An overview of the Baum-Connes conjecture

Rubén Martos Prieto

Quantum Symmetries Student Seminar

19th March 2021

Motivation Basic tools

Introduction

The Kadison-Kaplansky conjecture

Remork: C[7] replace by $C_{r}^{*}(7) := \lambda(C[7])$ Ly left regular

Yep.

- How to construct idempotents in $\mathbb{C}[\Gamma]$?
 - Assume that Γ has non-trivial torsion.
 - Let $\widehat{\gamma} \in \Gamma$ of order n > 1.
 - If ω is a nth root of unity, then the element

$$\boxed{p_{\omega} := \frac{1}{n} \sum_{i=0}^{n-1} \omega^{i} \gamma^{i}} \quad p_{\omega}^{2} = p_{\omega}^{2}$$

is an idempotent in $\mathbb{C}[\Gamma]$.

- Assume that Γ is torsion-free.
 - We don't know how to construct idempotents $\neq 0, 1$.

Kadison-Kaplansky conjecture (1949)

If Γ is torsion-free, then $C_r^*(\Gamma)$ has no nontrivial idempotents.

If Γ is abelian, then we have (Pontryagin duality) Forcier Transfor.

 $C_r^*(\Gamma) \cong C(\widehat{\Gamma})$

Moreover, the following are equivalent:

The $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ has no nontrivial idempotents, $\widehat{\Gamma}$ is connected, $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ has no nontrivial idempotents, $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ is torsion-free. $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ has no nontrivial idempotents, $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ is torsion-free. $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ has no nontrivial idempotents, $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ is torsion-free. $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ has no nontrivial idempotents, $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ is torsion-free. $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ has no nontrivial idempotents, $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ is torsion-free. $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ has no nontrivial idempotents, $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ is torsion-free. $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ has no nontrivial idempotents, $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ is torsion-free. $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ has no nontrivial idempotents, $\bigcap_{r=1}^{\infty} \mathbb{C}^*(\Gamma)$ has

K-theory

Let A be a (unital) C*-algebra. _ K1; built from projections. We will look at two kind of elements: self-adjoint idempotents $:=\bigcup_{n}\mathcal{P}(\alpha l_{n}(A))$ and <u>unitaries</u>. • Given $p, q \in \mathcal{P}_{\infty}(A)$, we put Egyn eym $\tilde{p} \sim_0 \tilde{q} \Leftrightarrow \exists v \in \mathcal{M}_{\bullet}(A) \text{ such that } p = v^*v \text{ and } q = vv^*$ Huroray-von New. nxm Given $u, v \in \mathcal{U}_{\infty}(A)$, we put $u \in \mathcal{U}_{\infty}(A) = \lim_{n \to \infty} \mathcal{U}(\mathcal{M}_{n}(A))$ $(u \sim_1 v) \Leftrightarrow \exists k \geqslant \max\{n_u, n_v\}$ such that $u \oplus 1_{k-n_u} \sim_h v \oplus 1_{k-n_u}$ $ightharpoonup \operatorname{Put}(K_0(A)) := Gr(\mathcal{P}_{\infty}(A)/\sim_0)$ and $K_1(A) := \mathcal{U}_{\infty}(A)/\sim_1$. 1 Cp] - [q] 64

Examples

Remark: No says p and a house the same varye (=s same trace).

If
$$A := \mathcal{M}_n(\mathbb{C})$$
, then

 $K_0(\mathcal{M}_n(\mathbb{C})) \cong \mathbb{Z}$ and $K_1(\mathcal{M}_n(\mathbb{C})) \cong (0)$

Tr. $\mathcal{M}_n(\mathbb{C}) \longrightarrow \mathbb{Z}$

Additive

Ly additive

Ly orange (=s same trace).

Fact: $\mathcal{M}_n(\mathbb{C}) \cong (0)$

To additive

Ly orange (=s same trace).

 $\mathcal{M}_n(\mathbb{C}) \cong (0)$

To additive

Ly orange (=s same trace).

 $\mathcal{M}_n(\mathbb{C}) \cong (0)$
 $\mathcal{M}_n(\mathbb{C}) \cong (0)$

If
$$\Gamma$$
 is a finite group, then where $r=\#$ conjugacy classes of $K_0(\mathbb{C}[\Gamma])\cong R(\Gamma)$ and $K_1(\mathbb{C}[\Gamma])\cong (0)$

Ingredients; (1) Suspension:
$$SA := A \otimes Co(R)$$
.

(2) Both poindicity: $K_0(A) \cong K_1(SA)$

(3) $K_1(A) \cong K_1(A) \oplus \mathbb{Z}$

(4) $K_0(C(S^1)) \cong \mathbb{Z}$ and $K_1(C(S^1)) \cong \mathbb{Z}$

(5) $K_0(C(S^1)) \cong \mathbb{Z}$ and $K_1(C(S^1)) \cong \mathbb{Z}$

(6) $K_0(C(S^1)) \cong K_1(C(S^1)) \cong \mathbb{Z}$

(6) $K_0(C(S^1)) \cong K_1(C(S^1)) \cong K_1(C(S^1)) \cong \mathbb{Z}$

(7) $K_1(C(S^1)) \cong K_1(C(S^1)) \cong K_$

K-homology

in the operator algebraic framework

■ X, locally compact space with $\Gamma \curvearrowright X$ by homeomorphisms \Rightarrow $\Gamma \curvearrowright C_0(X)$: $\gamma \cdot f(x) := f(\gamma^{-1}x)$, $\forall \gamma \in \Gamma$, $x \in X$, $f \in C_0(X)$.

Generalized elliptic Γ -operator

A generalized elliptic Γ -operator on X is a triple $\underbrace{((H,u),\pi,F)}$ where

- \underline{u} is a unitary representation of Γ on the Hilbert space \underline{H} ,
- $\underline{\pi:C_0(X)\longrightarrow\mathcal{B}(H)}$ is a Γ -equivariant *-homomorphism
- and $F \in \mathcal{B}(H)$ self-adjoint

notion of homotopy

such that

for all $f \in C_0(X)$ and all $\gamma \in \Gamma$.

K-homology

$$\begin{array}{c} \blacksquare K_1^{\Gamma}(X) := K_{\Gamma}^1(C_0(X)) := \underbrace{\text{gener. elliptic Γ-operators}}_{\text{γ homotopy γ}}. \\ \blacksquare K_0^{\Gamma}(X) := K_{\Gamma}^0(C_0(X)) = \underbrace{\text{even}}_{\text{gener. elliptic Γ-operators}}_{\text{homotopy}}. \\ \blacksquare K_0^{\Gamma}(X) := K_0^0(C_0(X)) = \underbrace{\text{even}}_{\text{γ homotopy γ}} := \underbrace{\text{even}}_{\text{γ homotopy γ}}. \\ \blacksquare K_0^{\Gamma}(X) := K_0^0(C_0(X)) = \underbrace{\text{even}}_{\text{γ homotopy γ}} := \underbrace{\text{even}}_{\text{γ homotopy γ homotopy γ homoto$$

Examples

- If Γ is finite and $X := \{*\}$, then $K_0^{\Gamma}(\{*\}) \cong R(\Gamma)$.

$$K_1^{\Gamma}(\{*\}) \cong (0). \qquad \text{lwg-lu1} \vdash$$

Examples

If
$$\Gamma:=\mathbb{Z}$$
, $K:=\mathbb{R}$ and $\mathbb{Z} \curvearrowright \mathbb{R}$ by translation, then $H:=L^2(\mathbb{R})$ with representation u of \mathbb{Z} given by
$$u_n(f)(t):=f(t-n) \ \forall n\in\mathbb{Z}, f\in L^2(\mathbb{R}), t\in\mathbb{R}.$$
 In the proof of E is a sum of E in the proof o

Kasparov KK-theory

- Generalisation of both K-theory and K-homology.
- Bifunctor $KK(\cdot, \cdot)$ defined on (separable) C^* -algebras. * KK(A,B) is an abelian group. : generalized of r-hon. Extractly $KK(\mathbb{C},B)=K_0(B)$ K theory

 - $KK(A,\mathbb{C}) = K^0(A)$ \longrightarrow k-homology.
 - Kasparov product
 - $\underline{\otimes}: KK(A,C) \times KK(C,B) \longrightarrow KK(A,B).$
- Γ -equivariant version: $KK^{\Gamma}(A,B) \leadsto descent \ principle$:

$$j_{\Gamma}: KK^{\Gamma}(A, B) \longrightarrow KK(A \underset{r}{\rtimes} \Gamma, B \underset{r}{\rtimes} \Gamma)$$

The classifying space The conjecture

The BC assembly map

General ideas

Problems.

- It is hard to extract structural information of $C_r^*(\Gamma)$
- It is hard to compute $K_*(C_r^*(\Gamma))$.
- lacktriangle Torsion of Γ should be handled in some way.

Strategy.

- Apply topological/geometrical techniques to study $C_r^*(\Gamma)$.
- Find a topological space associated to Γ able to encode all relevant information of $K_*(C_r^*(\Gamma))$.
- Assembly local data (coming from the torsion phenomena) to understand the global space.

General ideas

Problems.

- It is hard to extract structural information of $C_r^*(\Gamma)$.
- It is hard to compute $K_*(C_r^*(\Gamma))$.
- ▶ Torsion of Γ should be handled in some way.

Strategy.

- Apply topological/geometrical techniques to study $C_r^*(\Gamma)$.
- Find a topological space associated to Γ able to encode all relevant information of $K_*(C_r^*(\Gamma))$.
- Assembly local data (coming from the torsion phenomena) to understand the global space.

A model for $E\Gamma$

- \blacksquare X, Hausdorff space.
- $\Gamma \sim X$ by homeomorphisms. \longrightarrow is induced from a find

Proper action

We say that X is a proper Γ -space or that the action $\Gamma \curvearrowright X$ is proper if for every $x \in X$ there exists a triple $(U_x(\Lambda_x, \rho_x))$ where

- U_x is a Γ -invariant open neighborhood of x,
- Λ_x is a finite subgroup of Γ
- and $\rho_x:U_x\longrightarrow \Gamma/\Lambda_x$ is a Γ -invariant map.

A model for $E\Gamma$

. If T is finite => avory cretion of T is propor => ET:=1 a'l.

If T is torsion-tree => We recover the notion of ET = (ET)

Universal example

A universal example for proper actions of Γ , denoted by $E\Gamma$ is a proper Γ -space such that if X is another proper Γ -space, then there exists a Γ -map $X \longrightarrow E\Gamma$, and any two Γ -maps from X to $E\Gamma$ are Γ -homotopic.

• $\underline{E}\Gamma$ is unique up to Γ -homotopy. (* | E 17 always certits.

A model for $E\Gamma$

Probability measures with finite support

$$\underline{E\Gamma} := \{f: \Gamma \longrightarrow [0,1] \mid f \text{ has finite support and } \sum_{x \in \Gamma} f(x) = 1\}$$

 $\underline{E}\Gamma$ is a metric space with the sup-norm:

$$||f-g||_{\infty}:=\sup_{x\in\Gamma}\{|f(x)-g(x)|\},\ \forall f,g\in\underline{E}\Gamma.$$

lacksquare $\Gamma \curvearrowright \underline{E}\Gamma$ properly via

$$\gamma \cdot f(x) := f(\gamma^{-1}x), \ \forall x, \gamma \in \Gamma, \ f \in \underline{E}\Gamma.$$

 $\stackrel{\smile}{=} \underline{E}\Gamma$ is a universal example for proper actions of Γ .

Construction of the assembly map

want understand

- Right hand side: $K_*(C_r^*(\Gamma))$
- Left hand side: $K_*^{top}(\Gamma) = \lim_{\substack{X \subset E\Gamma \\ \Gamma-compact''}} K_*^{\Gamma}(X)$ k-homolyy mily support.
- We can construct a group homomorphism

$$\overline{\mu^{\Gamma}: K_*^{top}(\Gamma) \longrightarrow K_*(C_r^*(\Gamma))}.$$

- Baum-Connes-Higson's approach \leadsto deal directly with K-homology.

 Kasparov's approach \leadsto use KK-theory + descent principle.

Baum-Connes conjecture (1982)

We say that Γ satisfies the Baum-Connes conjecture if the assembly map

$$\mu^{\Gamma}: K_*^{top}(\Gamma) \longrightarrow K_*(C_r^*(\Gamma))$$

is an isomorphism.

Some consequences

- 1 If the BC conjecture is true, then we would have a method to compute $K_*(C_r^*(\Gamma))$: through topological/geometrical techniques.
- igwedge μ^Γ surjectiveigotimes Kadison-Kaplansky conjecture for Γ holds.
- μ^{Γ} injective \Rightarrow consequences in geometry (existence of specific invariants on manifolds \rightsquigarrow Novikov conjecture).

Introduction
The BC assembly map
Perspectives of the conjecture
Meyer-Nest's approach

Dirac-dual Dirac method Partial results Versions of the conjecture

Perspectives of the conjecture

$$\blacksquare \text{ If } \Gamma := e \text{, then } C^*_r(\{e\}) = \mathbb{C} \text{ and } \underline{E}\{e\} = \{*\}.$$

$$\text{If } \underline{\Gamma} \text{ is finite, then } \underline{C}_r^*(\underline{\Gamma}) \cong \bigoplus_{i=1}^r \mathcal{M}_{k_i}(\mathbb{C}) \text{ and } \underline{E}\underline{\Gamma} = \{*\}.$$

$$\text{O.DS and } \underline{E}\underline{\Gamma} = \{*\}.$$

$$\text{ISOM.}$$

- Moreover, μ^{Γ} realizes the isomorphism between $K_*^{top}(\{*\})$ and $K_*(C_r^*(\Gamma)).$

- $\blacksquare \text{ If } \Gamma := e \text{, then } C^*_r(\{e\}) = \mathbb{C} \text{ and } \underline{E}\{e\} = \{*\}.$
- $\blacksquare \mbox{ If } \Gamma \mbox{ is finite, then } C^*_r(\Gamma) \cong \bigoplus_{i=1}^r \mathcal{M}_{k_i}(\mathbb{C}) \mbox{ and } \underline{E}\Gamma = \{*\}.$
 - $K_0(C_r^*(\Gamma)) \cong R(\Gamma), K_1(C_r^*(\Gamma)) \cong (0).$
 - $K_0^{\Gamma}(\{*\}) \cong R(\Gamma), K_1^{\Gamma}(\{*\}) \cong (0).$
 - Moreover, μ^{Γ} realizes the isomorphism between $K^{top}_*(\{*\})$ and $K_*(C^*_r(\Gamma))$.
- $lue{\Gamma}$ satisfies the Baum-Connes conjecture!

$$\text{If } \Gamma = \mathbb{Z}, \text{ then } C^*_r(\mathbb{Z}) \cong C(S^1) \text{ and } \underline{E}\mathbb{Z} = E\mathbb{Z} \neq \mathbb{R}$$
 and
$$\text{If } K_0(C^*_r(\mathbb{Z})) \cong \mathbb{Z}, K_1(C^*_r(\mathbb{Z})) \cong \mathbb{Z}.$$
 Is
$$K_0^\mathbb{Z}(\mathbb{R}) \cong \mathbb{Z}, K_1^\mathbb{Z}(\mathbb{R}) \cong \mathbb{Z}.$$

- Moreover, $\mu^{\mathbb{Z}}$ realizes the isomorphism between $K^{top}_*(\mathbb{R})$ and $K_*(C(S^1))$.
- $lue{\mathbb{Z}}$ satisfies the Baum-Connes conjecture

- If $\Gamma = \mathbb{Z}$, then $C_r^*(\mathbb{Z}) \cong C(S^1)$ and $\underline{E}\mathbb{Z} = E\mathbb{Z} = \mathbb{R}$
 - $K_0(C_r^*(\mathbb{Z})) \cong \mathbb{Z}, K_1(C_r^*(\mathbb{Z})) \cong \mathbb{Z}.$
 - $K_0^{\mathbb{Z}}(\mathbb{R}) \cong \mathbb{Z}, K_1^{\mathbb{Z}}(\mathbb{R}) \cong \mathbb{Z}.$
 - Moreover, $\mu^{\mathbb{Z}}$ realizes the isomorphism between $K^{top}_*(\mathbb{R})$ and $K_*(C(S^1))$.
- Z satisfies the Baum-Connes conjecture!

How to tackle the conjecture?

Most of the known proofs of BC are based in this method and it was formalised by J.-L. Tu (1999).

- Put $\mathscr{L}_{\Gamma} := \{ proper \Gamma C^* \text{algebras} \}$: $\operatorname{Ind}(\mathfrak{D})$, Assume that there exist
- \longrightarrow 1 $A \in \mathcal{L}_{\Gamma}$, \mathcal{L}_{κ} -homol.
- $\alpha \in KK^{\Gamma}(A,\mathbb{C}) \text{ (Dirac element)},$ and $\beta \in KK^{\Gamma}(\mathbb{C},A) \text{ (dual Dirac element)}$ such that $\gamma := \beta \otimes \alpha = \mathbb{I}_{\mathbb{C}} \in KK^{\Gamma}(\mathbb{C},\mathbb{C}).$ Then the Baum-Call

Then the Baum-Connes conjecture holds for $\Gamma!$

Obstructions?

"trivial reps. is an isolated point among witary reps of ?"

Theorem (V. Lafforgue, 2012)

If Γ is a hyperbolic group, then Γ satisfies the Baum-Connes conjecture.

- Many hyperbolic groups have property (T): lattices in sympectic groups.
- Very rare to find (infinite) discrete groups with property (T) for which we know to show the BC conjecture...

Other positive answers

Haagerup proporty: "I wit repr of Piontainiy"

Theorem (N. Higson & G. Kasparov, 2001)

If Γ has the Haagerup property, then Γ satisfies the Baum-Connes conjecture.

 \blacktriangleright Very large class of groups: abelian, finite, amenable, K-amenable...

-s Construct a Dietement and J-1.

Beyond discrete groups

- $\Gamma \longrightarrow G$, locally compact group.
- \blacksquare $G \leadsto \mathcal{G}$, locally compact groupoid.
- Groups $\leadsto X$ metric spaces: coarse geometry.
- In all cases, we can include *coefficients*:

$$\mu_A^G: K_*^{top}(G, A) \longrightarrow K_*(A \underset{r}{\rtimes} G)$$

▶ The Baum-Connes conjecture with coefficients turns out to be false (*Higson-Lafforgue-Skandalis*, 2001).

Beyond discrete groups

- $\blacksquare \Gamma \leadsto G$, locally compact group.
- $\blacksquare G \leadsto \mathcal{G}$, locally compact groupoid.
- Groups \(\simes \) X metric spaces: coarse geometry.
- In all cases, we can include coefficients:

Cr(G) when A=C $\mu_A^G: K_*^{top}(G,A) \longrightarrow K_*(A \rtimes_{\mathscr{C}} G)$

▶ The Baum-Connes conjecture with coefficients turns out to be false (Higson-Lafforgue-Skandalis, 2001).

Beyond geometry

So far, the formulation of BC has a fundamental geometrical component...

Can we obtain a quantum Baum-Connes conjecture?

Groups, $G \leadsto Quantum Groups, G$

The BC assembly map
Perspectives of the conjecture
Meyer-Nest's approach

ategorification of the Baum-Connes conjecture over the conjecture over the conjecture over the conjecture of the conjecture over the conjecture of the conje

Meyer-Nest's approach

General ideas

Problems.

- The geometry behind BC avoids its translation into a quantum framework.
- ► The BC assembly map makes sense only for K-theory was define a BC assembly map for other equivariant homology theories?
- $K_*^{top}(\Gamma)$ creates, sometimes, more problems than $K_*(C_r^*(\Gamma))$.

Strategy

- Adopt a categorical approach.
- ▶ Find generating subcategory: $\mathcal{L}_{\Gamma} \longleftrightarrow torsion \ of \ \Gamma$.
- Replace $K^{top}_*(\Gamma)$ by other K-theory groups that approximate $K_*(C^*_r(\Gamma))$ in terms of \mathscr{L}_Γ through spectral sequences.

General ideas

Problems.

- The geometry behind BC avoids its translation into a quantum framework.
- The BC assembly map makes sense only for K-theory define a BC assembly map for other equivariant homology theories?
- $K^{top}_*(\Gamma)$ creates, sometimes, more problems than $K_*(C^*_r(\Gamma))$.

Strategy.

- Adopt a categorical approach.
- ▶ Find generating subcategory: $\mathscr{L}_{\Gamma} \longleftrightarrow torsion \ of \ \Gamma$.
- Replace $K^{top}_*(\Gamma)$ by other K-theory groups that approximate $K_*(C^*_r(\Gamma))$ in terms of \mathscr{L}_Γ through spectral sequences.

The Kasparov category

- If Γ is a (countable) discrete group, \mathscr{KK}^{Γ} denotes the Γ -equivariant Kasparov category:
 - $Obj(\mathscr{K}\mathscr{K}^{\Gamma}) := \text{ separable } \Gamma\text{-}C^*\text{-algebras}.$
 - $\blacktriangleright Hom_{\mathscr{K}\mathscr{K}^{\Gamma}}(A,B) := KK^{\Gamma}(A,B).$
- Suspension of C^* -algebras, Σ , is an auto-equivalence (by Bott periodicity).
- Given an equivariant *-homomorphism $f: A \longrightarrow B$, a mapping cone triangle is the following diagram

$$\Sigma(B) \longrightarrow C_f \longrightarrow A \stackrel{f}{\longrightarrow} B.$$

■ **Theorem** (Meyer-Nest, 2006): $(\mathcal{K}\mathcal{K}^{\Gamma}, \Sigma, \Delta_{\Sigma})$ is a triangulated category.

Choice of the complementary pair in \mathscr{KK}^{Γ}

- lacksquare $\mathcal{F}:=$ family of all finite subgroups of Γ .
- Compactly induced objects:

$$\mathscr{L}_{\Gamma} := \langle \{ A \in Obj(\mathscr{K}\mathscr{K}^{\Gamma}) \mid A \cong Ind_{\Lambda}^{\Gamma}(B), \ \Lambda \in \mathcal{F}, \ B \in \mathscr{K}\mathscr{K}^{\Lambda} \} \rangle.$$

Compactly contractible objects:

$$\mathscr{N}_{\Gamma} := \{ A \in Obj(\mathscr{K}\mathscr{K}^{\Gamma}) \mid Res^{\Gamma}_{\Lambda}(A) \cong (0) \ \forall \Lambda \in \mathcal{F} \}.$$

■ **Theorem** (Meyer-Nest, 2006): $(\mathcal{L}_{\Gamma}, \mathcal{N}_{\Gamma})$ is a complementary pair in $\mathcal{K}\mathcal{K}^{\Gamma}$.

Categorifying the assembly map

Consider the functor

$$F: \ \mathcal{K}\mathcal{K}^{\Gamma} \longrightarrow \mathscr{A}b^{\mathbb{Z}/2}$$

$$A \longmapsto F(A) := K_*(A \rtimes \Gamma)$$

■ The *categorical Baum-Connes assembly map* is the natural transformation

$$\eta^{\Gamma}: \mathbb{L}F \longrightarrow F$$

Categorical Baum-Connes conjecture

- We say that Γ satisfies the *(categorical) Baum-Connes conjecture* if η^{Γ} is a natural equivalence.
- We say that Γ satisfies the **strong** (categorical) Baum-Connes conjecture if $\mathcal{L} = \mathcal{K}\mathcal{K}^{\Gamma}$.
 - Strong Baum-Connes conjecture Dirac-dual Dirac method.

Reformulation

Reformulation of BC (R. Meyer & R. Nest, 2006)

The following assertions are equivalent:

- $\begin{array}{c} \bullet \quad \Gamma \text{ satisfies the Baum-Connes conjecture (with coefficients):} \\ \mu_A^\Gamma \text{ is an isomorphism, for every } \Gamma\text{-}C^*\text{-algebra }A. \end{array}$
- 2 The natural transformation $\eta^{\Gamma}: \mathbb{L}F \longrightarrow F$ is a natural equivalence.

Reformulation II

Reformulation of BC (R. Meyer & R. Nest, 2006)

The following assertions are equivalent:

- f 1 Satisfies the Baum-Connes conjecture (with coefficients)
- **2** $F(A) = K(A \rtimes_r \Gamma) = (0)$, for every ΓC^* -algebra $A \in \mathcal{N}$.
- $\textbf{3} \ \, \text{If} \, \, A,B \, \, \text{are} \, \, \Gamma\text{-}C^*\text{-algebras such that} \, \, K(A \underset{r}{\rtimes} \Lambda) \cong K(B \underset{r}{\rtimes} \Lambda) \\ \text{for every} \, \, \Lambda \in \mathcal{F}\text{, then} \, \, K(A \underset{r}{\rtimes} \Gamma) \cong K(B \underset{r}{\rtimes} \Gamma).$

- Main problem: what is torsion for Γ and how to handle it in the previous famework?
 - ▶ $\Lambda \leq \Gamma$ yields torsion for Γ .
 - ▶ The family of finite discrete quantum subgroups of \mathbb{F} does not cover the whole torsion phenomena for \mathbb{F} !
 - ▶ The Induction-Restriction approach must be revisited \leadsto how to choose the complementary pair in \mathscr{KK}^{Γ} ?

Some results

Madison-Kaplanshy.

Jails I tave

- BC for basic examples: $\widehat{SU_q(2)}$, $\widehat{O^+(n)}$, $\widehat{U^+(n)}$, $\widehat{S_N^+}$ (C. Voigt and R. Vergnioux, 2011-2015).
- $\bigcap K$ -theory computations for their C^* -algebras.
- Stability of BC: it passes through the free product construction (*C. Voigt R. Vergnioux, 2013*), it passes through the quantum semi-direct product construction (*R. M., 2017*), it passes through the free wreath product construction (*A. Freslon R. M., 2017*).

R. Dring

- Torsion phenomena:
 - ▶ Classification results: S_N^+ (*C. Voigt, 2015*), $\mathbb{G} \wr_* S_N^+$ (*A. Freslon R. M., 2017*), $\Gamma \ltimes \mathbb{G}$ (*P. Fima R.M., in progress*), projective torsion is given by projective representations (*K. De Commer R. Nest R. M., in preparation*).
 - ▶ Stability of torsion-freeness: it passes through the free product construction (*Y. Arano K. De Commer, 2015*), it passes through the quantum semi-direct product construction (*R. M., 2017*), it passes through divisible discrete quantum subgroups (*R. M., 2020*).

■ BC formulation:

- ▶ Candidate for $\mathcal{L}_{\mathbb{F}}$ (within the works of C. Voigt).
- $(\mathcal{L}_{\mathbb{\Gamma}}, \mathcal{N}_{\mathbb{\Gamma}})$ is complementary in $\mathscr{KK}^{\mathbb{\Gamma}}$ (Y. Arano A. Skalski, 2020).
- $\begin{array}{l} (\mathscr{L}_{\mathbb{\Gamma}},\mathscr{N}_{\mathbb{\Gamma}}) \text{ is complementary in } \mathscr{KK}^{\mathbb{\Gamma}} \text{ when } \mathbb{\Gamma} \text{ is} \\ \underline{\text{permutation torsion-free}} \text{ (K. De Commer R. Nest R. M., in} \\ \underline{\text{preparation}}). \end{array}$

Conclusion

- Understanding the structure of group C^* -algebras.
 - Geometry.
 - Analysis.
 - Representation theory.
 - Category theory.
- Linking mathematics of different flavour and nature.

The BC assembly map Perspectives of the conjecture Meyer-Nest's approach

Thank you!