A microcomputer interface for control of
real-time experiments in cognitive psychology

ROGER RATCLIFF
Dartmouth College, Hanover, New Hampshire 03755

and

W. M. LAYTON
AGS Corporation, Hanover, New Hampshire 03755

A microcomputer system for real-time control of experiments in cognitive psychology is
described. The microcomputer serves as an interface that allows a remote timesharing computer
to control the timed display of textual material on CRTs and collect response times accurate to
1 msec. It can control two CRT subject stations presenting the same or different experiments
and control other devices such as slide projectors and tape recorders. It is argued that such
special-purpose microcomputer interfaces provide a real-time laboratory with significantly less
effort than does the more traditional laboratory minicomputer.

A major portion of the time of many cognitive
psychologists is spent in the development and use of
laboratory computer systems. Such systems have often
taken the form of dedicated laboratory minicomputers
for precise experimental control of stimulus presentation
and response recording. The rapid decrease in cost and
the rise in power of microcomputers now make it
feasible to develop special-purpose microcomputers that
act as intelligent controllers of experiments. The system
described in this paper uses a microcomputer-based
interface to allow a remote timesharing computer to
control timed display of textual material and collection
of response times. It also gives the timesharing system
the ability to control devices (e.g., slide projectors and
tape recorders) and to receive input from on-off devices
(e.g., extra pushbuttons) or analog input (e.g., poten-
tiometer or GSR levels).

The interface is plugged in between the computer and
the terminals. To the computer it is exactly like a
terminal; to the terminal the interface is like a computer.
Thus, no spacial connections or modifications are
needed to the computer or the terminals to install the
interface (although extra connections can be added to
provide better control of the CRT displays). When the
system is first switched on, the interface isin its “trans-
parent” mode and one of the terminals operates as if it
were connected directly to the timesharing computer. A

Roger Ratcliff provided some aid in system design and Mike
Layton performed the system implementation. For information
on a commercial version of this system, contact W. Michael
Layton, AGS, Box 64, Hanover, New Hampshire 03755. We
would like to thank Jim Hansen for providing the microcom-
puter for the prototype version of the system and Gail McKoon
for comments on this paper. Reprint requests should be sent to
Roger Ratcliff at the Psychology Department, Yale University,
Box 11A Yale Station, New Haven, Connecticut 06520.

Copyright 1981 Psychonomic Society, Inc.

216

sequence of special characters converts the interface into
test mode and it begins executing real-time commands.
Transparent mode is reentered by pressing the reset
button or sending another sequence of special characters.

Stimulus material is prepared on the main computer
and sent to the interface, which displays it on the
terminals and sends responses and response times back
to the main computer. Timing and device control
commands are embedded in the stimulus text. For
example, in the line “Dog #W500 Cat #R” the #W500
instructs the interface to wait 500 msec between the
display of “Dog” and “Cat,” and the #R instructs it
to wait for the subject to press a key and then send the
character and response time back to the main computer.
These embedded commands replace all of the compli-
cated programming and special hardware normally
associated with real-time stimulus presentation. The
result is an easy-to-use system that can be connected to
almost any main computer, to alleviate many of the
problems the harried cognitive psychologist encounters
in setting up a real-time laboratory.

It is useful to note some of the advantages a micro-
computer-based interface to a timesharing computer
might have over a stand-alone system. First, the system
is far cheaper if there is access to a timesharing computer
because there are no requirements for mass storage and -
data reduction, analysis, or transmission software.
Second, there is reduced maintenance: The computer
center services the timesharing computer, and the sim-
plicity of the interface computer creates few problems.
Third, the larger the system, the greater the number of .
programs available in libraries, and the easier is the
programming compared with a stand-alone system.

If a free (or cheap) timesharing computer is unavail-
able, the interface can be connected easily to'a stand-
alone microcomputer such as a Terak or Apple and

0005-7878/81/020216-05$00.75/0

on those machines.

Such microcomputer systems have recently been
developed or are currently under development within
the framework of a specific computer laboratory (e.g.,
Bailey, Ward, Spear, Leatherman, Waite, & Christian,
1979; Fox, Ward, & Lesgold, 1979). However, as yet,
transportable systems have not been developed (see
Friendly & Franklin, 1979, for additional discussion
of such designs).

THE COMMAND LANGUAGE

The interface was designed to simplify the real-time
programming required to control and measure the timing
of events in experiments. The commands are sufficiently
powerful to present the material to the subject in almost
any timing sequence desired, but are simple and very
easy to use. In fact, it usually takes 4 h to add and
debug the real-time components once the stimulus lists

Table 1
Cognitive Interface Commands

Transmission and Buffering Commands

%0 sends the text to both terminals.

%1 sends the text to Terminal 1 only.

%2 sends the text to Terminal 2 only.

%B signals the interface that it can begin processing and display-
ing the preceding text and commands. All text and com-
mands between %Bs are stored in the buffer until the %B is
received. Thus, the number of characters between %Bs must
not exceed the size of the buffer.

Real-Time Commands

#R collects a response from the terminal and sends it back.

#Wttt waits for ttt msec and then continues.

#WDn=m waits until Input Line nn is low if m=0, highif m=1
(used for tape-recorder input or voice key).

#N turns on the screen.

#F turns off (blanks) the screen.

#Dnm sets Output Line n low if m=0, high if m=1 (used for
control of slide projector).

#H(R=7)<t1><t2> displays the text and executes the commands
of t1 if the last response was a “?” and those of t2 if it was
not.

#Inn skips over all text and commands until a #Mnn is encoun-
tered.

#Mnn marks a position for the #J command.

Cursor Commands
@nnmm moves the cursor to the nth line and mth column. The
screen has 80 columns and 24 lines.
@C clears screen and moves cursor to home.

" @B erases to end of line.
@E erases to end of page.

Special Strings
$T displays the last response time for the subject.

IR displays the last response.
$C displays the millisecond clock time.
Macros

$$15ssssss$$ defines macro string “sssssss.”

$1 is replaced by its defined macro string wherever it appears in
the text. For example, after the definitions $$1cat$$ and
$$2dog$$, the text ““$1 and $2” is expanded to “cat and
dog.” Macro strings must be less than 60 characters long.

MICROCOMPUTER INTERFACE 217

A Sampie Real-Time Program {or the Sternberg Paiadigin

@C to begin press space bar. #R @C #W1000
DOG #W1000 @C
COST #W1000 @C
ACHIEVE # W1000 @C
**xk 4W1000 @C
COST #R
%B
@C To begin press space bar. #R @C #W1000
ITEM #1000 @C
CLOCK #W1000 @C
COPY #W1000 @C
- ¥Rk 4W1000 @C
FIRST #R
%B
Test ended.%B

have been constructed and placed in disk files on the
timesharing computer.

The ease of programming the interface stems from its
system of embedded commands (Table 1). The use of
these commands is best introduced by example. Table 2
shows a simple real-time program to present the Sternberg
paradigm (Sternberg, 1966). The trial begins by clearing
the screen (@C) and presenting a message that asks the
subjects to initiate the next trial by pressing a key. (A
response time collected by #R and sent to the time-
sharing computer is ignored in analysis.) The screen is
again cleared and after a delay of 1,000 msec (#W1000),
the study words DOG, COST, ACHIEVE are presented
as the memory set, one at a time for 1,000 msec/word.
After the last stimulus item disappears, a row of asterisks
is displayed for 1,000 msec to signal the test item. When
a response is made, the key and the response time are
returned to the controlling (e.g., timesharing) computer
and the next trial proceeds. The “%B” is used to sepa-
rate trials, and the interface begins displaying a trial only
when the entire trial (including the “%B”) is in the
buffer. This guarantees that each trial will be presented
without interruption.

The program of Table 2 produces the desired results,
but a number of improvements are possible. The first
involves the use of macroinstructions (macros) to reduce
the number of characters that must be transmitted to
the interface. When one becomes accustomed to macros,
they also increase the flexibility and ease of program-
ming. The concept is simple: The string $$1xxx$$
defines macro $1 to be xxx; whenever $1 occurs in the
text it is automatically expanded to xxx. Thus, after the
definition $$2 #W1000@C $$, the line COSTS$2 is
expanded to COST #W1000 @C. Table 3 shows the
program of Table 2 shortened by macros.

A second addition to the program -positions the text
nearer the center of the CRT screen. This is useful
because the distortion on most CRTs is least in the
center. The command @1010 placed before each word
to be displayed positions it at the 10th row and 10th
column. If the macros $1 and $2 are used, the @1010
can be placed at the end of each macro and the rest of
the program remains unchanged.

218 RATCLIFF AND LAYTON

Tabie 3
The Sternberg Paradigm Using Macros

$$1 @C To begin press space bar. #R @C #W1000 $$
$$2 #W1000@C $$

$1DOGS$2
COST$2
ACHIEVES$2
* ***sz
COST#R

%B
$1ITEMS$2
CLOCKS$2
COPY$2
****$2
FIRST#R
%B

Test ended.%B

Another useful modification uses the command
language’s decision capability, which is based on the
subject’s last response. In the Sternberg (1966) paradigm,
for example, we might try to increase the accuracy of
the subject’s responses by imposing a 5-sec delay to
penalize each wrong answer. This is accomplished by
adding

#I(R = Y) <RIGHT #W1 000> <WRONG #W5000>
after COST#R and
#(R = N) <RIGHT #W1000> <WRONG #5000>

after FIRST#R. If the response is a Y in the first case
(or an N in the second), the word RIGHT is displayed
for 1sec. If the response was wrong, WRONG is dis-
played for 5 sec.

‘A final addition to the program increases the
accuracy of the display and response times. The inter-
face communicates with the CRT at 960 characters/sec,
but even at this high rate it takes almost 2 sec to fill the
entire screen. To allow the presentation of large blocks
of text for precise durations, we have modified the CRTs
to allow the interface to turn off the electron beam (and
thus the image) while the screen is being filled. The
commands #N (on) and #F (off) accomplish this in the
language. In the example, we could use #F COST
#N #R to insure that COST is displayed all at once.

The screen blanking commands are also useful for
avoiding a timing problem produced by the raster scan
display system used in most CRTs. In this system, the
beam sweeps the screen once every 17 msec. This means
that each phosphor on the screen glows for a few micro-
seconds once every 17 msec. When very accurate presen-
tation of stimuli is required, the position of the beam is
critical. Beam position is also critical when very accurate
response times are needed. If, for example, a word is
displayed just before the beam reaches that position on
the screen, the subject will see the word almost immedi-
ately. If, however, the beam has just passed the word’s
position, the word will not become visible for 17 msec.

D3I T Uit 0WEYTs ctire prruaUivie Ly oo

ks ”"aihnlg

until the beam is at the top of the screen before turning
the beam on again. A finite time (17/24 msec per line
from top) still elapses before a given line is illuminated
after the #N turns on the beam, but this time is constant
for stimuli presented in the same position on the screen.
Thus, the #F COST #N#R phase also provides legg
variable response time.

STIMULUS PREPARATION AND
RESPONSE ANALYSIS

One of the advantages of the interface system is that
a large timesharing system can be used to prepare the
stimulus lists and to analyze the responses. Typically,
editors are used to generate the stimulus lists and then
FORTRAN programs are used to randomize them.
Real-time functions are added by minor modification
of the WRITE statements, and the final stimulus list is
written to disk files. A short BASIC program transfers
the disk files to the interface. Because the real-time
commands are simple and visible in the text, a careful
reading of the prepared file will discover most errors
and very little real-time debugging is necessary.

Responses are continuously transmitted back to the
main computer and are available immediately at the end
of each session. FORTRAN programs are used for
analysis. The programs that generate the stimulus lists
also produce scoring files that are used to automatically
process the data.

Both preparation and analysis are aided by the
timesharing system’s high-speed printers, plotters,
library statistics routines, and other utilities. The
computer center also provides automatic back-up in
case of system failure and a magnetic tape system that
allows economical storage of all programs, stimulus
lists, and data.

COMMUNICATION WITH THE
CONTROLLING COMPUTER

All communication between the interface and the
controlling computer takes place over one standard
(RS-232C) computer connection. The rate may vary
from 10 to 1,920 characters/sec (we generally use
30 characters/sec). An acoustic coupler allows this
connection to be made from any telephone.

Because the interface appears to be a normal terminal,
very little software and no special hardware is required
on the controlling computer. A short BASIC program is
used to transmit the stimulus list from disk to the inter-
face and to store the responses returned by the interface
back onto the disk. If the two control terminals aré
receiving the same stimulus lists, the list need be trans-
mitted only once. If the lists are different, the BASIC
program merges them, adding “gp1" and “%2" to direct
the text to the appropriate terminal. The two subjects
run completely independently of each other.

as presently configured and that class involves response-
contingent feedback or stimulus construction. Such
paradigms can be run on the system if the communica-
tion routine (running on the timesharing computer) is
incorporated in the list generation program SO that
responses can be used in further list construction. If
a2 microcomputer such as an Apple or Terak is used,
then communication can be at 9,600 baud, thus reduc-
ing time delays to a minimum.

INTERFACE HARDWARE

The microcomputer is an M6800 with 8K bytes of
random-access memory (RAM), 2K bytes of read-only
memory (ROM) (in which the real-time interpreter
resides), three serial interfaces, and a parallel interface.
The microcomputer connects to the main timesharing
computer through one serial interface through an
Anderson Jacobson coupler via telephone line at 2
300-baud (bit/second) transmission rate. (This rate has
been fast enough to maintain two subjects without
delays between blocks of trials.) The microcomputer
connects to two Datamedia Elite 1520 CRT display
terminals, each through one serial interface, and com-
municates at a 9,600-baud transmission rate. Dummy
characters are sent to maintain a 9,600-baud transmis-
sion rate (960/sec) and timing intervals are calculated
by counting characters, thus giving accuracy of about
1 msec. The parallel interface is designed to serve two
functions: (1) to control CRT screen blanking, which
allows large texts to be displayed in one 17-msec sweep
of the CRT screen and provides response recording
consistency to 1 msec and (2) to control other periph-
eral devices (e.g., slide projectors, tape recorders, and
. extra switches).

Other interfaces have been designed for this system
that provide analog input and output which can be used
for such things as reading GSRs and controlling light
" intensities. The total cost of the hardware was about
$1,000 for the basic microcomputer (not including
construction or design costs), $1,040 each for the
Datamedia terminals, and $240 for the telephone
coupler.

INTERFACE SOFTWARE

The following describes the program that is per-

manently stored in ROMs within the microprocessor.

- Knowledge of the structure of the program isunnecessary
for the day-to-day use of the interface.

The interface program consists of three timeshared
processes plus an interrupt process. Two of the three
timeshared processes execute commands and control the
two terminals. The third handles interaction with the
timesharing computer. These timeshared processes are
serviced at least once every 1,024 microsec and have no
direct interaction with each other. Each process appears

MICROCOMPUTER INTERFACE 219

processes interfere with each other. The interrupt process
is activated every 1,024 microsec, when the first terminal’s
port is ready to send another character. A character is
transmitted to each CRT buffer (a null character if no
other character is to be transmitted) and a 10-digit
decimal clock is updated.

The two processes associated with the terminals are
identical and execute the same instructions but use
different data areas. One routine (GET) is responsible
for getting the next character to be processed. Characters
come either directly from the buffer or are retrieved
from the macro area as part of a macro expansion. If the
buffer is empty, that is, does not contain a “%B,” the
GET routine waits until the input process puts one
there. Another routine (PUT) simply gives a character
to the interrupt process and waits until it is accepted.
The remaining routines in the terminal processes use
GET and PUT to process the commands.

There are three first-in first-out (FIFO) buffers, two
for characters waiting to be processed and one for
characters waiting to be sent to the timesharing com-
puter. The size of the buffers can be changed to optimize
the transmission rates, but are normally set for the input
buffers to hold 2,200 characters and the output buffer
to hold 1912. In addition, two areas holding 1,280
characters are used for storing macros.

The original program required 2-3 months to write
by a skilled assembly language programmer and has been
in use for 2 years with only minor modification to add
new capabilities.

The cost of the software is probably three or more
times that of developing software on a minicomputer
capable of testing one subject. However, it is common
to see a year wasted in the development of a testing
station for a single subject. If microcomputer systems
such as this are marketed, these systems can be made
available at a fraction of the development cost. Once
one system has been developed, the time required to
produce additional systems is reduced to that of building
the hardware (a few days) and burning in new ROMs.

RELIABILITY, EASE OF OPERATION, AND
ADVANTAGES OVER A STAND-ALONE SYSTEM

In the 22 months the microcomputer system has been
operational, 80 experiments using an average of 32 1-h
subject sessions have been performed. The microcom-
puter was out of action for half a day with a malfunc-
tioning semiconductor chip. Since then there have been
20 months of trouble-free performance. The timesharing
computer is generally very reliable, but we expect to
lose 2%-10% of the subject data as a resuit of timeshar-
ing problems.

The ease of operation is truly remarkable. Students
with no prior knowledge of the system have had the
real-time program debugged within 2h of beginning to
learn the system (note that the stimulus list program

220 RATCLIFF AND LAYTON

stimulus lists are constructed on the timesharing com-
puter and data are immediately available on the time-
sharing computer means that there is little software
development required, and maintenance of that end is
in the hands of the computer center. The price of the
microcomputer ($1,000) is relatively small, so it would
certainly be possible to purchase one or two back-up
systems for use in case of hardware problems. Thus,
reliability is assured. '

A further advantage of this microcomputer system
is that it can be interfaced to any laboratory minicom-
puter (e.g., PDP-11) or microcomputer (e.g., Apple).
Thus the laboratory computer would provide mass
storage and analysis capabilities while the microcom-
puter interface system could take care of the real-time
operations. This is a more sensible approach than spend-
ing months developing real-time routines for the labora-
tory computer that would be able to run only one
subject station.

It is of interest to discuss further reasons for design-
ing a system that interfaces to a timesharing computer
rather than designing a stand-alone system. First, at the
end of each subject’s session the data is immediately
available on the timesharing computer for analysis and
storage on magnetic tape. This saves time that is often
used in saving data in a temporary form on floppy disk,
magnetic or paper tape, and in transporting and saving
the data in a more permanent form. Second, the con-
struction of stimulus lists (together with real-time
control instructions) is accomplished on the main
timesharing computer in our application so that literally
the only operations that involve the microcomputer are
turning it on and off. It is not necessary to write a new
stand-alone real-time program for the microcomputer
for each new experiment, because the microcomputer

interprets and performs ail the real-time operations thyy
are specified in the stimulus list. Thus the programming
is a one-stage process on the main timesharing computer.

CONCLUSION

The microcomputer-based system has several major
advantages over most other experimental systems. First,
it is extremely easy to use; adding and debugging the
real-time commands usually takes % h and the system
is very easy to learn. Second, the system is relatively
inexpensive and may be interfaced to most large time.
sharing systems, as weli as dedicated minicomputers
and microcomputers. This has the advantage of requir-
ing little or no real-time software development. Third,
stimulus list construction and data analysis can be
carried out on the timesharing computer without any
data transfer problems, which makes it very easy to set
up and perform pilot experiments. Finally, it is easy to
move the interface from one computer system to
another and to exchange experiments with colleagues.

REFERENCES

BaiLey, D. E.,, Warp, W. H., Spear, T. L., LEATHERMAN,
R. L., Waitg, J. L., & Curistian, T. W. The CLIPR remote
laboratory microcomputer system: Development and applica-
tions. Behavior Research Methods & Instrumentation, 1979,
11, 281-292. ‘

Fox, J. L., Warp, R. V., & LescoLp, A. M. Microcomputer
uses in a timeshared facility. Behavior Research Methods &
Instrumentation, 1979, 11, 271-280.

Frienpry, M., & Frankrin, P. Computer control of memory
experiments on a large-scale timesharing system. Behavior
Research Methods & Instrumentation, 1979, 11, 212-217.

STERNBERG, S. High speed scanning in human memory. Science,
1966, 153, 652-654.

