Symmetries of Operator Algebras

Samuel Evington

University of Münster

Notation

- H Complex Hilbert Space
- B(H) Algebra of continuous linear operators $H \rightarrow H$
- T^* Adjoint of $T \in B(H)$
 - Characterised by $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$

Notation

- H Complex Hilbert Space
- B(H) Algebra of continuous linear operators $H \to H$
- T^* Adjoint of $T \in B(H)$

Characterised by $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$

Definition

An *operator algebra* is a subalgebra of B(H) closed under taking adjoints and limits.

Notation

H Complex Hilbert Space

B(H) Algebra of continuous linear operators $H \to H$

 T^* Adjoint of $T \in B(H)$

Characterised by $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$

Definition

An *operator algebra* is a subalgebra of B(H) closed under taking adjoints and limits.

Uniform Limits

C*-Algebras

e.g. C(X)

Non-commutative topology

Pointwise Limits

von Neumann Algebras

e.g. $L^{\infty}(\Omega)$

Non-commutative measure theory

- Classical:
 - ▶ Automorphisms $\phi: A \rightarrow A$.
 - Group theory
 - ▶ Actions: homomorphisms $G \to Aut(A)$.

- Classical:
 - ▶ Automorphisms $\phi: A \rightarrow A$.
 - ▶ Group theory
 - ▶ Actions: homomorphisms $G \to \operatorname{Aut}(A)$.
- Quantum:
 - A-A Bimodules
 - Tensor categories
 - ▶ Actions: tensor functors $C \to Bim(A)$.

An automorphism $\phi \in \operatorname{Aut}(A)$ has a corresponding bimodule $\operatorname{id} A_{\phi}$.

- Classical:
 - ▶ Automorphisms $\phi: A \rightarrow A$.
 - ▶ Group theory
 - ▶ Actions: homomorphisms $G \to \operatorname{Aut}(A)$.
- Quantum:
 - A-A Bimodules
 - Tensor categories
 - ▶ Actions: tensor functors $C \to Bim(A)$.

An automorphism $\phi \in \operatorname{Aut}(A)$ has a corresponding bimodule $\operatorname{id} A_{\phi}$.

Let A be an operator algebra and C be a tensor category.

Do there exists actions $\mathcal{C} \curvearrowright A$?

To what extent is the action unique?

- Classical Symmetries
- Anomalous Symmetries:
- Quantum Symmetries

- Classical Symmetries
- Anomalous Symmetries:
 - Outer automorphisms Out(A) = Aut(A)/Inn(A).
 - "Actions": homomorphisms $G \to \text{Out}(A)$.
 - i.e. maps $G \to \operatorname{Aut}(A)$ that are multiplicative up to unitaries
- Quantum Symmetries

- Classical Symmetries
- Anomalous Symmetries:
 - ▶ Outer automorphisms Out(A) = Aut(A)/Inn(A).
 - ▶ "Actions": homomorphisms $G \to \text{Out}(A)$.
 - i.e. maps $G \to \operatorname{Aut}(A)$ that are multiplicative up to unitaries
- Quantum Symmetries
 - ▶ Actions $Vec(G, \omega) \curvearrowright A$ or more precisely actions $Hilb(G, \omega) \curvearrowright A$.

Theorem (Connes)

There is a unique (separably acting) amenable II_1 factor

$$\mathcal{R}=\overline{\bigotimes}_{i\in\mathbb{N}}(\mathbb{M}_2(\mathbb{C}),\mathrm{tr}).$$

Theorem

There are loads of simple amenable C*-algebras.

Theorem (2015, The Elliott Programme)

There class of unital, simple, separable, amenable, \mathcal{Z} -stable C^* -Algebras satisfying the UCT is classified by K-theory and traces.

Symmetries of Operator Algebras

① Symmetries of the hyperfinite II_1 factor $\mathcal R$

Symmetries of the classifiable C*-algebras

Symmetries of Operator Algebras

① Symmetries of the hyperfinite II_1 factor $\mathcal R$

2 Symmetries of the classifiable C*-algebras

$Aut(\mathcal{R})$

Let first consider automorphism of the hyperfinite II_1 factor

$$\mathcal{R} = \overline{igotimes_{i \in \mathbb{N}}}(\mathbb{M}_2(\mathbb{C}), \operatorname{tr}).$$

$Aut(\mathcal{R})$

Let first consider automorphism of the hyperfinite II_1 factor

$$\mathcal{R}=\overline{\bigotimes}_{i\in\mathbb{N}}(\mathbb{M}_2(\mathbb{C}),\mathrm{tr}).$$

There are loads of them!

• Every $\sigma \in \operatorname{Sym}(\mathbb{N})$ defines an automorphism $\phi_{\sigma} \in \operatorname{Aut}(\mathcal{R})$ by permuting the tensor factors.

$Aut(\mathcal{R})$

Let first consider automorphism of the hyperfinite II_1 factor

$$\mathcal{R}=\overline{\bigotimes}_{i\in\mathbb{N}}(\mathbb{M}_2(\mathbb{C}),\mathrm{tr}).$$

There are loads of them!

• Every $\sigma \in \operatorname{Sym}(\mathbb{N})$ defines an automorphism $\phi_{\sigma} \in \operatorname{Aut}(\mathcal{R})$ by permuting the tensor factors.

Theorem

Every countable discrete groups G embeds in $Aut(\mathcal{R})$.

Let u be an unitary in

$$\mathcal{R} = \overline{igotimes_{i \in \mathbb{N}}}(\mathbb{M}_2(\mathbb{C}), \operatorname{tr}).$$

Then

Let u be an unitary in

$$\mathcal{R}=\overline{\bigotimes}_{i\in\mathbb{N}}(\mathbb{M}_2(\mathbb{C}),\mathrm{tr}).$$

Then

• $u \in_{\epsilon} \overline{\bigotimes}_{i=1}^{N} \mathbb{M}_{2}(\mathbb{C}) \otimes 1 \otimes 1 \otimes \cdots$ for some N.

Let u be an unitary in

$$\mathcal{R}=\overline{\bigotimes}_{i\in\mathbb{N}}(\mathbb{M}_2(\mathbb{C}),\mathrm{tr}).$$

Then

- $u \in_{\epsilon} \overline{\bigotimes}_{i=1}^{N} \mathbb{M}_{2}(\mathbb{C}) \otimes 1 \otimes 1 \otimes \cdots$ for some N.
- So Ad(u) almost preserves a tail of tensor factors.

Let u be an unitary in

$$\mathcal{R}=\overline{\bigotimes}_{i\in\mathbb{N}}(\mathbb{M}_2(\mathbb{C}),\mathrm{tr}).$$

Then

- $u \in_{\epsilon} \overline{\bigotimes}_{i=1}^{N} \mathbb{M}_{2}(\mathbb{C}) \otimes 1 \otimes 1 \otimes \cdots$ for some N.
- So Ad(u) almost preserves a tail of tensor factors.

Proposition

The automorphism $\phi_{\sigma} \in \operatorname{Aut}(\mathcal{R})$ is inner if and only if the permutation σ has finite support.

Let u be an unitary in

$$\mathcal{R}=\overline{\bigotimes}_{i\in\mathbb{N}}(\mathbb{M}_2(\mathbb{C}),\mathrm{tr}).$$

Then

- $u \in_{\epsilon} \overline{\bigotimes}_{i=1}^{N} \mathbb{M}_{2}(\mathbb{C}) \otimes 1 \otimes 1 \otimes \cdots$ for some N.
- So Ad(u) almost preserves a tail of tensor factors.

Proposition

The automorphism $\phi_{\sigma} \in \operatorname{Aut}(\mathcal{R})$ is inner if and only if the permutation σ has finite support.

Theorem

Every countable discrete group G embeds in $Out(\mathcal{R})$.

Connes' classification of automorphisms of ${\mathcal R}$

Definition

Let $\phi, \psi \in Aut(\mathcal{R})$.

Say ϕ and ψ are *conjugate* if $\phi = \theta \circ \psi \circ \theta^{-1}$ for some $\theta \in \operatorname{Aut}(\mathcal{R})$.

Say ϕ and ψ are outer conjugate if $\bar{\phi} = \theta \circ \bar{\psi} \circ \theta^{-1}$ for some $\theta \in \operatorname{Out}(\mathcal{R})$.

Connes' classification of automorphisms of ${\cal R}$

Definition

Let $\phi, \psi \in Aut(\mathcal{R})$.

Say ϕ and ψ are *conjugate* if $\phi = \theta \circ \psi \circ \theta^{-1}$ for some $\theta \in \operatorname{Aut}(\mathcal{R})$.

Say ϕ and ψ are outer conjugate if $\bar{\phi} = \theta \circ \bar{\psi} \circ \theta^{-1}$ for some $\theta \in \operatorname{Out}(\mathcal{R})$.

Connes classified automorphisms $\phi \in \operatorname{Aut}(\mathcal{R})$ up to outer conjugacy. The invariant is

Connes' classification of automorphisms of ${\cal R}$

Definition

Let $\phi, \psi \in Aut(\mathcal{R})$.

Say ϕ and ψ are *conjugate* if $\phi = \theta \circ \psi \circ \theta^{-1}$ for some $\theta \in \operatorname{Aut}(\mathcal{R})$. Say ϕ and ψ are *outer conjugate* if $\bar{\phi} = \theta \circ \bar{\psi} \circ \theta^{-1}$ for some $\theta \in \operatorname{Out}(\mathcal{R})$.

Connes classified automorphisms $\phi \in \operatorname{Aut}(\mathcal{R})$ up to outer conjugacy. The invariant is

• The order $n \in \mathbb{N}$, i.e. the smallest $n \in \mathbb{N}$ such that $\bar{\phi}^n = 1$ in $\mathrm{Out}(\mathcal{R})$.

Connes' classification of automorphisms of ${\cal R}$

Definition

Let $\phi, \psi \in Aut(\mathcal{R})$.

Say ϕ and ψ are *conjugate* if $\phi = \theta \circ \psi \circ \theta^{-1}$ for some $\theta \in \operatorname{Aut}(\mathcal{R})$. Say ϕ and ψ are *outer conjugate* if $\bar{\phi} = \theta \circ \bar{\psi} \circ \theta^{-1}$ for some $\theta \in \operatorname{Out}(\mathcal{R})$.

Connes classified automorphisms $\phi \in \operatorname{Aut}(\mathcal{R})$ up to outer conjugacy. The invariant is

- The order $n \in \mathbb{N}$, i.e. the smallest $n \in \mathbb{N}$ such that $\bar{\phi}^n = 1$ in $\mathrm{Out}(\mathcal{R})$.
- When $n < \infty$, an n-th root of unity $\omega \in \mathbb{C}$ such that

$$\phi^n = \operatorname{Ad}(u)$$
 and $\phi(u) = \omega u$.

Where does the *n*-th root of unity come from?

Theorem (Connes)

Let $\phi \in \operatorname{Aut}(\mathcal{R})$. Suppose $\phi^n = \operatorname{Ad}(u)$. Then $\phi(u) = \omega u$ for some n-th root of unity $\omega \in \mathbb{C}$.

Proof.

We have

$$\phi^{n} \circ \phi = \phi \circ \phi^{n},$$

$$Ad(u) \circ \phi = \phi \circ Ad(u),$$

$$Ad(u) \circ \phi = Ad(\phi(u)) \circ \phi,$$

[Note
$$\phi(uau^*) = \phi(u)\phi(a)\phi(u)^*$$
.]

Where does the *n*-th root of unity come from?

Theorem (Connes)

Let $\phi \in \operatorname{Aut}(\mathcal{R})$. Suppose $\phi^n = \operatorname{Ad}(u)$. Then $\phi(u) = \omega u$ for some n-th root of unity $\omega \in \mathbb{C}$.

Proof.

We have

$$\phi^{n} \circ \phi = \phi \circ \phi^{n},$$

$$Ad(u) \circ \phi = \phi \circ Ad(u),$$

$$Ad(u) \circ \phi = Ad(\phi(u)) \circ \phi,$$

[Note
$$\phi(uau^*) = \phi(u)\phi(a)\phi(u)^*$$
.]

So
$$Ad(\phi(u)) = Ad(u)$$
.

As $Z(\mathcal{R}) = \mathbb{C}$, this means that $\phi(u) = \omega u$ for some $\omega \in \mathbb{C}$.

Since ϕ^n fixes u, we get that ω is an n-th root of unity.

Theorem (Connes)

View $\mathcal{R} = \bigotimes_{i \in \mathbb{N}} \mathbb{M}_n$. Let $\pi_i : \mathbb{M}_n \to \mathcal{R}$ be the embedding into the i-th tensor factor, and let $\theta : \mathcal{R} \to \mathcal{R}$ be the endomorphsim such that $\theta \pi_i = \pi_{i+1}$ for all $i \in \mathbb{N}$.

Let ω be an n-th root of unity. Set

$$u = \sum_{j=1}^{n} \omega^{j} \pi_{1}(e_{jj}) \tag{1}$$

$$v = \pi_1(e_{n1})\theta(u) + \sum_{j=1}^{n-1} \pi_1(e_{j,j+1}). \tag{2}$$

Then the sequence $(\operatorname{Ad}(v\theta(v)\theta^2(v)\cdots\theta^k(v)))_{k=1}^{\infty}$ converges pointwise in the weak* topology to an automorphism s_n^{ω} such that $(s_n^{\omega})^n = \operatorname{Ad}(u)$ and $s_n^{\omega}(u) = \omega u$.

Warning: This is not Connes' construction!

Warning: This is not Connes' construction!

Let $\theta \notin \mathbb{Q}$. The irrational rotation algebra A_{θ} is the universal C*-algebra two unitaries satisfying

$$uvu^* = e^{2\pi i\theta}v.$$

Constructing automorphisms with $\omega \neq 1$

Warning: This is not Connes' construction!

Let $\theta \notin \mathbb{Q}$. The irrational rotation algebra A_{θ} is the universal C*-algebra two unitaries satisfying

$$uvu^* = e^{2\pi i\theta}v.$$

By the universal property, we can define $\phi \in \operatorname{Aut}(A_{\theta})$ via

$$\phi(\mathbf{v}) = e^{2\pi i \frac{\theta}{n}} \mathbf{v}, \quad \phi(\mathbf{u}) = \omega \mathbf{u}.$$

Constructing automorphisms with $\omega \neq 1$

Warning: This is not Connes' construction!

Let $\theta \notin \mathbb{Q}$. The irrational rotation algebra A_{θ} is the universal C*-algebra two unitaries satisfying

$$uvu^* = e^{2\pi i\theta}v.$$

By the universal property, we can define $\phi \in \operatorname{Aut}(A_{\theta})$ via

$$\phi(\mathbf{v}) = e^{2\pi i \frac{\theta}{n}} \mathbf{v}, \quad \phi(\mathbf{u}) = \omega \mathbf{u}.$$

Observe that

$$\phi^n = \operatorname{Ad}(u), \quad \phi(u) = \omega u.$$

Constructing automorphisms with $\omega \neq 1$

Warning: This is not Connes' construction!

Let $\theta \notin \mathbb{Q}$. The irrational rotation algebra A_{θ} is the universal C*-algebra two unitaries satisfying

$$uvu^* = e^{2\pi i\theta}v.$$

By the universal property, we can define $\phi \in \operatorname{Aut}(A_{\theta})$ via

$$\phi(\mathbf{v}) = e^{2\pi i \frac{\theta}{n}} \mathbf{v}, \quad \phi(\mathbf{u}) = \omega \mathbf{u}.$$

Observe that

$$\phi^n = \mathrm{Ad}(u), \quad \phi(u) = \omega u.$$

Since A_{θ} has a unique trace, ϕ extends to an automorphism of $\mathrm{GNS}_{\mathrm{tr}}(A_{\theta})''\cong\mathcal{R}.$

Generalisations

- Connes:
 - ▶ Outer automorphisms order *n*.
 - $ightharpoonup \omega$ is an *n*-th root of unity.

Generalisations

- Connes:
 - Outer automorphisms order n.
 - ω is an *n*-th root of unity.
- Jones, Ocneanu:
 - ▶ Embeddings $G \to \text{Out}(A)$ for countable amenable groups.
 - ω is now an element of $H^3(G,\mathbb{T})$.

Generalisations

- Connes:
 - Outer automorphisms order n.
 - ω is an *n*-th root of unity.
- Jones, Ocneanu:
 - ▶ Embeddings $G \to \text{Out}(A)$ for countable amenable groups.
 - ω is now an element of $H^3(G,\mathbb{T})$.
- Popa:
 - \triangleright Actions of amenable tensor categories on \mathcal{R} (via subfactor theory).
 - $\blacktriangleright \omega$ is now the associator.

Symmetries of Operator Algebras

1 Symmetries of the hyperfinite II_1 factor $\mathcal R$

Symmetries of the classifiable C*-algebras

Joint work with Sergio Girón Pacheco.

Idea: Replace \mathcal{R} with classifiable C*-algebras

ullet e.g. UHF algebras, AF algebras, the Jiang–Su algebra \mathcal{Z}, \dots

Joint work with Sergio Girón Pacheco.

Idea: Replace \mathcal{R} with classifiable C*-algebras

ullet e.g. UHF algebras, AF algebras, the Jiang–Su algebra $\mathcal{Z},\,\dots$

We are interested in existence (and uniqueness) of embeddings $G \to \operatorname{Out}(A)$ with invariant $\omega \in H^3(G, \mathbb{T})$.

Joint work with Sergio Girón Pacheco.

Idea: Replace \mathcal{R} with classifiable C*-algebras

ullet e.g. UHF algebras, AF algebras, the Jiang–Su algebra $\mathcal{Z},\,\dots$

We are interested in existence (and uniqueness) of embeddings $G \to \operatorname{Out}(A)$ with invariant $\omega \in H^3(G,\mathbb{T})$. (For $G = \mathbb{Z}/n\mathbb{Z}$, this reduces to $\phi \in \operatorname{Aut}(A)$ with order n in $\operatorname{Out}(A)$ and

You can view ω as an n-th root of unity)

Joint work with Sergio Girón Pacheco.

Idea: Replace \mathcal{R} with classifiable C*-algebras

ullet e.g. UHF algebras, AF algebras, the Jiang–Su algebra $\mathcal{Z},\,\dots$

We are interested in existence (and uniqueness) of embeddings $G \to \operatorname{Out}(A)$ with invariant $\omega \in H^3(G, \mathbb{T})$. (For $G = \mathbb{Z}/n\mathbb{Z}$, this reduces to $\phi \in \operatorname{Aut}(A)$ with order n in $\operatorname{Out}(A)$ and you can view ω as an n-th root of unity)

Note: We can also work with tensor functors $\mathrm{Hilb}(G,\omega) \to \mathrm{Bim}(A)$ (with some caveats).

- UHF algebras:
 - UHF_n = $\bigotimes_{i \in \mathbb{N}} \mathbb{M}_{n_i}(\mathbb{C})$
 - ▶ Classified by the *supernatural number* $\mathfrak{n} = n_1 n_2 n_3 \cdots$.
 - $K_0 = Q(\mathfrak{n}) \subset \mathbb{Q}$, $K_1 = 0$, unique trace

- UHF algebras:
 - UHF_n = $\bigotimes_{i \in \mathbb{N}} M_{n_i}(\mathbb{C})$
 - ▶ Classified by the *supernatural number* $\mathfrak{n} = n_1 n_2 n_3 \cdots$
 - $K_0 = Q(\mathfrak{n}) \subset \mathbb{Q}$, $K_1 = 0$, unique trace
- AF algebras:
 - ▶ Inductive limits $F_1 \rightarrow F_2 \rightarrow F_3 \rightarrow \cdots$, where F_i finite-dimensional
 - ▶ Classified by K_0 dimension group
 - $K_1 = 0$, can have loads of traces (even if $Z(A) = \mathbb{C}$)

- UHF algebras:
 - UHF_n = $\bigotimes_{i \in \mathbb{N}} M_{n_i}(\mathbb{C})$
 - ▶ Classified by the *supernatural number* $\mathfrak{n} = n_1 n_2 n_3 \cdots$
 - $K_0 = Q(\mathfrak{n}) \subset \mathbb{Q}$, $K_1 = 0$, unique trace
- AF algebras:
 - ▶ Inductive limits $F_1 \to F_2 \to F_3 \to \cdots$, where F_i finite-dimensional
 - ▶ Classified by K_0 dimension group
 - $K_1 = 0$, can have loads of traces (even if $Z(A) = \mathbb{C}$)
- The Jiang–Su Algebra \mathcal{Z} :
 - ▶ An inductive limit $D_1 \to D_2 \to D_3 \to \cdots$, where $D_i \subseteq C([0,1], \mathbb{M}_{n_i})$
 - ▶ No non-trivial projections, $K_0 = \mathbb{Z}$.
 - $ightharpoonup K_1 = 0$, unique trace
 - ▶ Important because classifiable C*-algebras satisfy $A \otimes \mathcal{Z} \cong A$.

Existence results

By adapting the vN-algebraic constructions, ...

Theorem

For any finite group G and $\omega \in H^3(G; \mathbb{T})$.

There exists a simple AF algebra A with unique trace and a homomorphism $G \to \operatorname{Out}(A)$ with invariant ω .

Existence results

By adapting the vN-algebraic constructions, ...

Theorem

For any finite group G and $\omega \in H^3(G; \mathbb{T})$.

There exists a simple AF algebra A with unique trace and a homomorphism $G \to \operatorname{Out}(A)$ with invariant ω .

In fact, we can take $A = \mathrm{UHF}_{|G|^{\infty}}$.

No-go theorems

No-go theorems

The Jiang–Su algebra \mathcal{Z} :

Theorem (E, Girón Pacheco)

For any group G and $\omega \in H^3(G; \mathbb{T})$.

Suppose there exists an embedding $G \to \operatorname{Out}(\mathcal{Z})$ with invariant ω .

Then ω vanishes in $H^3(G; \mathbb{T})$.

No-go theorems

The Jiang–Su algebra \mathcal{Z} :

Theorem (E, Girón Pacheco)

For any group G and $\omega \in H^3(G; \mathbb{T})$.

Suppose there exists an embedding $G \to \operatorname{Out}(\mathcal{Z})$ with invariant ω .

Then ω vanishes in $H^3(G; \mathbb{T})$.

UHF algebras:

Theorem (E, Girón Pacheco)

For any finite group G and $\omega \in H^3(G; \mathbb{T})$.

Suppose there exists an embedding $G \to \operatorname{Out}(\operatorname{UHF}_{\mathfrak{n}})$ with invariant ω .

Then the order of ω in $H^3(G; \mathbb{T})$ divides \mathfrak{n} and |G|.

The proofs make use of (unitary) algebraic K_1 , which has also had a role in Elliott classification programme.

Algebraic K_1

The C*-algebras \mathcal{R} , \mathcal{Z} and UHF_s all have $K_1=0$, where

$$K_1(A) := \lim_{\to} \frac{U_n(A)}{\sim_h}.$$

However, unitary algebraic K_1 , defined by

$$K_1^{\mathrm{alg}}(A) := \lim_{\to} \frac{U_n(A)}{DU_n(A)},$$

distinguishes them. We have

$$egin{align} \mathcal{K}_1^{\mathrm{alg}}(\mathcal{R}) &= \mathbb{R}/\mathbb{R} = 0 \ \mathcal{K}_1^{\mathrm{alg}}(\mathcal{Z}) &= \mathbb{R}/\mathbb{Z} = \mathbb{T} \ \mathcal{K}_1^{\mathrm{alg}}(\mathrm{UHF}_\mathfrak{n}) &= \mathbb{R}/Q(\mathfrak{n}) \ \end{dcases}$$

Twisted actions of $\mathbb{Z}/n\mathbb{Z}$ on \mathcal{Z}

An isomorphism $\mathcal{K}_1^{\mathrm{alg}}(\mathcal{Z})\cong \mathbb{R}/\mathbb{Z}$ is given by

$$[\exp(2\pi ih)] \mapsto \operatorname{tr}(h) + \mathbb{Z}.$$

Consequently,

- ullet the scalar unitaries $\lambda 1_{\mathcal{Z}}$ are a complete set of $\mathcal{K}_1^{\mathrm{alg}}$ representatives;
- every $\phi \in \operatorname{Aut}(\mathcal{Z})$ preserves K_1^{alg} classes.

Taking K_1^{alg} of the equation

$$\phi(u) = \omega u$$

gives $[u] = [\omega 1_{\mathcal{Z}}] + [u]$. So $[\omega 1_{\mathcal{Z}}]$ is trivial. So $\omega = 1$.

Questions

Any Questions?