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Bicategories



2-categories

A 2-category is a category enriched by categories. [Ehresmann 63’].

A
2-category B thus consists of:

Objects, (horizontal) morphisms, morphisms between morphisms
(2-morphisms).

Composition of horizontal morphisms. Horizontal identities.

Composition of 2-morphisms: Vertical composition. Vertical
identities.

Horizontal composition on 2-morphisms induced by horizontal 1-dim
composition. Unital with vertical identities of horizontal identities as
identities.

All composition operations are assumed to be strictly associative and
strictly unital. Vertical and horizontal compositions are assumed to be
compatible, i.e. satisfy the Echange property.
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Diagrammatic representation: Globular diagrams

Let B be a 2-category. We represent objects, 1-morphisms, and
horizontal 1-dim composition as:

◦ ◦◦ ◦ ◦ ◦

Represent 2-morphisms, vertical composition, and horizontal composition:

◦ ◦
ψ

ϕ ◦ ◦
ϕ

◦ ◦ϕ ◦ψ

Exchange relation:

ψ
◦ ◦

ϕ

ψ′

◦
ϕ′
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Diagrammatic representation: Shaded wire diagrams

Let B be a 2-category: Objects, horizontal morphisms, 2-morphisms,
vertical composition, horizontal composition and the exchange relation
are represented as:

α

α

β

ϕ

Globular and shaded wire diagrams are dual to each other.

Notation: We will also represent 2-morphisms as solid arrows, i.e.
ϕ : α⇒ β will denote a 2-morphism from α to β.
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Bicategories

A bicategory is a category weakly enriched by categories [Bénabou 67’].

A bicategory thus has the same data as a 2-category plus:

Associator: A vertically invertible 2-morphism

Aα,β,γ : (α ∗ β) ∗ γ ⇒ α ∗ (β ∗ γ)

for every triple (α, β, γ) of compatible horizontal morphisms in B,
natural with respect to (α, β, γ).

Unitors: Invertible 2-morphisms

λ : α ∗ id ⇒ α and ρ : id ∗ α⇒ α

for every 1-morphism α in B. Natural with respect to α.

Satisfying the MacLane pentagon and triangle equations, i.e. satisfying:
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MacLane equations

α(β(γη))

α((βγ)η)

(αβ)(γη)

((αβ)γ)η

(α(βγ))η

A

A

A

A A

And

(α1)β α(1β)

αβ

A

λ ρ

Weakened equalities=weakened equations. Can define weak

isomorphisms, duality, monads, comonads, etc. ’Functors’ between

bicategories are defined through analogous coherence equations. Called

pseudofunctors.
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Basic examples

Locally discrete 2-categories: Let C be a category. C denotes the
2-category whose 0- and 1-morphisms are objects and morphisms of
C and whose only 2-morphisms are identities. Horizontal
1-dimensional composition is defined by the composition operation
of C . We call C the locally discrete 2-category associated to C .

2-category. Think of 2-categories as non-trivial C ’s. Globular
diagrams

Delooping bicategories: Let C be a monoidal category. ΩC
denotes the bicategory with 1 object • and such that EndΩC (•) is C
with horizontal composition and horizontal identity provided by ⊗
and 1. ΩC the delooping bicategory of C . ΩC is a 2-category iff C
is strict monoidal. We think of bicategories as built from monoidal
categories/fibered over monoidal categories. Shaded wire diagrams.

Algebras: Mod has algebras as objects, bimodules AMB as
horizontal morphisms, bimodule morphisms as 2-morphisms.
Vertical composition is usual composition of morphisms, relative
tensor product M ⊗B N as horizontal composition. Horizontal
identiy of A is the trivial bimodule AAA. Proper bicategory.
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Bicategories of C ∗-algebras

1. ∗-representations: C∗(2) denotes the 2-category with C∗-algebras
as objects, ∗-representations, i.e. non-degenerate ∗-morphisms
f : A→M(B) (eq. strongly continuous f :M(A)→M(B)) as
horizontal morphisms and unitary intertwiners as 2-morphisms.
Horizontal 1-dim composition is the usual composition of
morphisms, vertical 2-dim composition is product of intertwiners
and 2-dim horizontal composition is: f , g : A ⇒ B, f ′, g ′ : B ⇒ C ,
u : f ⇒ g and v : f ′ ⇒ g ′ then u ∗ v = vf ′(u) = g ′(u)v . Strict
2-category.

2. Correspondences: Corr(2) denotes the bicategory with C∗-algebras
as objects, C∗-correspondences as horizontal morphisms,
isomorphisms of correspondences as 2-morphisms. Horizontal
composition is balanced tensor product ⊗̂ and vertical composition
is usual composition of correspondence morphisms. Proper
bicategory. C∗(2) is sub 2-category of Corr(2). Categorification of
the so-called enchilada category of Eryzlu, Kaliszewski and Quigg.
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Weak isomorphisms

Lemma
Let A,B C ∗-algebras. Let f : A→M(B) be a ∗-representation of
A in B. f is a weak isomorphism in C∗(2) if and only if f restricts
to a C ∗-algebra isomorphism from A to B. Thus A,B are weakly
isomorphic in C∗(2) if and only if A,B are isomorphic.

Lemma
Let A,B be C ∗-algebras. Let AHB be an A-B correspndence. AHB

is a weak isomorphism from A to B in Corr(2) if and only if the
representation of A in LB(H) is an iso with KB(H) (If A unital to
LB(H)).

Landsman N. P. Bicategories of operator algebras and Poisson
manifolds. Fields Institute communications, 2001, Vol. 30, 271-286
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Weak group actions

Let B be a bicategory. Let a be an object in B. Let G be a group. A
weak action of G on a is a α : ΩG → B such that α• = a, i.e.

1. A set of horizontal morphisms αg : g ∈ G , where αg : a→ a.

2. A 2-morphism u : ida ⇒ α1.

3. A 2-morphism ω(g , h) : αg ∗ αh ⇒ αgh for every g , h ∈ G .

Satisfying:

α1 ∗ αg α1g = αg

ida ∗ αg

ω(1, g)

u ∗ αg

αg ∗ α1 αg1 = αg

αg ∗ ida

ω(g , 1)

αg ∗ u

and:
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Pentagon axiom

αghk

αghαk

αg (αhαk )

(αgαh)αk

αgαhk

ω(gh, k)

ω(g , hk)

αg ∗ ω(h, k)

ω(g , h) ∗ αk A

Intuition: The above cocycle equations tell us how to substitute
expected composite values of elements of G under the action α.
The 2-morphisms u and ω are part of the data provided by α.

Equivariant morphisms of actions and deformations are defined in
the ’obvious’ way. The above definition, and the notions of
equivariant morphisms and deformations admit extensions to weak
2-groupoids.
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Actions on C ∗-algebras

Theorem (Buss, Meyer, Zhu 09’)
Let A be a C∗-algebras. Let G be a group. Weak actions of G on A in
C∗(2) are the Busby-Smith twisted actions of G on A [Busby, Smith 70’].

Can be extended to general (possibly weak) 2-groupoids, in particular to
actions of 2-groups i.e. crossed modules, recovering Green twisted
actions.

Theorem (Buss, Meyer, Zhu 09’)
Let A be a C∗-algebra. Let G be a group. Weak actions of G on A in
Corr(2) are equivalent to saturated Fell bundles (Ag )g∈G on G with
C∗-algebra isomorphism A1

∼= A.

Buss A., Meyer R., Zhu C. A higher category approach to twisted actions
on C*-algebras. Proc. Edinb. Math. Soc. (2) 56 (2013), pp. 387-426.
Observation: Weak actions of a group G on a C∗-algebra A on C∗(2)
are weak actions of G on A on Corr(2). Every Busby-Smith twisted
action of G on A thus defines a saturated Fell bundle on G with fiber A.
[Exel 97’]. Open question: Can we identify (non-saturated) Fell bundles
over a group G with weak actions of G on Corr(2) in some sense?
Conjecture: Weak actions of inverse semigroups on Corr(2).
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The bicategory of von Neumann
algebras



Morphisms and bimodules of von Neumann algebras

Let A,B be vN algebras. A morphism from A to B is a normal unital
∗-morphism from A to B. Write vN for the category of von Neumann
algebras and their morphisms.

Write Fact for the full subcategory of
factors.

A,B vN algebras, an A,B-Hilbert bimodule AHB is a Hilbert space H
together with morphisms A→ BH and Bop → BH such that. A ⊆ Bop′

.
Given bimodules AHB and AKB an intertwiner from AHB to AKB is a
bounded operator T : H → K such that T (aξb) = aT (ξ)b ∀ξ ∈ H,
a ∈ A, b ∈ B. Pictorially:

A B

K

H

T
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The bicategory of von Neumann algebras

We wish to organize the above pictures into a bicategory W ∗. Have:
Pictures, i.e. Objects, 1-morphisms, 2-morphisms and the usual
composition of intertwiners as vertical 2-dim composition. Need:
Horizontal identity and horizontal composition. Nontrivial/technical.

Horizontal identity: Haagerup standard form L2(A) for vN algebra
A. vN alg version of AAA/ Coordinate free version of the GNS
construction.

Horizontal composition: Connes fusion tensor product (CFTP).
H�B K for bimodules HB and BK. vN algebra version of relative
tensor product.

With this structure W ∗ is a bicategory. Think of W ∗ as the version for
vN algebras of Mod and Corr(2). We write W ∗fact for the sub-bicategory
of W ∗ generated by factors. Landsman, N. P., Bicategories of operator
algebras and Poisson manifolds, Fields Inst. Comm 30, 271–286 (2001)].
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Weak isomorphisms in W ∗

Theorem (Landsman ’01)
Let A,B be von Neumann algebras. A,B are weakly isomorphic in W ∗ if
and only if A,B are strong Morita equivalent [Rieffel 74’], i.e. if and only
if there exists a faithful AHB such that A′ = Bop.

Pictorially: A,B are strong Morita equivalent iff there exist Hilbert
bimodules AHB , BKA and vertically invertible 2-cells:

H K

A

B

K H
A

B

a b

Strong Morita equivalence carries some formal homotopy information.
We have a pictorial calculus telling us when two vN algebras are strong
Morita equivalent.
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Dualizability

Definition
Let B be a bicategory. α : a→ b and β : b → a horizontal morphisms. β
left dual of α (eq. α right dual of β) if there exist 2-morphisms:

β α βα
b

a b

a

Satisfying the usual zig-zag equation:

= =
b a b b ba a a

α is dualizable if it has left and right duals. Example: C monoidal
category, a ∈ C dualizable in ΩC iff a dualizable in C . AMB bimodule.
M dualizable in Mod iff M is projective and finitely generated.
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Index

Jones index of subfactors can be computed as a categorical dimension
function in W ∗:

Theorem (Bartels, Douglas, Henriques ’14)
Let A ⊆ B be a subfactor. The bimodule AL

2(B)B dualizable in W ∗ if
and only if [B : A] <∞. Moreover, in this case [B : A] is the square root
of the shaded wire diagram:

A B

Bartels A., Douglas C.L., Hénriques A. Dualizability and index of
subfactors. Quantum Topology 5 (2014), 289-345.
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Open questions on W ∗

Open question: What does it mean for a group G (discrete or locally
compact) (or something more general, i.e. weak 2-groupoid) to act
weakly on a von Neumann algebra A.

Bundles of von Neumann algebras
Cocycle actions of C∗-tensor categories on von Neumann algebras
Masuda, T., Unified approach to the classification of actions of discrete
amenable groups on injective factors, J. Reine Angew. Math. 683
(2013), 1–47.

Open question: Peterson, Ishan and Ruth define von Neumann
couplings between von Neumann algebras in the preprint Ishan I.,
Peterson J., Ruth L., Von Neumann equivalence and properly proximal
groups. arXiv:1910.08682 as von Neumann algebras satisfying certain
conditions. Can we define a tricategory of von Neumann algebras, von
Neumann couplings, bimodules and bounded intertwiners?

Tricategories are interesting in the presence of the correct notion of a
symmetric monoidal structure as by the cobordism hypothesis are
possible codomains of local 3d TQFT’s with point values being
3-dualizable objects. Prospect of associating 3d TQFT’s to von
Neumann algebras. W ∗ should be a symmetric monoidal bicategory.
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Symmetric monoidal bicategories

Symmetric monoidal bicategories are rather technical objects. Their
definition requires coherence data to be deined in terms of vertically
invertible 2-morphisms satisfying the Zamolodchikov tetrahedral
equations. See:

M. M. Kapranov, V. A. Voevodski, 2-categories and Zamolodchikov
tetrahedra equations. Quantum and infinite dimensional methods, 2;
177-260; 1994

Alternative: Lift W ∗ to a symmetric monoidal double category.
Shulman M. A., Constructing symmetric monoidal bicategories.
arXiv:1004.0993 Then lift this structure to a bicategory internal to
symmetric monoidal categories Douglas C. L., Hénriques A. Internal
bicategories. arXiv:1206.4284. Problem already considered in
constructing a symmetric monoidal tricategory of coordinate free
conformal nets. Key idea: lift to a double category, then define
monoidal structure. Also classically done for Mod.



Double categories of von Neumann
algebras



Double categories

A double category is a category internal to categories, functors and
natural transformations. [Ehresmann 63’].

A double category C thus has:

1. A category of objects and a category of morphisms C0,C1.

2. (Horizontal) source, target functors s, t : C1 → C0.

3. (Horizontal) identity functor i : C0 → C1.

4. (Horizontal) composition functor ∗ : C1 ×t,s
C0

C1 → C1.

Satisfying functorial versions of usual conditions defining a category.
Think of categories with every set turned into a category and every
structure function turned into a functor. Non-strict version:
Pseudo-double category. Write dCat for the category of double
categories and double functors. Brown R., Mosa G. Double categories,
2-categories, thin structures and connections. Theory and Applications of
Categories, Vol. 5, No. 7, 1999, pp. 163–175. We want to turn W ∗ into
a double category.
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Pictorial representation

Let C be a double category. We call objects and morphisms of C0 the
objects and vertical morphisms of C .

We call objects and morphisms of
C1 the horizontal morphisms and the squares of C . Drawn as:

◦ ◦

◦ ◦

◦

◦

◦ ◦◦

Horizontal and vertical composition are implemented by horizontal and
vertical concatenation resp. i.e. as:

◦ ◦

◦ ◦

◦

◦

◦ ◦

◦ ◦
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The horizontal bicategory
Let C be a double category. A square in C is globular if it is of the form:

◦ ◦

◦ ◦

Objects, horizontal morphisms and globular squares of C form a
bicategory, denoted by HC and called the horizontal bicategory of C .
The function C 7→ HC extends to a functor H : dCat→ bCat.

H admits
right inverses, e.g. Let B be a bicategory. We write HB for the double
category whose squares are of the form:

◦ ◦

◦ ◦

ϕ

where ϕ is a 2-morphism in B. HB referred to as the trivial double
category associated to B. The function B 7→ HB extends to an
embedding H : bCat→ dCat. H and H are related via H a H.
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Another right inverse to H
Let B be a 2-category. Write QB for the double category whose squares
are of the form:

◦ ◦

◦ ◦

α

γ η

β

ϕ

where ϕ is a 2-morphism, in B, from ηα to βγ. We denote any such
square by a quintet (ϕ;α, γ, β, η) and we call QB the Ehresmann double
category of quintets of B.

Thus defined QB satisfies the equation
HQB = B. The double category QB is edge-symmetric and admits a
connection [Brown,Mosa 99’]. The function B 7→QB extends to an
equivalence from 2Cat to the category dCat! of edge-symmetric double
categories with connection.When B is a proper bicategory QB is not a
double category but a Verity double category.
Think of H and Q as ways of lifting a bicategory to a double category.
Main difference between Q and H: The category of objects of the
corresponding double category.
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double category but a Verity double category.
Think of H and Q as ways of lifting a bicategory to a double category.
Main difference between Q and H: The category of objects of the
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The double category of algebras

Write [Mod] for the double category whose squares are of the form:

A B

C D

M

f g

N

ϕ

where A,B,C and D are algebras, AMB and CND are bimodules,
f : A→ C and g : B → D are unital algebra morphisms, and ϕ : M → N
is a linear transformation such that the equation:

ϕ(aξb) = f (a)ψ(ξ)g(b)

holds

i.e. the squares of [Mod] are equivariant bimodule morphisms.
Horizontal identity and horizontal composition in [Mod] are defined by
the obvious functorial extensions of A 7→A AA and (MB ,B N) 7→ M ⊗B N.
Mod and [Mod] are related by the equation H[Mod] = Mod.
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Symmetric monoidal structure on Mod
Why is the example H[Mod] = Mod interesting?

The operation Mod 7→ [Mod] lifts the bicategory Mod into the double
category [Mod]. Tensor product of algebras, vector spaces, and linear
transformations morally provide Mod with the structure of a symmetric
monoidal bicategory. Same situation as in W ∗. Coherence data for ⊗ of
algebras is naturally defined in terms of unital morphisms, and satisfies
MacLane equations strictly. Same situation as in W ∗. Need a different
language to express this.

Tensor product on vertices, edges and squares of [Mod] provide [Mod]
with the structure of a symmetric monoidal double category. Shulman M.
A., Constructing symmetric monoidal bicategories. arXiv:1004.0993.
Essentially a symmetric monoidal structure on [Mod]0 and [Mod]1

related in a simple way. A much simpler object. Only a bit more than a
couple of monoidal structures on categories. Moreover, [Mod] is fibrant
and thus the coherence isomorphisms of [Mod] descend to coherence
isomorphisms of a symmetric monoidal structure on Mod with tensor
porduct H⊗. [Mod] is the correct framework to equip algebras with a 2
dim symmetric monoidal structure.
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Mod-like bicategories
Observation: There are essentially two types of bicategories, exemplified
by Cat and Mod. Cat has objects, function-type morphisms between
objects as 1-morphisms, and ’deformations’ between these horizontal
morphisms as 2-morphisms.

Examples: C , Top, etc. Mod has objects,
’parametrized objects’ as 1-morphisms, and parametrized morphisms
between 1-dimensional ’objects’ as 2-morphisms. There is a correct
notion of morphism between objects in Mod, not directly included in
Mod.

Bicategories fitting the above description of Mod are called Mod-like
bicategories in Shulman M. A. Framed bicategories and monoidal
fibrations. Theory Appl. Categ. 20 (2008), No. 18, 650–738.

Slogan: A Mod-like bicategory B should have a category of
’function/correct’ morphisms B∗. It is expected that there should be a
clear lift of B to a double category C , such that C0 = B∗ and such that
HC = B. Symmetric monoidal structures on C better express symmetric
monoidal structures on B. Coherence data in B∗. W ∗ is obviously
Mod-like. Can we lift W ∗ to a double category?
:



Mod-like bicategories
Observation: There are essentially two types of bicategories, exemplified
by Cat and Mod. Cat has objects, function-type morphisms between
objects as 1-morphisms, and ’deformations’ between these horizontal
morphisms as 2-morphisms. Examples: C , Top, etc.

Mod has objects,
’parametrized objects’ as 1-morphisms, and parametrized morphisms
between 1-dimensional ’objects’ as 2-morphisms. There is a correct
notion of morphism between objects in Mod, not directly included in
Mod.

Bicategories fitting the above description of Mod are called Mod-like
bicategories in Shulman M. A. Framed bicategories and monoidal
fibrations. Theory Appl. Categ. 20 (2008), No. 18, 650–738.

Slogan: A Mod-like bicategory B should have a category of
’function/correct’ morphisms B∗. It is expected that there should be a
clear lift of B to a double category C , such that C0 = B∗ and such that
HC = B. Symmetric monoidal structures on C better express symmetric
monoidal structures on B. Coherence data in B∗. W ∗ is obviously
Mod-like. Can we lift W ∗ to a double category?
:



Mod-like bicategories
Observation: There are essentially two types of bicategories, exemplified
by Cat and Mod. Cat has objects, function-type morphisms between
objects as 1-morphisms, and ’deformations’ between these horizontal
morphisms as 2-morphisms. Examples: C , Top, etc. Mod has objects,
’parametrized objects’ as 1-morphisms, and parametrized morphisms
between 1-dimensional ’objects’ as 2-morphisms. There is a correct
notion of morphism between objects in Mod, not directly included in
Mod.

Bicategories fitting the above description of Mod are called Mod-like
bicategories in Shulman M. A. Framed bicategories and monoidal
fibrations. Theory Appl. Categ. 20 (2008), No. 18, 650–738.

Slogan: A Mod-like bicategory B should have a category of
’function/correct’ morphisms B∗. It is expected that there should be a
clear lift of B to a double category C , such that C0 = B∗ and such that
HC = B. Symmetric monoidal structures on C better express symmetric
monoidal structures on B. Coherence data in B∗. W ∗ is obviously
Mod-like. Can we lift W ∗ to a double category?
:



Mod-like bicategories
Observation: There are essentially two types of bicategories, exemplified
by Cat and Mod. Cat has objects, function-type morphisms between
objects as 1-morphisms, and ’deformations’ between these horizontal
morphisms as 2-morphisms. Examples: C , Top, etc. Mod has objects,
’parametrized objects’ as 1-morphisms, and parametrized morphisms
between 1-dimensional ’objects’ as 2-morphisms. There is a correct
notion of morphism between objects in Mod, not directly included in
Mod.

Bicategories fitting the above description of Mod are called Mod-like
bicategories in Shulman M. A. Framed bicategories and monoidal
fibrations. Theory Appl. Categ. 20 (2008), No. 18, 650–738.

Slogan: A Mod-like bicategory B should have a category of
’function/correct’ morphisms B∗. It is expected that there should be a
clear lift of B to a double category C , such that C0 = B∗ and such that
HC = B. Symmetric monoidal structures on C better express symmetric
monoidal structures on B. Coherence data in B∗. W ∗ is obviously
Mod-like. Can we lift W ∗ to a double category?
:



Mod-like bicategories
Observation: There are essentially two types of bicategories, exemplified
by Cat and Mod. Cat has objects, function-type morphisms between
objects as 1-morphisms, and ’deformations’ between these horizontal
morphisms as 2-morphisms. Examples: C , Top, etc. Mod has objects,
’parametrized objects’ as 1-morphisms, and parametrized morphisms
between 1-dimensional ’objects’ as 2-morphisms. There is a correct
notion of morphism between objects in Mod, not directly included in
Mod.

Bicategories fitting the above description of Mod are called Mod-like
bicategories in Shulman M. A. Framed bicategories and monoidal
fibrations. Theory Appl. Categ. 20 (2008), No. 18, 650–738.

Slogan: A Mod-like bicategory B should have a category of
’function/correct’ morphisms B∗. It is expected that there should be a
clear lift of B to a double category C , such that C0 = B∗ and such that
HC = B. Symmetric monoidal structures on C better express symmetric
monoidal structures on B. Coherence data in B∗.

W ∗ is obviously
Mod-like. Can we lift W ∗ to a double category?
:



Mod-like bicategories
Observation: There are essentially two types of bicategories, exemplified
by Cat and Mod. Cat has objects, function-type morphisms between
objects as 1-morphisms, and ’deformations’ between these horizontal
morphisms as 2-morphisms. Examples: C , Top, etc. Mod has objects,
’parametrized objects’ as 1-morphisms, and parametrized morphisms
between 1-dimensional ’objects’ as 2-morphisms. There is a correct
notion of morphism between objects in Mod, not directly included in
Mod.

Bicategories fitting the above description of Mod are called Mod-like
bicategories in Shulman M. A. Framed bicategories and monoidal
fibrations. Theory Appl. Categ. 20 (2008), No. 18, 650–738.

Slogan: A Mod-like bicategory B should have a category of
’function/correct’ morphisms B∗. It is expected that there should be a
clear lift of B to a double category C , such that C0 = B∗ and such that
HC = B. Symmetric monoidal structures on C better express symmetric
monoidal structures on B. Coherence data in B∗. W ∗ is obviously
Mod-like.

Can we lift W ∗ to a double category?
:



Mod-like bicategories
Observation: There are essentially two types of bicategories, exemplified
by Cat and Mod. Cat has objects, function-type morphisms between
objects as 1-morphisms, and ’deformations’ between these horizontal
morphisms as 2-morphisms. Examples: C , Top, etc. Mod has objects,
’parametrized objects’ as 1-morphisms, and parametrized morphisms
between 1-dimensional ’objects’ as 2-morphisms. There is a correct
notion of morphism between objects in Mod, not directly included in
Mod.

Bicategories fitting the above description of Mod are called Mod-like
bicategories in Shulman M. A. Framed bicategories and monoidal
fibrations. Theory Appl. Categ. 20 (2008), No. 18, 650–738.

Slogan: A Mod-like bicategory B should have a category of
’function/correct’ morphisms B∗. It is expected that there should be a
clear lift of B to a double category C , such that C0 = B∗ and such that
HC = B. Symmetric monoidal structures on C better express symmetric
monoidal structures on B. Coherence data in B∗. W ∗ is obviously
Mod-like. Can we lift W ∗ to a double category?
:



Lifting to a double category

We follow the construction of [Mod]:

Consider squares of the form:

A B

C D

H

f g

K

T

with A,B,C ,D von Neumann algebras, AHB and CKD bimodules,
f : A→ C , g : B → D ∗-morphisms and T : H → K bounded s.t:

T (aξb) = f (a)T (ξ)g(b)

i.e. equivariant bounded intertwiners. The collection of all such squares
is a category under vertical concatenation. Denote by [W ∗]1. We have:
Objects, vertical morphisms, horizontal morphisms, squares, obvious
source and target functors, horizontal identity and horizontal composition
On objects. We need: Horizontal identity functor extending A 7→ L2(A)
and horizontal composition functor extending (HB ,B K) 7→ H�B K.
Highly nontrivial.
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source and target functors, horizontal identity and horizontal composition
On objects. We need: Horizontal identity functor extending A 7→ L2(A)
and horizontal composition functor extending (HB ,B K) 7→ H�B K.
Highly nontrivial.
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BDH identity and composition

Let A,B factors. f : A→ B be a morphism. Observe that f (A) ⊆ B
subfactor.

f finite if [B; f (A)] <∞. Fact<∞ category of factors and
finite morphisms. Mod<∞1 subcat of [W ∗]1 gen. by squares with factor
vertices and finite vertical edges, i.e. finite equivariant bounded
intertwiners.

Theorem (Bartels, Douglas, Henriques ’14)
There exist functors

L2 : Fact<∞ → Mod<∞1

and

�• : Mod<∞ ×Fact<∞ Mod<∞ → Mod<∞

such that L2(A) is the Haagerup standard form for every A and
�•(HB ,B K) is H�B K for every (HB ,B K).

Technique: Use of the theory of minimal conditional expectations for
finite index subfactors [Kosaki 91’] in an essential way. No version of
these techniques for infinite index avialable!
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The double category BDH

With the above functors (Fact<∞,Mod<∞1 ) is a double category. We
denote this double category by BDH.

BDH satisfies the equation
HBDH = W ∗fact . Observations:

• BDH is ’easily’ made into a symmetric monoidal double category with
tensor product of von Neumann algebras, morphisms of vN algebras, and
with the completed tensor product of Hilbert bimodules.
• BDH is the basis for the construction of the Bartels, Douglas,
Hénriques internal bicategory to SMC and thus symmetric monoidal
tricategory of coordinate free conformal nets. Bartels A., Douglas C.L.,
Hénriques A., Conformal nets IV: The 3-category. Algebr. Geom. Topol.
18 (2018) 897-956
• BDH directly recognizes strong Morita equivalence, finite index,
isomorphisms of factors.
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Open questions

Open question: Is there a double category of general von Neumann
algebras (not-necessarily factors) and von Neumann algebra morphisms C
such that HC = W ∗ and such that BDH is a sub-double category of C?
The theory of von Neumann algebras does not give us direct tools to
extend BDH to general morphisms.

Strategy: Solve the problem
categorically, i.e. understand any such extension in terms of its
’surrounding’ categorical structure, i.e. in terms of other double
categories of factors. Pictorially:

?
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Solutions

[O 19’] There exists a free double category of factors and general
morphisms QFact such that HQFact = Fact∗. QFact does not
contain BDH.

[O’20] There exists a double category of factors and general
morphisms Q̃Fact such that HQ̃Fact = Fact having BDH as
sub-double category. QFact and Q̃Fact are related via a non-trivial
double projection and are not double-equivalent.

[O’20] If we write W ∗
epi for the category of general von Neumann

algebras and epimorphisms, then there exists a double category CΦ

satisfying HCΦ = W ∗
epi . CΦ is constructed using a version of the

Grothendieck construction for an End-indexing Φ of W ∗
epi .
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