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A computer system, based on the Radio Shack Color Computer, for running experiments in
cognitive psychology is described. The system was designed according to the following princi-
ples: first, all of the equipment should consist of inexpensive, off-the-shelf components; second,
the language used to implement experiments should have real-time commands embedded within
the character strings to be displayed, and these real-time commands should be interpreted at
run time; third, the system should serve multiple subjects, yet one host should be able to run
display terminals for several subjects on independent experiments; and fourth, the system should
be able to interface to other display devices and other response-recording devices. Two examples
of other devices are discussed: an oscilloscope for rapid visual display and an Apple Macintosh

for display of pictures.

We designed a real-time cognitive laboratory system,
keeping several constraints in mind. First, the system was
based on inexpensive off-the-shelf components, because
it is easier to obtain grant money in psychology to sup-
port salaries (e.g., programmers) than to buy equipment;
thus, it is more advantageous to design a system that re-
quires significant programmer effort than one that requires
expensive hardware. Furthermore, if the equipment is in-
expensive and off-the-shelf, then failed components will
be relatively easy to replace. (In addition, by using off-
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The programs for the Color Computer and Apple II+ are available
on floppy disk (at nominal cost to cover materials). We caution that
except for someone familiar with organizing such a system, it is easy
to make mistakes and fail to get the system running.
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the-shelf components, one is not dependent on the elec-
tronics technician who designed the hardware. This can
be particularly disastrous if the technician resigns without
leaving adequate circuit diagrams or documentation.) Sec-
ond, the system was written in assembly language, be-
cause some of our applications require millisecond ac-
curacy in timing and because some of the operations
required in experiments are quite complex (e.g., instruc-
tions that branch on accuracy or reaction time of the
response). Timing loops written in BASIC would be suffi-
cient for some applications, but the speed of assembly lan-
guage is needed for other applications. Third, the language
used to perform real-time operations was designed to be
interpretive, with real-time commands embedded within
the stimulus materials (e.g., text or other characters). With
previous experience, we have found that an interpretive
language is easiest to use because the generation of stimu-
lus lists is decoupled from debugging the real-time com-
ponent of the experiment. This language has proved ex-
tremely simple for graduate and undergraduate students '
to learn and use.
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MICROCOMPUTER COGNITIVE LABORATORY

The Radio Shack Color Computer was chosen because
it offered a low price, a powerful CPU (6809), and a seri-
ous operating system for assembly language development,
FLEX, and useful peripheral controllers. Reed (1979,
1982) described other advantages, for example, access to
a horizontal-scan video signal (an interrupt) that allows
accurate timing.

The configuration of the experimental system was
designed as a network of Color Computers serviced by
a single host. We did not want to use one stand-alone
machine with one floppy disk drive per subject station be-
cause it would double both the cost and the hardware com-
plexity (a multipak interface box and a disk drive would
be required). In addition, an experimenter running four
or five subject stations would be continually swapping
floppy disks, a process prone to error when the labora-
tory has several experiments running at once.

We decided on a network, shown in Figure 1, in which
one host computer (an Apple II+ with a hard disk) stores
the stimulus lists and receives the data. This host serves
several Color Computers, each using a terminal (Data-
media Elites and ADDS Viewpoints) for stimulus presen-
tation, and each having the ability to run an independent
experiment. The key to this network scheme is a Giltronix
Autoscan unit, which allows one host to connect to several
slaves through RS-232 serial lines running at 19.2 Kbaud.
Radio Shack markets an RS-232 cartridge pack for the
Color Computer with the hardware UART (i.e., the
character-to-bit string and reverse conversions are car-
ried out in hardware) that we use for communication. The
built-in RS-232 port in the Color Computer converts
characters to bit strings and vice versa in software, and
drives the display terminal.

Each slave Color Computer can request access to the
host by raising the voltage on the RTS handshake line.
(Essentially, handshake lines are lines separate from the
transmitting and receiving lines and have the function of
signaling between the two communicating systems.) If the
host is not already connected to another Color Computer,

Host Hard
Apple 1I+ Disk
Glltronix
Auto-scan Unit
Cotor Color Color
Computer Conputer Computer

CRT [ CRT 1 l":cinmﬁ'*] a-sc;f':)

Figure 1. The networking system for one host and several Color
Computers.
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Figure 2. Pin connections for the RS-232 communication scheme.

the autoscan unit provides a transparent connection be-
tween the host and the Color Computer that is requesting
service. The logic of the system is to have the Color Com.-
puters request service, either for downloading of more
stimulus materials or for uploading of responses, by set-
ting the handshake line. If a connection is made, then the
handshake line of the host (CTS on the host and DSR on
the Color Computer) is inspected, and if this signals avail-
ability, then a block of information is transferred and the
line is released for the next request.

The program running on the host opens up to five in-
put files for five experiments (either the same or differ-
ent) and an output file for the output from all 5 subjects.
When a Color Computer requests service, either the
responses are added to the output file or new input infor-
mation is transferred down. The host signals its availa-
bility by setting the CTS line on the serial port (the
Apple II+ uses a. California Computer System 7710A
serial card for communication). The host program we use
is written in UCSD Pascal and uses UNITREADs and
UNITWRITEs for communication and BLOCKREADs
and BLOCKWRITE: for disk file access. After the data
is collected, the single output file is split using a simple
program that puts output data into individual subject files
based on the leading subject number.

One large obstacle to the usefulness of such a system
for the average cognitive psychologist is, believe it or not,
cabling. An experienced technician would have little
difficulty in wiring the RS-232 cables with solder joints
of high quality and correct connections among pins.
However, a cognitive psychologist with little technical
support can easily make mistakes in the connections and
fail to debug the cables to find such mistakes. In fact, for
someone having no experience in these matters, it can be
difficult to discover whether a failure is an error in as-
sembling the system or a failure in a component. The cor-
rect cable connections are shown in Figure 2. The con-
nections are dictated by which handshake lines can be
controlled by the Color Computer and which by the host
computer. For example, the Color Computer RS-232 pack
allows control of the RTS handshake line, which is then
connected to the Giltronix Autoscan CTS handshake line
(which is used to request a line to the host). Likewise,
the CTS handshake line on the host is used to signal that
it is ready to communicate with a Color Computer. The
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232 pack because it is one of the two handshake lines that
can be detected by the Color Computer.

Another problem with the network system concerns
loading the operating system (we will call the program
Cogsys from here on) into the Color Computer (this is
a problem because we decided that our Color Computer
system should have no disk drive). In the current version,
the binary code for the Color Computer program is con-
tained in a file on the host and it is downloaded into each
Color Computer. The sequence begins by loading a sim-
ple BASIC program from cassette into each Color Com-
puter, which comes with a built-in BASIC interpreter in
ROM. The program initiates a download of Cogsys from
the host. The program consists of a series of POKEs that
sets up the serial port, reads a binary file into memory
from the serial port, and initiates execution of that binary
file. (Essentially, the POKEs into memory set up a sim-
ple assembly language routine.) When the system is
debugged, the kernel system is burned into ROM, and
then simply turning on the Color Computer loads Cogsys
and begins execution.

It is possible to alter several features of the initialized
system before an experiment is run using input from the
Color Computer keyboard. (We use the terminal keyboard
for experiments because only one character is transmit-
ted for each keypress; the Color Computer keyboard pro-
vides continuous signals as long as a key is depressed,
so that software delays are needed.) It is possible to change
from taking responses from the terminal keyboard to tak-
ing responses from the Color Computer keyboard by hit-
ting the K key. When Cogsys is burned into EPROMs,
a subject number will be burned into each EPROM. To
allow the subject number to be changed, before the ex-
periment begins, the command N followed by a digit alters
the subject number. The system checks for the @ key to
be pressed on the Color Computer at each %B. If the
@ key is detected, the program terminates and restarts
(this is used for debugging purposes). The : key on the
Color Computer begins the experiment, minimizing the
chance of a subject’s beginning the experiment while fool-
ing around with keys.

THE COMMAND LANGUAGE

Overview and Advantages

The command language is the key to ease of use of this
system (see Ratcliff & Layton, 1981). The logic is sim-
ple; a real-time command is prefixed by one of these
characters: $, #, %, or @. The stimulus file is read from
the host computer into an input (ring) buffer in the Color
Computer. As the experiment proceeds, characters are
read out of the input buffer and printed on the CRT screen
unless a prefix is encountered. When a prefix is encoun-
tered, the next character is used to search a table for the
code that will execute the command. The command con-
sists of a prefix followed by a single letter followed op-

““\ "’ character.) Once a reai-time command is decoded
the operation is carried out. ’

Because the language has a ‘‘what you see is what yoy
get’’ structure, it is extremely simple to use and debug.
In fact, students can master it within a day. For example,
if the word road is to be presented for 500 msec, the
operation is coded as ‘‘toad#W500.”” Since toad does not
contain a prefix character, it is printed on the CRT. The
prefix “‘#’° signals a command, and a table is searched
for “‘#W.”’” This command expects as a parameter a set
of digits representing a wait in milliseconds. The system
waits for 500 msec with the word foad displayed, and then
the next character is processed. In using this language,
the only cost in terms of efficiency is that experimental
files for text experiments can get large (e.g., 50 Kbytes).
However, the direct representation of real-time commands
in the language outweighs this size inconvenience.

If an error is made in the stimulus list, the system does
one of two things. If *“3W”’ is typed instead of “‘#W,”
“3W”’ is simply printed on the screen. If “‘##°” is en-
tered by mistake, and it is not a command, the system
exits with an error message and, after a keypress, resets
itself to the start of the Cogsys program. Debugging is
easy because the experimenter knows where the error has
been made by noting the last text successfully presented.
Although a number of mistakes produce error messages,
others will cause the system to crash. However, these are
easy to debug since the command language is simple.

Stimulus lists are usually generated using a high-level
language. To generate a list, one reads the set of stimu-
lus materials into an array, and assigns the materials to
stimulus conditions according to the randomization re-
quired by the experimental design (Latin square, com-
pletely random, etc.). The test items are also read into
an array or selected from the study material array and ran-
domized with the set of constraints from the design. Once
the lists are generated and errors are removed, the real-
time commands are added into the format statements to
provide the presentation commands. For a simple study-
test procedure (Ratcliff & Murdock, 1976), the program
would be about one page in length. For more complex
designs, programs are rarely longer than four pages.

An advantage of the system is that students can use an
editor to construct stimulus lists with real-time commands
embedded. They do not have to learn a programming lan-
guage or learn to call timing subroutines.

Available Commands

Table 1 contains a list of real-time commands and their
effects. Using these commands, we can implement almost
all of the experimental paradigms in cognitive psychol-
ogy that involve presentation of alphanumeric characters.
To indicate how the different commands work, we present
several sample programs and describe their operation.

Table 2 shows examples of experiments, designe(! to
show features of the language. Example 1 shows a sim-
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#W  One argument: either a number or variable (e.g., V11). Waits
for the specified number of milliseconds. If time is greater than
250 msec, there will be an attempt to transfer information from
the host to the input buffer (if there is room in the buffer) or from
the output buffer to the host (if there are enough characters in
the output buffer).

#R  No arguments. Collects a response time plus key pressed and puts
them, preceded by the subject number, in the output buffer.

#N  No arguments. Used to signal the end of the experiment from
the host. Used only in the communication program on the host.

#1  Three arguments: the first argument is a Boolean expression in
parentheses, the second is an action (a string of Cogsys commands)
taken if the expression is TRUE, and the third is an action taken
if the expression is FALSE. The Boolean expression can be com-
posed of several operations or variables: A, N, O, >, >=, =,
<>, <, < =. These represent, respectively, logical AND, ne-
gation, logical OR, greater than, greater than or equal, equal,
not equal, less than, and less than or equal. In addition, the ex-
pression K=&/ returns ‘‘true’” if the last key pressed was a /
and ‘“‘false’” otherwise. R refers to the last response time (see
the examples in Table 2).

#S  One argument: example, #S/abc/ The action is to send the string
between the / characters back to the host prefixed by the subject
number. This command is used to transmit codes that identify
particular conditions of the experiment so that each response has
the code associated with it in the data file.

$$  Syntax is: $$4 commands $3, where ‘‘commands’’ represents
a string of commands or text to be printed to the screen. The
string ‘‘commands’’ replaces the string $4 wherever it appears
in the experiment test list. To allow some simple programming
functions, a macro can be nested in a macro (only one deep).

$ One argument: a one-digit number or lowercase letter up to j.
Denotes a macro and executes the commands stored in the macro.

$V  One argument. Allows a variable to be assigned a character. Ex-
ample: $V V11=7Z sets variable V11 to the letter Z.

$A  One argument. Assigns a numeric value to a variable. Example:
$A V12=2000 sets variable V12 to the value 2000.

$M  One argument. Performs arithmetic operations with variables or
between a variable and a constant. Syntax is: $MV11= identi-
fier operator identifier. An identifier can either be a variable or
a numeric constant. The operator is +, —, *, /, or \ . The \
is used as modulus.

$B  Blocks input/output operations during waits (#W). This allows
systems with buffered input/output to control Cogsys (e.g., UNIX
systems). The one limitation is that all transfers take place at %B
commands, thus introducing delays into the experiment between
blocks of trials.

$S  One argument, a variable: example, $SV11 displays the value
of the numeric variable V11 onto the screen.

$L  No argument. Collects a line of characters up to a carriage return
and puts them, preceded by the subject number, into the output
buffer.

$R  No argument. Displays the last response time on the CRT screen.

%B  No argument. Denotes blocks of the test list such that everything
must be run consecutively. The experiment will not continue to
execute until the next %B has been downloaded into the input
buffer.

%T No argument. Allows a switch of terminal type. The Datamedia
Elite 1520 and the ADDS Viewpoint are supported.

@  Two arguments, two-digit integers: cursor-control command. Syn-
tax is @xxyy where the xs are single digits and represent row
number and the ys represent column number.

@C No arguments. Clears the screen.

@D No arguments. Cursors down one line.

%X No arguments. Branches out of the current macro. Also stores
the user number, the character ‘‘#,”’ and the number zero into
the output buffer. This is used to signal that the macro was ex-
ited at the %X as opposed to a normal exit or a %Y exit.

%Y No arguments. Branches out of the current macro.
%Z No arguments. Jumps to the starting position of the current macro.

External Subroutines

#P  Two arguments. Takes a number or variable representing a num-
ber followed by a string in braces (curly brackets). Syntax: #P500
{abcde}. Waits S00 msec, presents the string abcde on the next
line down and picks up any response made before, during, or
after presentation of the string and puts the key pressed and reac-
tion time, preceded by the subject number, into the output buffer.
If the response is made before the string is to be presented, the
string is not presented.

#C  One argument. Collects a time-limited response. Example:
#C5000 If a key is pressed before 5 sec elapse, then the key
pressed and response time, preceded by the subject number, are
sent to the output buffer. After 5 sec expire, the subject num-
ber, the character @, and the time of 5000 are stored in the out-
put buffer.

#A  Sets attributes for the HP scope. Syntax: #A[commandi
command? . ..] Commands are:

T—Time to refresh screen: 0-60 msec

X—Set the X coordinate: 0-2047

Y—Set the Y coordinate: 0-2047

I—Line intensity: 0-3, where O is blank and 3 is full

L—Line types: 0-3, where O is solid and 3 is short dashes

O—On/Off beam, where 1 is on and O is off. Used for line

vectors.

S—Character size: 0-3, smallest to largest.

R—Character rotation: 0-3, for 0°, 90°, 180°, 270°.
Example: #A[X=0 Y=1000 T=1 I=1 S=0]

#V  One argument: a string. Syntax: #V[string] Displays a string
on the scope and collects a response time from the keyboard. The
subject number, key pressed, and response time are stored in the
output buffer. .

#U  Two arguments: an integer or variable representing an integer
and a string. Syntax: #US00[string] Displays the string on the
scope for the time given by the integer.

#T  Two arguments: an integer and a string. Syntax: #T500{string]

Displays the string on the screen and either waits for the time
to expire or collects a response time. The subject number, key
pressed, and response time are stored in the output buffer.

$G  One argument: a variable name. Syntax: $GV11 Sets a vari-
able from the terminal keyboard. Requires a double entry of the
number for verification. This is used, for example, for setting
timing intervals as a function of prior performance in the ex-
periment.

ple study-test procedure. Five words are presented for
1 sec each, followed by a row of asterisks presented for
1,000 msec. Then a test list of old and new words is
presented. For a new word, if the subject responds cor-
rectly (the Z key), the reaction time is printed on the
screen for 500 msec. If an error is made, the word
“ERROR’’ is printed for 2,000 msec. For an old word,
the correct response is the / key. The #S command sends
back to the host a “‘0’” if the trial is negative and a “‘1”’
if the trial is positive. The %B at the end signals that the
trial cannot begin until the whole study-test list is in the
input buffer of the Color Computer.

Example 2 shows how variables can be used to score
accuracy and reaction time. The task requires the subject
to press the / key for a digit and the Z key for a letter.
Variable V12 contains the total number of trials, and V11



218 RATCLIFF, PINO, AND BURNS

AL el

g,

1. $$1#RAS/L/@CHIK =&/ O K =&?){SRFW500@C }{ERROR#WiE)OO@C}%
$$2#R#S/0/@CHIK =&Z O K = &2) {SR#WS00@C} {ERROR#W2000@C} $$

$$34W1000@C$$
gallant $3
legend $3
robust $3
chair $3
glue $3
ek ok ko *$3
blue  $2
robust  $1
sky $2
glue  §1
legend $1
%B

If the subject responded ‘‘old,’” ‘‘old,”’ *‘ne

w,”” “‘old,”” ““old,”’ to the five test items and the

subject were tested on Color Computer Number 2, the response file would contain:

2/552

where the first digit refers to the subject number, the character is the key pressed, and the last

digits are the reaction in milliseconds.

2. $SI#RAI(K =&/ AR<1000){$MV11=V11+1 $MV13=VI13+V5}{}$3$
$S2#R#(K=&Z A R<1000){$MV11=V1i+1 $MVI3=VI3+V5}{}$$

$AV11=0 $AV12=0 3AV13=0
8$1 $MVI2=V12+1
I$2 $MVI12=VI12+1
481 $MVI12=VI12+1
G$2 SMV12=VI12+1
R$2 $MV12=VI12+1
781 $MVI2=V12+1
281 SMVI2=VI12+1
Q%2 $MV12=V12+1

You got $SV11 correct out of $SV12. Average reaction time for correct responses was

$MV13=V13/V11 $Vi3
%B

3. $SIS2HWVI1@CH*++*+ x4RA(K=&N{ %X} {SMV11=V11+17 %Z}$$

$AVI1=17 $$2CAT $%
$1

$AV11=17 $$2HOUSE $$
$1

%B

the number of correct responses faster than 1,000 msec.
Variable V5 contains the last response time and is added
to V13 to keep a running sum of reaction times. At the
end, the average correct reaction time is given by
V13/V11. The $S displays the values of the variables on
the screen with text to indicate what the numbers
mean.

Programming Within Cogsys

One apparent disadvantage of the command language
is that once a stimulus list is created, the sequence of
events in the experiment is fixed. There are two levels
at which we may want to adjust the experiment as a func-

tion of the performance of the subject. The first adjust-
ment is timing (e.g., presentation time) as a function of
performance. Such adjustments can be made using vari-

. ables and arithmetic operations. For example, suppose that

we use three presentation times in a sequence of threshold-
setting trials. If we want to set performance so that sub-
jects are at 75% accuracy, variables are used to accumu-
late the number of correct responses for each presenta-
tion time. These can be used to set another variable with
simple interpolation (arithmetic operations between var I
ables), or the results can be printed out on the screen and
the experimenter can enter the presentation time into 2
variable using the $G command (Table 1).
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accomplished by repeating blocks of code. However, since
the input buffer is a ring buffer, once code is executed,
there is no guarantee that it will be in the buffer at a later
point in time (it may be overwritten by a new download
of information). But macros contain instructions that are
kept throughout an experiment, unless they are redefined
within the list, and so it is possible with the %Y and %Z
commands to branch as a result of previous performance
within a macro. To make it possible to alter text presented
within a macro, a macro can be embedded within a macro.
Example 3 in Table 2 shows this: The macro $2 contains
the test word, and the variable V11 contains the presen-
tation time. The test word is presented for V11 msec fol-
lowed by a mask of asterisks, and the subject is required
to press a key to indicate whether the string is a word
or not. (This example is not part of an actual experiment
but illustrates the use of the commands.) The />’ key
indicates a ““‘word’” response. If this response is not made,
the presentation time is incremented by 17 msec and the
process is repeated. When a ‘“word”’ response is made,
the macro is exited using the %X, and 1#0 is entered in
the output buffer (if this were Subject 1). The scoring pro-
gram reads responses (from the #R) until the character
“#" is found as a response which indicates an exit from
the macro.

COMMUNICATION PROTOCOL

Communication between a Color Computer and the host
takes place (1) at a #W command when there is longer than
250 msec to wait; (2) at a %B when there is no other %B
in the input buffer; and (3) at the end of an experiment
to empty the output buffer and sign off. The first of these
is the most complicated. The routine that performs the wait
uses the horizontal sync interrupt (that occurs every
63.5 psec) for timing. To use this interrupt, the code has
to be written in blocks that take less time than 63.5 pusec.
Each block is followed by an instruction that halts process-
ing until an interrupt is detected, and then continues (called
the SYNC instruction in 6809 assembly). Thus the code
consists of blocks of about 20-25 assembly language in-
structions (2-4 machine cycles per instruction, machine
clock at .89 MHz), followed by the SYNC instruction, fol-
lowed by code to increment the time counter.

The code for communication with the host requests the
host by setting a handshake line; if it successfully gains
access to the host through the autoscan unit then it checks
the host’s handshake line. If the line is available, then
either an upload of responses or a download of a text file
occurs. When there are more than 128 characters in the
output buffer, an upload is initiated and 128 characters
are transferred up. When there are not enough charac-
ters for an upload, a download is initiated and 256 charac-
ters are transferred down to the Color Computer. The
transmission rate is 19.2 Kbaud (i.e., a little less than
2,000 characters per second). The protocol for transfer
ata %B is similar. If there is a %B in the input buffer,
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15 emplied o less than 128 characiers (i case ihers avs
no transfers at #W commands) and the input buffer is
filled, in 256 character blocks, until another %B is trans-

mitted down.

COLOR COMPUTER
MEMORY ORGANIZATION

The memory organization in the Color Computer
reflects several constraints. For debugging purposes, it
is useful to have the real-time Cogsys program, buffers,
temporary work areas, and so forth loaded into a part of
memory that does not contain the development operating
system or the debugger. This limits the available space
but actually has no practical consequences for the user.
Table 3 shows the memory map of Cogsys. There are
several things to note: First, the regions denoted ‘inter-
rupts’” and ‘‘hardware’”’ are reserved by the physical sys-
tem. Second, the input buffer and output buffer, which
are organized as ring buffers, are actually very large. Most
experiments in our laboratory take 10-50 Kbytes of stimu-
lus information for a 1-h session. To see how large 50
Kbytes or 50,000 characters is, suppose a subject can read
16 characters per second (i.e., four four-letter words).
Multiply this by 3,600 per hour, and we get 57,600
characters per hour. This places a rough upper limit on
the size of stimulus lists in a text experiment. Thus an
11-Kbyte input buffer will store about 20% of the largest
experiment. The output buffer is also large, 2 Kbtyes.
Most reaction time experiments that we run produce an
output buffer of about 12 Kbytes, so again the output
buffer is near 20%.

The Cogsys program takes about 8 Kbytes of storage,
and the variable space takes about 6 Kbytes. The vari-
able space is used for the macro buffer (20 x 100 charac-
ter macros), variable space for the variables, intermedi-
ate products of operations on variables, and other variables
used by Cogsys. The S and U stacks are user-defined but
are required for the system. There are 8 Kbytes reserved
for new commands that can be developed independently
of Cogsys and then loaded into the system at system
startup. This allows us to freeze the core of Cogsys and
at the same time allow for future growth. The debugger
and the FLEX operating system reside above this area so
that if many more routines are developed, they can be
debugged individually and then loaded in with all the
others. If all the routines are larger than 8 Kbytes, then

Table 3
Color Computer Memory Map

$0100-3010A

$0200-$2FFF

$3000-$37FF  Output buffer

$3800-346C9  Variable space

$46CA-$4FFF S,U stacks

$5000-36FFF Cogsys kernel program

$7000-$8FFF  Subroutine space (new downloaded routines)

$9000-$BFFF Debug (only present in development)

$C000-$FFFF FLEX operating system plus memory mapped 1/O
locations

Interrupts
Input buffer
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the space in which the debugger resides during de-
velopment.

INSERTING NEW COMMANDS

One important feature of this type of system is that it
is expandable. As a new feature is needed, it can be ad-
ded to the system. Since we have now placed the core
system in an 8K EPROM, which replaces the Extended
BASIC ROM in the Color Computer, there has to be a
method of adding new routines. The way we accomplished
this is by the following rules. The code for each new com-
mand consists of a header that specifies the command
name, followed by the code. The code can use some of
the more useful Cogsys routines by accessing a table at
the end of Cogsys that stores the starting addresses of the
routines (routines such as converting numbers, sending
a character to the terminal, placing a response plus reac-
tion time in the output buffer, etc.). The routines for new
commands are stored in a file on the host and when the
system is first run, Cogsys initiates a request to load that
file down if it has not already been downloaded.

PERIPHERAL DEVICES

One feature of the Color Computer that is useful is the
availability of a limited number of peripheral boards. Ra-
dio Shack provides an RS-232 serial cartridge and a multi-
pak expansion unit (which allows four cartridges to be
plugged in), and Magnum Distributors provides a parallel
port. Thus, any peripheral that runs off a parallel port
or a serial port can be driven by the Color Computer. The
serial port is used for communication between the host
and the Color Computer. The serial port allows the use
of three handshake lines, and there is hardware implemen-
tation of the bit-to-string conversion. There is one limi-
tation: we have not been able to use more than one serial
board with the multipak expansion unit. To drive another
computer (e.g., the Macintosh), we use the built-in serial
port and dispense with the display terminal, using the other
computer as the display device. The parallel port uses a
6522 PIA chip which provides a 16-bit parallel port,
several handshake lines, and several timers. To drive other
parallel devices, accurate timing can be achieved using
the built-in timer, and necessary handshaking from the
peripheral can be handled using simple programming and
the handshake lines.

Another peripheral that is of some importance is an
EPROM burner for the Color Computer. This is available
from Green Mountain Micro and runs on batteries. The
software is contained in a BASIC cassette program and al-
lows a binary file in Radio Shack DOS format to be burned
into an EPROM. The FLEX operating system allows files
to be converted to Radio Shack DOS format, and this trans-
formation allows the binary file to be converted into a form
ready to be burned into the EPROM to replace the Ex-
tended BASIC ROM in the Color Computer.
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periments with accurate visual timing on stimulus pregey,.
tation. The scope has a built-in character set, and each,
character can be displayed in 16 psec by the scope harg.
ware. We interfaced this scope to the Color Computer
through the parallel port and wrote routines that woylq
allow presentation of ASCII characters. ,

The parallel board uses 16-bit transfers to the scope with
a simple handshake sequence. Two of the 6522 handshake
lines are used, one on output and one on input. Whep
16 bits of data are loaded into the PIA for transfer, a hang-
shake line is set that indicates to the scope that it shouid
accept the data. When the scope has accepted the data
it sets another handshake line and the Color Compute;
can begin loading the PIA again.

The time base for display is 1 msec; thus, each character
is rewritten to the scope every 1 msec so that we can con-
trol the display presentation times to 1-msec increments.
In practice, with software overhead on the Color Com-
puter, it is possible to display 15 characters within the
1-msec refresh rate; however, more characters can be dis-
played by increasing the time base to 2 or 4 msec and
adjusting intensity appropriately. Characteristics of the
scope display can be set with a command, for example,
character size, brightness, position, and rotation (see Ta-
bie 1 for a complete list). The scope uses a P4 phosphor
that decays to 1% intensity within 560 usec and has the
capability of displaying vectors within a 2048 <2048 pixel
universe. In addition to the text display capability, the sys-
tem allows simple polygons to be displayed. By manipulat-
ing the time base, we can present a few vectors with short
presentation times, or many vectors with relatively large
steps between increments in presentation time.

Picture Experiments

We recently designed an interface procedure to allow
us to display pictures on the Apple Macintosh computer.
The idea is to store a set of pictures in files on the Mac-
intosh and to use the Color Computer to initiate presen-
tation of those pictures. The stimulus pictures are stored
in MacPaint format, and the assembly language program
running on the Macintosh expands them into a bitmap
prior to presentation. Then presentation of a picture con-
sists of a simple block move of the bitmap into the video
memory of the Macintosh. The Color Computer commz-
nicates with the Macintosh through a serial port running
at 9600 baud (about one character per millisecond; this
is the maximum speed of the internal serial port and is
the speed at which the display terminal is run), and the
Macintosh replaces the terminal as the display device for
the Color Computer. The command characters are
designed to be little-used ASCII characters that the Color
Computer treats simply as text, shipping them straight out
to the Macintosh. The Macintosh writes any ASCI
character to the screen, unless it is one of the specxal
characters. The commands available on the Macintosh ar¢
shown in Table 4. Thus the Cogsys program did not have
to be modified to control the Macintosh.
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|#,4.#, ... .#| where the # represent numbers. This indicates to the
Macintosh which pictures to load inte memory for presentation. The
file names are stored in a file, and the numbers above represent posi-
tions in that file of names. A *‘file.s”" refers to a picture containing a
horizontal strip that is overlaid over the preceding picture. A carriage
return following the last | initiates the loading of files. When loading
is complete, a space is returned to the Color Computer. Thus, the syn-
tax of this command is: |#,#,...#|*‘return” #R
The carriage return is necessary after the last vertical bar, and the #R
picks up the space returned when the pictures have been loaded into
memory.

|| (two vertical bars) ejects the Macintosh disk and requests a new
list of file names.

~ commands the Macintosh to display the next picture. To display
the picture for 500 msec, the syntax is: WWS500

~ commands the Macintosh to accept a keypress and transmit the
character back to the Color Computer. The syntax for displaying a pic-
ture and collecting a keypress and reaction time is: ~"#R where the #R
collects the character and records the response time.

@C transmits a control-L to the Macintosh and clears the screen. Note
that clearing the screen takes up to 22 msec because the whole bitmap
has to be reset. If the cursor is only part way down the screen after
writing text, the clear is much faster since the bitmap is only cleared
down to the current cursor position.

There are several characters that the Macintosh inter-
prets as commands, and there is one setup command that
gives a list of file numbers to the Macintosh. A file on
the Macintosh disk contains a list of picture file names.
The command from the Color Computer instructs the
Macintosh to read the files indicated by the numbers in
the list of file names. So, for example, |5,21,8] causes
the Macintosh to read the 5th, 21st, and 8th files in the
list of names into memory for display. The commands
to display the pictures are sent to the Macintosh using a
special character (e.g., ~), which signals for the next pic-
ture to be displayed.

There are limitations on the speed with which a picture
can be displayed. The full bitmap can be redrawn in
22 msec, which means that whole pictures can be dis-
played sequentially with a minimum SOA of about
50 msec. In order to do certain kinds of experiments (e.g.,
priming experiments), the researcher may wish to alter
part of the picture to present a priming picture or part
of a picture (e.g., a name on a map). To do this and to
reduce the amount of storage required by a picture (e.g.,
a bitmap uses about 22 Kbytes of memory), part of a pic-
ture is stored and displayed by overwriting. For exam-
ple, suppose we want to add a string of text (e.g., a word)
to a picture. We enter Macpaint, read in the picture, de-
lete all the picture above and below the horizontal strip
containing the name, leaving the parts of the original pic-
ture in that strip. This strip is then saved in Macpaint for-
mat in a file with a **.s”” extension. When the files are
read-in, any file that is labeled ““.s’’ is expanded into a
memory bitmap with the strip before the first nonwhite
pixel and the strip after the last nonwhite pixel removed.
Thus, only a horizontal strip of the picture is stored (along
with numbers indicating the starting and stopping rows).
This results in faster display time (one half of a bitmap
can be displayed within one raster operation, 16.7 msec)
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full picture bitrap. Thus, larger numbers of pictures can
be run in sequence before the next set has to be loaded
into memory from disk. There are two characters that have
special operations (see Table 4). The ~ requests display
of the next picture and the ~ requests a keypress. The
way these are implemented is shown in the example in
Table 4: When a ~ is presented, it is followed by a #R
in Cogsys. The ~ requests that a character be transmit-
ted back to the Color Computer, and the #R collects that
character from the serial port and obtains the reaction
time. Characters are printed to the screen only after a car-
riage return because-the process is too slow to print them
as the serial port receives them.

In addition to these full-screen pictures, we will soon
implement a command that allows the size and type of
font to be chosen by software control, thus allowing con-
trol of the physical characteristics of the displayed text.
Such control is beyond the capabilities of most CRT
displays.

CONCLUSIONS

The aim of this project was to develop a real-time sys-
tem that would be easy to use and would be composed
of inexpensive off-the-shelf components (so that failure
of components would require only a new purchase order
and little money). The system fulfills these aims. In ad-
dition, it is highly expandable: new routines can be ad-
ded without too much understanding of the kernel Cogsys
program, and new devices can be added through the serial
and parallel ports. Although the system is too slow to
record speech, it is possible to hook up a voice key, drive
a speech-production device, such as the Digital Equip-
ment Corporation DECtalk, through the serial port, or
drive another computer, such as an ATARI ST520 or
Commodore Amiga, to allow the use of Color graphics
(the Color Computer display is too slow and limited). The
advantage of using other computers for special purposes
(with communication, display, and timing signals con-
trolled by the Color Computer), driven through the serial
port, is that the program in the new computer requires
only limited functions. For example, it has to accept
ASCII characters over the serial line, and display text or
pictures in color. No additional functions are required to
make the new system run quite quickly.
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