [e.g., A(l),
B6(102), X2(17)]. Finally, Listmaker also allows simple
scalar variables, each named by a single lowercase let-
ter. They are used for such purposes as counters in loops
or to identify the current condition number in a design
with multiple conditions.

A Listmaker program generally consists of two parts.
The first part reads in the stimulus materials and organizes
them into sets as required by the experimental design. A
variety of set operators and control structures are provided
to simplify this part of the program. The second part of
a Listmaker program consists of one or more output
blocks. An output block contains an explicit representa-
tion of the stimulus list it will generate. The format of
that representation is described below. (The details of the
language are included in the Appendix.)

Example 1: A Completely Random Design

In this section, we describe the development of a
hypothetical priming experiment (see Ratcliff & McKoon,
1978) using Listmaker. Suppose we want a subject to read
32 sentences presented in random order. One word in each
sentence is assigned to be the rarget; another is the prime.
After reading all the sentences, the subject is presented
with a test list of 64 words for recognition. The test list
consists of 8 prime-target pairs from the same sentence
(16 words), targets from 8 other sentences the subject read
preceded by primes from different sentences (16 words),
and 32 negative fillers from a list of words not in any of
the sentences. Sentences are assigned to conditions ran-
domly, so this is a design with no counterbalancing.

tences, T for the target words, P for the primes, anzie?q
for the negative fillers. Assume that the lists are arrangeq’
in the disk file “EXPIMATERIALS, " with each sentepg,
followed by its target and prime. The negative fillers g -
in a list at the end of the file. The Listmaker lines thy

read in the data are as follows:

dim S(32),T(32),P(32),N(32)
open9:EXPIMATERIALS
(do i=1,32

read9:S(i), T(),P()

next i)

read9:N

close9

The first line says that there are to be 32 items in each
set. The next line opens the disk file and assigns it the
number 9, which is used in the read statement that fol-
lows. The do-loop reads 32 items into each set S, T, and
P. Since no subset specifier is included in the read state-
ment for set N, the entire size of the set is read in auto-
matically. The last line closes the input file.

Once the sets are defined, targets and primes need to
be chosen from 8 of those sentences to be used for the
same-sentence priming condition in the test line:

Ti=8T>X
P1=P<X

The first line says that set T1 gets 8 items chosen at ran-
dom without replacement from set T. The ““?”” operator
performs a draw without replacement; no item drawn from
T will be drawn again until the set is explicitly reset us-
ing the ‘@’ command (described below). Note that no
“‘dim”’ statement is needed for T1; it is automatically as-
sumed to be the size generated by the draw operation,
in this case, 8. The *“ > X"’ appended to the first line says
that the index set X stores the locations of the items in
T that were put into T1. The next line says that set Pl
gets those items from P that are in the positions stored
in X. Thus, P1 contains the primes that go with the items
in T1: Prime P1(1) is the prime for target T1(1), and 50 -
on.

Next, 8 targets and 8 primes are needed from other sen-
tences. This is done as follows:

T2=87T
T3=167T>Y
P3=P<Y
P2=87P3

The first line above chooses 8 more items at random from
set T. These will be used as targets in the test list. The
next three lines get 8 primes from the 16 as—yet-unused
sentences. The second line puts the remaining 16 targefg.
into set T3 and stores the locations from which they wer'

drawn in index set Y. The third line puts the correspOﬂd'
ing primes in set P3, and the last line draws 8 of thos¢
at random and puts them in set P2.

the SSIMENCES, {1 akd i COM@In e Sipn
pairs from the same sentences, T2 and P2 contain the eight
target-prime pairs from different sentences, and N con-
tains the negative fillers. We are now ready to begin
generating stimulus lists. However, before we do, we
must specify the file name to which the output should be
written. If the lists are to be saved in a file called

“EXPLIST,”’ the following command is used:
output: EXPLIST -

Next, the first output block, that for the study list of
32 sentences, can be created as follows:

[list=32
(do i=1,32
:S@) - *
next i)

1

An output block always starts with a left bracket and
ends with a right bracket. Following the left bracket is
a statement specifying how many items will be in the out-
put list generated by the block. Then we have a simple
do-loop. Inside this do-loop is an output line descriptor.
This line consists of two parts, delimited by colons. The
part between the two colons says that at this position in
the output list, put one item from set S. The part after
the second colon identifies where in the output list this
item can go. In this case, it can go anywhere, so we sim-
ply write ““*.”’

Next, an output block is needed for the test list. The
test list is constructed according to the following rule:
Words are placed randomly in the list, with the restric-
tion that a target may not appear in one of the first three
‘positions. A target is always immediately preceded by its
prime. The output block will look like this:

migulpiae

[list=64

(do i=1,8
:T1(@) : *a,a>3
P13) : a—1
:T2(31) : *b,b>3
:P23i) : b—-1
next i)

(do i=1,32
NG @ *

next i)

1

The first do-loop puts the targets in place. The first line
of the do-loop puts an item from T1 at a random loca-
tion, assigns that location to the variable a, and assures
that a is greater than 3. The following line puts the prime
at the location immediately preceding the location of the
target. The next two lines repeat the procedure for the
other prime-target pairs. The second do-loop assigns each
of the negative fillers to a random location in the list.

A Listmaker program has now been written to gener-
ate a stimulus list that is fully randomized, subject to cer-

FLEXIBLE PROGRAMMING LANGUAGE 121

[PEVR N PR EE O RE T 08 U B T R PT pe L - .
many different lists, each subject to the same constraints.
In Listmaker, this is easily accomplished by placing the
relevant section of our program in a do-loop that is ex-
ecuted once for each stimulus list we want to produce.
In the example, since we want to draw a different set of
targets and primes for each list, the entire program must
be repeated following the section that reads the materials
from the disk. Therefore, the following two lines are
added immediately after the ‘“close’” statement at the end
of the input section:

(do s=1,8
@T.,P

and this line

next s)

is added as the last line of the entire program. This loop
changes the program to produce eight different random
stimulus lists from the same set of materials. The “@"’
command tells Listmaker to rerandomize the order in
which items from sets T and P will be drawn and to reset
its internal count of which items have been drawn. Thus,
all targets are available to appear in each stimulus list the
program produces.

One last change is required. For each stimulus list to
be saved in a different file, the output statement must be
modified slightly to read as follows:

output: EXPLIST&s

The *““&”’ replaces the variable that follows it (in this case,
s) by its value at run time. Thus, this program will put
one stimulus list in each of the files EXPLISTI,
EXPLIST2, on up to EXPLISTS.

Thus, we have shown how Listmaker can be used to
generate multiple stimulus lists that are fully randomized,
subject to certain restrictions. Another short example is
provided that demonstrates the ability of Listmaker to
generate multiple counterbalanced stimulus lists.

Example 2: A Counterbalanced Design

For this example, suppose we want to present a sub-
ject with 18 stories of 10 lines each to read. Each story
has three possible test sentences that are associated with
it: one clearly true, one clearly false, and one plausible
inference (see McKoon & Ratcliff, 1986). After reading
all 18 stories, each subject will be asked to verify one
of the sentences for each story. Since there are three con-
ditions and any one subject can receive only one test sen-
tence (i.e., one condition) for each story, a counter-
balanced design is required. Since there are three test con-
ditions, three groups of subjects are needed. Each group
will receive the true sentence for 6 of the stories, the false
sentence for 6 others, and the plausible inference for the
remaining 6.

As above, we begin by reading in the materials from
a disk file, in this case ““STORYMATERIALS":

122 GREENE, RATCLIFF, AND McKOON

5 Tt LR R e R R S O WS W S

(do 1=1,18
read9(F10):S3)
read9:T(i),F(i),1(i)
next i)

close9

The only new feature in the above lines is the fourth line,
which uses a special read statement. This line says to read
in 10 lines from the file for each item in set S (the sto-
ries). The next line reads 18 test sentences each into sets
T, F, and 1.

We now want to generate three counterbalanced lists
and put one in each of the files STORYLISTI,
STORYLIST2, and STORYLIST3:

(do i=1,3)
output:STORYLIST&i

The do-loop is not closed yet, as it will encompass more
of the program below.

Next, we assign the test sentences in sets A, B, and C
as appropriate for the counterbalanced design:

if i=1 then
A=T[1,6],F[7,12],1{13,18]

else

if i=2 then
A=F[1,6}1,1[7,12],T[13,18]

else

if i=3 then
A=I[1,6],T[7,12),F[13,18]

endif

Each assignment line above creates a new set, A, that con-
sists of the appropriate six items from each of sets T, F,
and I. Set A therefore contains one test sentence for each
story; which sentence is chosen for each story depends
on the counterbalancing condition.

There are two output blocks, one for the stories and
one for the test sentences:

[list=18
(do j=1,18
S - *
next j)

1 .
[list=18
(do j=1,18
A - *
next j)

1

The first output block puts each story in a random posi-
tion in the output list. The second output block does the
same for a separate list of the test sentences. Now, all
that is left is to end the initial do-loop:

next i)

Thus, using one conditional and three do-loops, we have

il s AR ugi;;;,-&,., “iy SOl S Ll il UGS 0
18 10-line stories followed by a test sentence for efcht

Using Listmaker to Generate Paper-and-Penci] Tasks

In addition to allowing researchers to manipulate stimy.
lus materials, Listmaker also provides features tg make
it easy to intermix text into stimulus lists. Using these fea.
tures, we can insert instructions to the subject in the stimy.
lus lists created by Listmaker. For example, if we had
a disk file called “‘INSTRUCT’’ containing instructiong
for the story experiment above (Example 2), adding the -
line

include INSTRUCT

after the “‘output’ statement in the program would ip.
sert the contents of that file at the beginning of the output
file generated by Listmaker. Shorter instructions to the
subject can be placed between output blocks. If, in the
story experiment, we wanted to instruct subjects to wait
for the experimenter to return after they finished reading
the stories but before they start answering the test sep-
tences, the following line could be added between the two
output blocks:

write ‘“Wait for the experimenter to return before
continuing.’’

This instruction would put the quoted text in the output
file following the last story and preceding the test sen-
tences.

Additionally, using Listmaker we can add short text
strings directly to output lines. Still using the story ex-
periment as an example, suppose we want to add a
*“True/False’’ response area for each test sentence. We
simply modify the output line, which currently reads

AG) ¢ *
to read
(A(j) “True False ok

Using this line, Listmaker will print, on the same line,
the test sentence, followed by the quoted text.

It is often necessary for the experimenter to have a scor-
ing sheet for each subject. In this example, the sheet might
contain the counterbalancing condition that the subject was
in and, for each test sentence, the item number of the sen-
tence, the position of the sentence in the output list, the
position of the corresponding story in its output list, and
the experimental condition of the sentence (True, False,
or Inference). To simplify scoring, we want the sentences
to appear on the scoring sheet in the same order in which
they appeared on the subject’s test sheet. With minor
modifications to the program, this is easily accomplished_-

Listing 1 is the Listmaker program for the story expeﬂ'<
ment. Variable i identifies the counterbalancing condition.
For any sentence, variable j identifies its item number.
An index set, X, can be used to store the item number

WARA saSoiiEagy FTOETAN 10 Wi S0y apedisaiciin

(Example 2)

dim S(18),T(18),F(18),1(18),X(18),Y(18)
open9:STORYMATERIALS
(do i=1,18
read9(F10):S(i)
read9:T(i),F(i),I()
next i)
close9
(do i=1,3
output:STORYLIST&i
include INSTRUCT
if i=1 then
A=T{1,6],F[7,121,1[13,18]
else
if i=2 then
A=F[1,6},1{7,12],T[13,18}
else
if i=3 then
A=I[1,6],T(7,12],F[13,18]
endif
[list=18
(do j=1,18
SG) = *Y()
next j)
1
write ‘“Wait for the experimenter to return
before continuing.’’
[list=18
(do j=1,18
:A(j) “True
X@=i
next j)
1
output: STORYSCORE&i
write ‘‘Counterbalancing ™’ i
(do a=1,18
=X(@)
c=j—1/6+i|3
write a “‘Item: >’ j ** Condition: ¢
‘“ Story position: ** Y(j)
next a)
next i)

False

of the sentence that is assigned to each position in the out-
put list by further modifying the output block to read as
follows:

:A(j) ““True
X(a)=j

These lines will now store in the index set X the itern num-
ber of the sentence that was assigned to each position in
the output list. Thus, if sentence three were the fifth sen-
tence in the test list, X(5) would equal 3. A similar strategy
can be used to keep track of the order of the stories in
the study list. However, in this case, given a story num-
ber, we want to be able to identify its position in the out-
put list. (This is the converse of the situation above, in
which, given a position in the output list, we want to be
able to identify the item number of the sentence in that
position.) Therefore, we need to modify the line in the
output block for the stories as follows:

7 kg

False

FLEXIBLE PROGRAMMING LANGUAGE 123

(These changes necessitate adding **X(18),Y(13)’" to the
“dim”’ statement at the beginning of the program.) The
last number needed is the experimental condition of the
sentence. Since it is known that j is the item number and
i is the counterbalancing condition, the experimental con-
dition of a sentence is (j—1)/6+i modulo 3, using integer
arithmetic. In Listmaker, this is written as follows:

j~1/6+il3

(since Listmaker evaluates expressions from left to right).
This expression returns O for the inference condition, 1
for the true condition, and 2 for the false condition.

The score sheet can now be created for the ex-
perimenter:

output:STORYSCORE&:i

write ‘‘Counter-balancing ™ i

(do a=1,18

=X()

c=j—1/6+i}3

write a “‘Item: *” j ** Condition: >’ ¢
‘¢ Story position: > Y(j)

next a)

These lines tell Listmaker to send all further output to a
new file, called ‘‘STORYSCOREIL,” *‘STORY-
SCORE2,”’ or ““STORYSCORES3.”’ Then, for each po-
sition in the test list, they write the position number, the
item number of the sentence in that position, the ex-
perimental condition of the sentence, and the position of
the corresponding story in the story list. (The complete
program for the story experiment, with all modifications,
appears in Listing 1.)

Interface to a Real-Time System

One of our goals in creating Listmaker was to provide
an easy interface to a real-time experimental system. The
output features described in the previous section make this
task extremely straightforward. The priming experiment
discussed above (Example 1) will be used to demonstrate
how Listmaker can produce stimulus lists ready to run
on a real-time experimental system. For this example, we
use the system designed by Ratcliff et al. (1986).

For this experiment, subjects are required to press the
space bar to begin the study phase. They are presented
with each study sentence for 3 sec. After the last study*
sentence is presented, they are again instructed to press
the space bar to begin the test phase. Each word in the
test phase is presented until the subject presses a key, one
key for old words that appeared in one of the studied sen-
tences, another for new ones that did not appear in any
studied sentence. The key pressed and the reaction time
are recorded.

Of course, we need to keep track of the condition in
which each word in the test list appears (prime, target

124 GREENE, RATCLIFF, AND McKOON

GUHEIENi-SEMISHCe prilne, OF Begaiive fiiiey). Siud 2aca
condition has its own line in the output block for the test
phase, a number can be assigned to each of these condi-
tions directly on the output line. For each prime we also
would like to know at what position in the study list the
associated sentence appeared. As in the story experiment,
an index set is used to keep track of the position in the
output list of each sentence. The index set V is used for
this purpose. (Again, set V must be added to our ‘‘dim’’
statement.) However, since the targets (sets T1 and T2)
were themselves not used in the previous output block,
the subscripts of set V will themselves be index sets that
indicate which sentence from the materials set is in each
position of these sets. Set X already serves this purpose
for targets in T1; we must add an index set Z to do this
for set T2, so the line ““T2=8?T’’ becomes
“T2=81T>Z.”’

The following changes and additions to the program ac-
complish the additional tasks of recording the experimen-
tal conditions and list positions. (The complete program,
with all modifications, appears in Listing 2.)

output: EXPLIST&s

write ‘‘Press space bar on keyboard to begin
study phase#R@C”’

[list=32

(do i=1,32

:S(i) “#W3000@C” : *V(i)

next i)

1

write ‘‘Press space bar on keyboard to begin
test phase#R@C”’

[list=64

(do i=1,8

1=X(1)

‘T1() “#R@CH#S/” 100+V(1) *“/”

:P1G) “#R@C#S/200/”° : a1

1=7(i)

‘T2(31) “#R@CHS/>’ 300+V(1) ““/” : *b,b>3

P2(1) “#R@C#S/200/°” : b1

next i)

(do i=1,32

:NG) “#R@CH#S/400/” : *

next i)

]

In Ratcliff et al.’s (1986) system, #R waits for a keypress
and records the key and the reaction time, @C clears the
screen, and #W3000 waits for 3,000 msec. The #S com-
mand records the data between the slashes that follow.
Thus, the reaction times to all primes will be associated
with the number 200, all same-sentence targets with the
number 100 plus their associated sentence’s location in
the study list, all different-sentence targets with the num-
ber 300 plus their associated sentence’s location in the
study list, and all negative fillers with the number 400.

The key feature that allows Listmaker to be used to
generate real-time experiments is the ease of interfacing

T *3,a>3

Plidde aealdviil s g

Example)

dim $(32),T(32),P(32),N(32),V(32)

open9: EXPIMATERIALS

(do i=1,32

read9:S(1), T(),P(i)

next i)

read9:N

close9

(do s=1,8

@T.,P

T1=8?T>X

Pl=P<X

T2=8"T>Z

T3=167T>Y

P3=P<Y

P2=87P3

output: EXPLIST&s

write ‘‘Press space bar on keyboard to begin
study phase#R@C"™’

{list=32

(do i=1,32

:S(i) “#W3000@C"’ : *V(i)

next i)

]

write ‘‘Press space bar on keyboard to begin test phase#R@C"

[list=64

(do i=1,8

1=X @) .

TH(L) “#R@CHS! 100+V() /™ : *a,a>3
:PL(i) “#R@CHS/200/" : a—1

1=2()

“T2(i) “#R@CHS/” 300+4V(l) “/"" : *bb>3

P2(i) ‘#R@CHS/200/°" : b-1
next i)

(do i=1,32

:N@) “#R@C#S/400/>" : *
next i)

]

next s)

to the Ratcliff et al. (1986) real-time system. In other real-
time systems, the interfacing problem can be quite com-
plicated (i.e., writing another program with real-time rou-
tines inserted). For a novice in microcomputer hardware,
it would be difficult to build the system used by Ratcliff
et al. (1986) because it requires building cables; order-
ing, installing, and setting interface cards; etc. For users
without expertise, errors can be difficult to correct.
However, it would be an extremely straightforward
programming task to write a real-time system that emu-
lates that of Ratcliff et al. on an IBM PC/AT, Apple
Macintosh, or similar system using a compiled language.
Benchmark timings on a Macintosh indicate that all fea-
tures can be easily implemented. Listmaker can then be
used on these systems.

Summary

Through the use of two examples, we have described
some of the features of Listmaker. However, there are‘
many more features that are not mentioned in the body
of the paper, such as random draw with replacement, far}-
cier control structures, and subroutines. The reader 1§

slete list of the feawres oifered by Listmaier.
? Listmaker provides a concise, flexible programming
Janguage to generate stimulus lists for cognitive psychol-
ogy experiments. It reduces the amount of programming
' the experimenter must do by automating common opera-
tions, such as random draws without replacement. It also
makes it easy to specify restrictions on the positions of
items in the stimulus list. Another major benefit of List-
maker is its ability to treat multiline items as a single unit.
We can assign an entire story to a single set item and never
have to worry about its length again.

In addition to the reduction in programming time, the
main benefit that Listmaker provides is clarity. The in-
crease in clarity pays off in several ways. First, it reduces
debugging time. Problems are easily identified because
there are so many fewer lines of code than in a language
such as FORTRAN. Second, since readability is im-
proved, we can put down a Listmaker program, come
back to it a month later, and be able to understand it in
a matter of minutes. This leads to the third benefit:
modifiability. If we want to modify the design of an ex-
periment or add a condition to one already run, it is ob-
vious what changes must be made to the Listmaker
program.

Listmaker does have a few areas that could be im-
proved. First, its syntax is very rigid compared with that
of FORTRAN or Pascal, for example. Spacing, command
formats, and so forth, are not flexible in Listmaker. This
could be improved by developing a more sophisticated
parser for the Listmaker interpreter. However, the syn-
tax has not proven to be a significant problem, as the in-
terpreter will identify the troublesome line, and the error
is usually obvious. In fact, the rigidity may be a benefit
to the experienced user.

The second area in which Listmaker could be improved
is the range of legal variable and set names. Currently,
scalar variable names are one letter, and set names are
a letter and a digit. Obviously, mnemonic names would
improve program readability even further. Again, a more
sophisticated parser and a hashing scheme to keep track
of variable and set names in use could solve this problem.
A simplier approach would be to write a preprocessor that

FLEXIBLE PROGRAMMING LANGUAGE 125

are desciiped abuye. r'of Simiifss '
store the mnemonic names in a file, and the program
would replace these in the Listmaker file.

Despite these relatively minor limitations, Listmaker
is an impressive tool. The examples provided in this arti-
cle represent relatively simple experimental designs. To
add more complex restrictions on output lists would re-
quire only minimal programming changes, because the
materials sets are already defined and changes would be
made only to the output lines. To add more complex coun-
terbalancings or definitions of experimental conditions
would require redefining the input sets, but again this is
usually straightforward. As experimental designs become
more complex, the advantages of Listmaker over other
kinds of programs increase; in a Listmaker program, de-
signs much more complex than those given in the exam-
ples do not look much more complex.

Practically speaking, Listmaker provides large savings
in time. An experimental design that might take 2 days
to implement and debug in FORTRAN will take a couple
of hours with Listmaker. Changes in a design that might
take several hours in FORTRAN take 20 min in List-
maker. Over a period of 10 months, McKoon and Rat-
cliff have run about 25 experiments, with an average time
to produce a debugged, real-time experiment of about 3 h.
In summary, Listmaker is a deceptively simple system
that translates into surprisingly large savings in time and
effort for implementations of experimental designs.

REFERENCES

McKooN, G., & Ratcurr, R. (1986). Inferences about predictable
events. Journal of Experimental Psychology: Leaming, Memory, &
Cognition, 12, 82-91.

RATCLIFF, R., & McKoon, G. (1978). Priming in item recognition: Evi-
dence for the propositional structure of sentences. Journal of Verbal
Learning & Verbal Behavior, 17, 403-417.

RATCLIFF, R., PINO, C., & BUurns, W. T. (1986). An inexpensive real-
time microcomputer-based cognitive laboratory system. Behavior
Research Methods, Instruments, & Computers, 18, 214-221.

STEVENS, A. L., LEVIN, J. A_, OLps, R. R., & RUMELHART, D. E.
(1977). A computer system for automatically constructing stimulus
material. Behavior Research Methods & Instrumentation, 9, 269-
273.

APPENDIX
Description of Listmaker Syntax

Each set is named with a capital letter from ‘A’ to ““T,” optionally followed by
a single digit (e.g., A, B6, R7). Each index set is named with a capital letter from
“U’" 10 “Z,”" optionally followed by a single digit (e.g., UL, X2). Individual items
in a set are identified by appending a subscript to the set name [e.g., A(1), B6(102),

[TPRL) e, 3

X2(17)]. Scalar variables are named by a single lowercase letter, “‘a’’ to “‘z

The following are illustrative examples of Listmaker syntax. A formal description
of the syntax is not provided because it would be much lengthier and far less readable.
In almost all cases listed below, variables, integers, and arithmetic expressions com-

bining both can be used interchangeably.

Control Structures:
(do i=1,10

. Repeats the lines between the “‘do™ and the “‘mext.”’

126

next i)

(repeat x
until a=b,x)

if x=1 then y=1

if x=1 then
else
endif

if x=1 then
else

if x=2 then
else

endif

call subname
subroutine subname
return

File Input/Output:
open9:filename

read9:A
read9:A(1)
read9:A[1,10]
read9(F10):A

read9(DX):A

read.:A

read9:x
close9
output:filename

include filename

GREENE, RATCLIFF, AND McKOON

Variable i takes on values from | to 10. Loops may be nested
indefinitely.

Repeats the lines between the ‘‘repeat’” and the “‘un-
til’* until the condition is true. The variable x is used only
to identify the loop.

If the conditional is true, then perform the operation follow-
ing “‘then.” Conditional expressions may be complex:
x=1)+(x=7) is true if x=1 or x=7; (x> 1)*(x<7) is true
if x>1 and x<7.

If the conditional is true, execute the lines until the ‘‘else™;

otherwise, execute the lines between the ‘‘clse’” and the
endif.

As above, but allows further conditionalization within the
“else’” clause. ‘‘Else/if’”’ cycles may go on indefinitely.

Transfers execution to the subroutine named °‘subname.’’

Defines a subroutine: the lines between the subroutine name
and the return are executed when the subroutine is called.

Opens file **filename’” for input. Any digit may be used in
this and all other file 1/O statements instead of the **9’ used
here.

Reads all of a set from a file.
Reads one item of a set from a file.
Reads 10 items of a set from a file.

Reads 10 lines from a file for each item in set A. The same
options are allowed as above.

Reads all of set A from a file. Each item in set A consists
of successive lines from the file until the character “*X’’ is
encountered by itself on a line. The same options are allowed
as above.

Reads all of a set from the lines immediately following in
the program. Again, the same options are allowed.

Reads the value of a variable from a file.
Closes an input file.

Sends all further output from output blocks and write state-
ments to file *‘filename.”” Remains in effect until another
output statement is encountered.

Copies the contents of the file ““filename’” to the output file.
Useful for including instructions or practice items in the out-
put file.

Set Declaration and Randomization:

dim A(10),X(10)

@A.B,C, ...

Declares set A and index set X to be 10 items long. This
is only necessary for sets that are to be read in from disk
files or assigned via partial set assignments or input state-
ments (see below).

For regular sets, resets the randomization so that further
draws without replacement may draw any item in the set.

@X,Y,Z,...

@ ABC,...

@ XY.Z,...

@'AX,...

Set Assignment:
A=B

A=B(1)
A=B[6,10]
A=67B

A=6'B
A=37BI6,10]

A=B,C.D

A=B(1),CI2,8].D

A=67B(1),C[2,8],.D

Partial Set Assignment:

A(=B()
A[1,5}=B[6,10]

Index Set Assignment:

>X

<X

Output Blocks:
[list=10

1

:A(l) x “‘zzzz’i *

FLEXIBLE PROGRAMMING LANGUAGE

F Y W IR EV PR E SRV EUTEE L O e

For index sets of size n, assigns each item in the set to be
a random integer between 1 and n, such that each integer
is used exactly once.

For regular sets, resets the randomization so that further
draws without replacement may draw any item in the set,
with the restriction that the ith draw will not draw item i.

For index sets of size n, assigns each item in the set to be
a random integer between 1 and n, such that each integer
is used exactly once and item number i will not have the
value i.

Actually rearranges the order of items in the sets to a ran-
dom order. (@ does not change the order of the items in a
set; it only changes the order in which they will be drawn
by the ? operator, below.)

Set A is assigned to be a copy of set B.
Set A is l-item set consisting of the first item in set B.
Set A is a 5-item set consisting of items 6 through 10 of set B.

Set A is a set of 6 items chosen randomly without replace-
ment from set B.

Set A is a set of 6 items chosen randomly with replacement
from set B.

Set A is a set of 3 items chosen randomly from items 6
through 10 of set B.

Set A contains all the items in sets B, C, and D.

Set A contains the first item in B, items 2 through 8 of C,
and all of D.

Set A contains 6 items chosen randomly without replacement
from the above group of items.

The first item of set A is set equal to the seventh item of set B.

Items 1 to 5 of set A are set equal to items 6 to 10 of set B,
respectively.

Appended to any of the above full or partial set assignments,
stores in the index set X the locations in the set on the right
from which the items assigned to the set on the left were
taken. :

Appended to any nonrandom full or partial set assignment,
assigns to the set on the left those items in the set on the right
in the locations specified in the index set X. (See text for
examples of the use of these operators.)

Marks the beginning of an output block that will create an
output list of 10 items.

Marks the end of an output block.

An output line consists of a materials section and a location
descriptor. The materials section goes between the two colons
and may include any combination of set items, variables, and
quoted text. The values of set items and variables and the
contents of the quoted text will be put in the output list in

127

128 GREENE, RATCLIFF, AND McKOON

the position specified by the location descriptor, which fol-
lows the second colon. An ***’” indicates that the output from
this line may go at any position in the output list. Note that
an output line may generate more than one line of output;
for example, A(1) might contain a multiline story in this case.

Location descriptors:

A location descriptor may be a numeric expression, in which case the output will be
placed at that position in the list:

A(D: 7 Places the contents of A(1) at a
:A(l): a fixed position in the output list.

A location descriptor may also be an ***,” followed by a variable, followed by restric-
tions, in which case the output will be placed at a random position in the list as long
as it meets the restrictions. The variable will contain the location to which the output
was assigned:

:A(l): *a,a>7 Places the contents of A(1) at any position greater than
7 in the list.

:A(1):*b,(b>a)@(b <c) Places the contents of A(1) in any position greater than
a and less than c.

:A(D): *b,(b<a)yH(b>c) Places the contents of A(1) in any position less than a
or greater than c.

Miscellaneous and Debugging Commands:

random(x) Reseeds the computer’s random number generator.

x=rnd(y) Variable x is assigned a random integer value between
1 and y, inclusive.

x=rnd(y,z) Variable x is assigned a random integer value between
y and z, inclusive.

input A(1) Input item 1 of set A from the keyboard at run time.

input x Input variable x from the keyboard at run time.

print A(1) The value of the set item, quoted string, variable, or any

print *“Wait”’ combination is printed on the screen.

print X

trace on The Listmaker interpreter will print out each line be-
fore it is executed.

trace off Tumns trace off (the default).

stats The Listmaker interpreter prints out useful statistics

about memory usage, etc.

stats,sets The Listmaker interpreter prints out the same informa-
tion, and also prints the size of every set in use.

tries=50 Tells the Listmaker interpreter how many times to try
to construct an output block before giving up- Some-
times output blocks with complicated restrictions can-
not be constructed on the first try. The default is 100.

