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Operator Algebras

Notation

H Complex Hilbert Space
B(H) Algebra of continuous linear operators H → H
T ∗ Adjoint of T ∈ B(H)

Characterised by 〈Tx , y〉 = 〈x ,T ∗y〉 for all x , y ∈ H

Definition

An operator algebra is a subalgebra of B(H) closed under taking adjoints
and limits.

Uniform Limits

C∗-Algebras
e.g. C (X )
Non-commutative topology

Pointwise Limits

von Neumann Algebras
e.g. L∞(Ω)
Non-commutative measure theory
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Formalism for quantum symmetries

Classical:
I Automorphisms φ : A→ A.
I Group theory
I Actions: homomorphisms G → Aut(A).

Quantum:
I A-A Bimodules
I Tensor categories
I Actions: tensor functors C → Bim(A).

An automorphism φ ∈ Aut(A) has a corresponding bimodule idAφ.

Let A be an operator algebra and C be a tensor category.
Do there exists actions C y A?
To what extent is the action unique?
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Formalism for quantum symmetries

Classical Symmetries

Anomalous Symmetries:

Quantum Symmetries
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Formalism for quantum symmetries

Classical Symmetries

Anomalous Symmetries:
I Outer automorphisms Out(A) = Aut(A)/Inn(A).
I “Actions”: homomorphisms G → Out(A).
I i.e. maps G → Aut(A) that are multiplicative up to unitaries

Quantum Symmetries

I Actions Vec(G , ω) y A or more precisely actions Hilb(G , ω) y A.
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Big Picture

Quantum
Symmetries

von Neumann
Algebras

Theorem (Connes)

There is a unique (separably acting) amenable II1 factor

R =
⊗

i∈N
(M2(C), tr).
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Big Picture

Quantum
Symmetries C∗-Algebras

Theorem

There are loads of simple amenable C∗-algebras.
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Big Picture

Quantum
Symmetries C∗-Algebras

Theorem (2015, The Elliott Programme)

There class of unital, simple, separable, amenable, Z-stable C∗-Algebras
satisfying the UCT is classified by K-theory and traces.
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Symmetries of Operator Algebras

1 Symmetries of the hyperfinite II1 factor R

2 Symmetries of the classifiable C∗-algebras
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Aut(R)

Let first consider automorphism of the hyperfinite II1 factor

R =
⊗

i∈N
(M2(C), tr).

There are loads of them!

Every σ ∈ Sym(N) defines an automorphism φσ ∈ Aut(R) by
permuting the tensor factors.

Theorem

Every countable discrete groups G embeds in Aut(R).
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Inn(R) and Out(R)

Let u be an unitary in

R =
⊗

i∈N
(M2(C), tr).

Then

u ∈ε
⊗N

i=1M2(C)⊗ 1⊗ 1⊗ · · · for some N.

So Ad(u) almost preserves a tail of tensor factors.

Proposition

The automorphism φσ ∈ Aut(R) is inner if and only if the permutation σ
has finite support.

Theorem

Every countable discrete group G embeds in Out(R).
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Connes’ classification of automorphisms of R

Definition

Let φ, ψ ∈ Aut(R).
Say φ and ψ are conjugate if φ = θ ◦ ψ ◦ θ−1 for some θ ∈ Aut(R).
Say φ and ψ are outer conjugate if φ̄ = θ ◦ ψ̄ ◦ θ−1 for some θ ∈ Out(R).

Connes classified automorphisms φ ∈ Aut(R) up to outer conjugacy. The
invariant is

The order n ∈ N, i.e. the smallest n ∈ N such that φ̄n = 1 in Out(R).

When n <∞, an n-th root of unity ω ∈ C such that

φn = Ad(u) and φ(u) = ωu.
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Where does the n-th root of unity come from?

Theorem (Connes)

Let φ ∈ Aut(R). Suppose φn = Ad(u). Then φ(u) = ωu for some n-th
root of unity ω ∈ C.

Proof.

We have

φn ◦ φ = φ ◦ φn,
Ad(u) ◦ φ = φ ◦Ad(u),

Ad(u) ◦ φ = Ad(φ(u)) ◦ φ,

[Note φ(uau∗) = φ(u)φ(a)φ(u)∗.]

So Ad(φ(u)) = Ad(u).
As Z (R) = C, this means that φ(u) = ωu for some ω ∈ C.
Since φn fixes u, we get that ω is an n-th root of unity.
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Constructing automorphisms with ω 6= 1

Theorem (Connes)

View R =
⊗

i∈NMn. Let πi : Mn → R be the embedding into the i-th
tensor factor, and let θ : R → R be the endomorphsim such that
θπi = πi+1 for all i ∈ N.
Let ω be an n-th root of unity. Set

u =
n∑

j=1

ωjπ1(ejj) (1)

v = π1(en1)θ(u) +
n−1∑
j=1

π1(ej ,j+1). (2)

Then the sequence (Ad(vθ(v)θ2(v) · · · θk(v)))∞k=1 converges pointwise in
the weak∗ topology to an automorphism sωn such that (sωn )n = Ad(u) and
sωn (u) = ωu.
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Constructing automorphisms with ω 6= 1
Warning: This is not Connes’ construction!

Let θ 6∈ Q. The irrational rotation algebra Aθ is the universal C∗-algebra
two unitaries satisfying

uvu∗ = e2πiθv .

By the universal property, we can define φ ∈ Aut(Aθ) via

φ(v) = e2πi
θ
n v , φ(u) = ωu.

Observe that
φn = Ad(u), φ(u) = ωu.

Since Aθ has a unique trace, φ extends to an automorphism of
GNStr(Aθ)′′ ∼= R.
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Generalisations

Connes:
I Outer automorphisms order n.
I ω is an n-th root of unity.

Jones, Ocneanu:
I Embeddings G → Out(A) for countable amenable groups.
I ω is now an element of H3(G ,T).

Popa:
I Actions of amenable tensor categories on R (via subfactor theory).
I ω is now the associator.
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Symmetries of Operator Algebras
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C∗-algebraic results
Joint work with Sergio Girón Pacheco.

Idea: Replace R with classifiable C∗-algebras

e.g. UHF algebras, AF algebras, the Jiang–Su algebra Z, ...

We are interested in existence (and uniqueness) of embeddings
G → Out(A) with invariant ω ∈ H3(G ,T).
(For G = Z/nZ, this reduces to φ ∈ Aut(A) with order n in Out(A) and
you can view ω as an n-th root of unity)

Note: We can also work with tensor functors Hilb(G , ω)→ Bim(A)
(with some caveats).
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C∗-Algebraic Cheat Sheet

UHF algebras:
I UHFn =

⊗
i∈N Mni (C)

I Classified by the supernatural number n = n1n2n3 · · · .
I K0 = Q(n) ⊂ Q, K1 = 0, unique trace

AF algebras:
I Inductive limits F1 → F2 → F3 → · · · , where Fi finite-dimensional
I Classified by K0 – dimension group
I K1 = 0, can have loads of traces (even if Z (A) = C)

The Jiang–Su Algebra Z:
I An inductive limit D1 → D2 → D3 → · · · , where Di ⊆ C ([0, 1],Mni )
I No non-trivial projections, K0 = Z.
I K1 = 0, unique trace
I Important because classifiable C∗-algebras satisfy A⊗Z ∼= A.
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Existence results

By adapting the vN-algebraic constructions, ...

Theorem

For any finite group G and ω ∈ H3(G ;T).
There exists a simple AF algebra A with unique trace and a
homomorphism G → Out(A) with invariant ω.

In fact, we can take A = UHF|G |∞ .
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No-go theorems

The Jiang–Su algebra Z:

Theorem (E, Girón Pacheco)

For any group G and ω ∈ H3(G ;T).
Suppose there exists an embedding G → Out(Z) with invariant ω.
Then ω vanishes in H3(G ;T).

UHF algebras:

Theorem (E, Girón Pacheco)

For any finite group G and ω ∈ H3(G ;T).
Suppose there exists an embedding G → Out(UHFn) with invariant ω.
Then the order of ω in H3(G ;T) divides n and |G |.

The proofs make use of (unitary) algebraic K1, which has also had a role
in Elliott classification programme.
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Algebraic K1

The C∗-algebras R, Z and UHFs all have K1 = 0, where

K1(A) := lim
→

Un(A)

∼h
.

However, unitary algebraic K1, defined by

K alg
1 (A) := lim

→

Un(A)

DUn(A)
,

distinguishes them. We have

K alg
1 (R) = R/R = 0

K alg
1 (Z) = R/Z = T

K alg
1 (UHFn) = R/Q(n)

Samuel Evington (Münster) Symmetries of Operator Algebras 23 / 25



Twisted actions of Z/nZ on Z
An isomorphism K alg

1 (Z) ∼= R/Z is given by

[exp(2πih)] 7→ tr(h) + Z.

Consequently,

the scalar unitaries λ1Z are a complete set of K alg
1 representatives;

every φ ∈ Aut(Z) preserves K alg
1 classes.

Taking K alg
1 of the equation

φ(u) = ωu

gives [u] = [ω1Z ] + [u]. So [ω1Z ] is trivial. So ω = 1.
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Questions

Any Questions?
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