Quantum Symmetries of Quantum Metric Spaces

Kari Eifler

Texas A&M

February 5, 2021

Outline

Compact Quantum Groups

Intuition and Motivation Woronowicz's definition The Compact Quantum Group S_n^+

Quantum Metric Space

Kuperberg-Weaver quantum metric space Quantum Symmetries

Non-local Games

Introduction to non-local games The Metric Isometry Game Quantum Strategies

Intuition and Motivation Woronowicz's definition The Compact Quantum Group S_n^-

Compact Quantum Groups

Compact Quantum Groups: Intuition

Quantum Groups are used as a term to describe certain classes of Hopf algebras.

Theorem (Gelfand Duality)

Every commutative unital C^* -algebra is isomorphic to C(X) for some compact Hausdorff space X.

Moreover, every unital *-homomorphism $C(X) \to C(Y)$ is of the form

$$f \mapsto (y \mapsto f(\phi(y)))$$

for a (unique) continuous map $\phi: Y \to X$.

Gelfand duality \Rightarrow all information about compact Hausdorff spaces is captured by the theory of commutative C^* -algebras.

Compact Quantum Groups: Intuition

Quantum Spaces

Function algebras of compact spaces \leftrightarrow commutative unital C^* -algebras

Function algebras of "quantum spaces" \leftrightarrow non-commutative C^* -algebras

Gelfand duality \Rightarrow structure of a compact *group* G can be phrased entirely in terms of extra structure on the commutative unital C^* -algebra of functions C(G).

Compact Quantum Groups

Compact quantum groups \leftrightarrow consider same extra structure on arbitrary unital C^* -algebras

G: compact group A = C(G) with homomorphisms

$$\Delta: C(G) \to C(G \times G) \cong C(G) \otimes C(G)$$
$$(\Delta(f))(g,h) = f(g \cdot h)$$

satisfies
$$(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$$
.

There is a natural isomorphism

$$\Psi: C(G) \otimes C(G) \to C(G \times G)$$
$$f_1 \otimes f_2 \mapsto \Psi(f_1 \otimes f_2)$$

where
$$(\Psi(f_1 \otimes f_2))(g,h) := f_1(g)f_2(h)$$
.

G: compact group A = C(G) with homomorphisms

$$\Delta: C(G) \to C(G \times G)$$
$$(\Delta(f))(g,h) = f(g \cdot h)$$

satisfies
$$(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$$
.

- ▶ $\epsilon: C(G) \to \mathbb{C}$ such that $\epsilon(f) = f(e)$. The unit conditions translate to $(\epsilon \otimes id) \circ \Delta = id = (id \otimes \epsilon) \circ \Delta$.
- ▶ $S: C(G) \to C(G)$ such that $S(f)(g) = f(g^{-1})$. The inverse conditions translate to $m \circ (S \otimes id) \circ \Delta = u \circ \epsilon = m \circ (id \otimes S) \circ \Delta$ where $m: C(G \times G) \to C(G), \ m(f)(g) = f(g,h)$ and

Definition

A Hopf *-algbra is a pair (A, Δ) where A is a unital *-algebra and we have the homomorphisms

- $\qquad \qquad \Delta: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A} \text{ satisfying } (\Delta \otimes \mathsf{id}) \circ \Delta = (\mathsf{id} \otimes \Delta) \circ \Delta.$
- ullet $\epsilon: \mathcal{A} \to \mathbb{C}$ satisfies $(\epsilon \otimes id) \circ \Delta = \mathrm{id} = (\mathrm{id} \otimes \epsilon) \circ \Delta$.
- ▶ $S: A \to A$ satisfies $m \circ (S \otimes id) \circ \Delta = u \circ \epsilon = m \circ (id \otimes S) \circ \Delta$ where $m: C(G \times G) \to C(G)$, m(f)(g) = f(g, h) and $u: \mathbb{C} \to C(G)$ is the unit map.

G: compact group A = C(G) with unital *-homomorphisms

$$\Delta: C(G) \to C(G \times G)$$
$$(\Delta(f))(g,h) = f(g \cdot h)$$

Here, the comultiplication operator Δ captures the operation of the group. What does this look like in the noncommutative case?

Compact Quantum Groups: Definition

Definition (Woronowicz)

A compact quantum group (c.q.g.) is a unital C^* -algebra $\mathcal A$ equipped with a unital *-homomorphsim called comultiplication $\Delta: \mathcal A \to \mathcal A \otimes \mathcal A$ such that

- $(\Delta \otimes \mathsf{id}) \circ \Delta = (\mathsf{id} \otimes \Delta) \circ \Delta \text{ as homomorphisms}$ $\mathcal{A} \to \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} \text{ (called coassociativity)}$
- ▶ the spaces span $\{(a \otimes 1)\Delta(b) \mid a, b \in A\}$ and span $\{(1 \otimes a)\Delta(b) \mid a, b \in A\}$ are dense in $A \otimes A$ (called the cancellation property)

Compact Quantum Groups

Coassociativity:
$$(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A}$$

Cancellation: $(\mathcal{A} \otimes 1)\Delta(\mathcal{A})$ and $(1 \otimes \mathcal{A})\Delta(\mathcal{A})$ are dense in $\mathcal{A} \otimes \mathcal{A}$

Theorem / Example

G: compact group

Then A = C(G) is a c.q.g. with comultiplication given by

$$\Delta: C(G) \to C(G \times G) \cong C(G) \otimes C(G)$$
$$(\Delta(f))(g,h) = f(g \cdot h)$$

Theorem / Example

Conversely, every c.q.g. (A, Δ) with A commutative is of the form A = C(G) for some compact group G.

Classical Symmetry

Symmetries of a structure X are viewed as transformations of X preserving its relevant properties.

metric space

If (X, d) is a metric space then we require that the transformations do not change the metric, and we get isometries. The isometry group (symmetry group of a metric space) is the group of all bijective isometries from X onto itself, with the group operation being function composition.

Definition

A magic unitary matrix over a *-algebra \mathcal{A} is some $n \times n$ matrix $U = [u_{xy}]_{x,y=1,...,n}$ with entries $u_{xy} \in \mathcal{A}$ that satisfies

$$\sum_{y=1}^{n} u_{xy} = 1 = \sum_{x=1}^{n} u_{xy}$$

Note: $\mathcal{A} = \mathbb{C} \leftrightarrow U \in M_n(\mathbb{C}) \leftrightarrow \text{permutation matrix}$

Then $C(S_n)$ is isomorphic to the universal C^* algebra

$$C^*ig(u_{xy}\mid U:=[u_{xy}]$$
 is an $n imes n$ magic unitary matrix, u_{xy} commute $ig)$

 S_n is the *symmetry group* of a finite set with no extra structure.

Definition

We define the compact quantum group S_n^+ by the universal C^* -algebra

$$C(S_n^+) := C^* \Big(u_{xy} \mid U := [u_{xy}] \text{ is an } n \times n \text{ magic unitary matrix} \Big)$$

 S_n^+ is the *quantum symmetry group* of a finite set with no extra structure.

Definition

We define the compact quantum group S_n^+ by the universal C^* -algebra

$$C(S_n^+) := C^* \Big(u_{xy} \mid U := [u_{xy}] \text{ is an } n imes n ext{ magic unitary matrix} \Big)$$

Then $C(S_n^+)$ becomes a c.q.g. with comultiplication $\Delta: C(S_n^+) \to C(S_n^+) \otimes C(S_n^+)$ defined by

$$\Delta(u_{ij}) = \sum_{k=1}^n u_{ik} \otimes u_{kj}$$

For
$$n = 1, 2, 3$$
, $C(S_n^+) = C(S_n)$.

For $n \ge 4$, $C(S_n^+) \ne C(S_n)$ i.e. $C(S_n^+)$ is non-commutative in these cases.

Indeed, for any pair of projections $p, q \in B(\mathcal{H})$, the following matrix is a magic unitary:

$$\begin{pmatrix} p & 1-p & 0 & 0 \\ 1-p & p & 0 & 0 \\ 0 & 0 & q & 1-q \\ 0 & 0 & 1-q & q \end{pmatrix}$$

Let (X, d) be a finite metric space.

Family of relations given by $R_t = \{(x, y) \in X \times X \mid d(x, y) \leq t\}.$

$$d(x, y) = 0 \Leftrightarrow x = y$$

 \leftrightarrow R_0 is the diagonal relation

$$\leftrightarrow$$
 $I \in \mathcal{V}_0$

$$d(x,y) = d(y,x) \qquad \leftrightarrow \qquad R_t = R_t^T$$

$$d(x,z) < d(x,y) + d(y,z) \qquad \leftrightarrow \qquad R_s R_t \subset R_{s+t}$$

$$\leftrightarrow \qquad \qquad R_t = R_t^T$$

$$\leftrightarrow \mathcal{V}_s \mathcal{V}_t \subset \mathcal{V}_{s+t}$$

 $\leftrightarrow \mathcal{V}_t^* = \mathcal{V}_t$

Definition (Kuperberg-Weaver)

A quantum metric space of a von Neumann algebra $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ is a one-parameter family of weak* closed operator systems $\mathcal{V}_t \subseteq \mathcal{B}(\mathcal{H}), \ t \in [0, \infty)$ s.t.

- 1. $\mathcal{V}_s \mathcal{V}_t \subset \mathcal{V}_{s+t}$ for all s, t > 0
- 2. $\mathcal{V}_t = \bigcap_{s>t} \mathcal{V}_s$ for all t>0
- 3. $V_0 = \mathcal{M}'$ where \mathcal{M}' is the commutant of \mathcal{M}

Quantum metric:
$$1.\mathcal{V}_s^X\mathcal{V}_t^X\subseteq\mathcal{V}_{s+t}^X$$
, $2.\mathcal{V}_t^X=\cap_{s>t}\mathcal{V}_s^X$, $3.\mathcal{V}_0^X=\mathcal{M}'$

classical case

Let (X, d) be a (classical) finite metric space.

Take the algebra $\mathcal{M} = \ell^{\infty}(X)$ of bounded multiplication operators on $\mathcal{H} = \ell^{2}(X)$, where \mathcal{H} has standard basis $\{e_{x}\}_{x \in X}$.

i.e.,
$$f \in \mathcal{M} \subseteq B(\ell^2(X))$$
 acts as $(M_f g)(x) = f(x)g(x)$.

We define \mathcal{V}_t^X by

$$\begin{split} \mathcal{V}_t^X := \{A \in B(\ell^2(X)) \mid \langle Ae_y, e_x \rangle = 0 \text{ if } d(x,y) > t\} \\ = \text{span}\{V_{xy} \in \mathcal{B}(\ell^2(X)) \mid d(x,y) \leq t\} \text{ where } V_{xy} : g \mapsto \langle g, e_y \rangle e_x \end{split}$$

This gives us a quantum metric space in the sense of K-W

Quantum metric: $1.\mathcal{V}_s^X\mathcal{V}_t^X\subseteq\mathcal{V}_{s+t}^X$, $2.\mathcal{V}_t^X=\cap_{s>t}\mathcal{V}_s^X$, $3.\mathcal{V}_0^X=\mathcal{M}'$

classical case

Let (X, d) be a (classical) finite metric space.

Take the algebra $\mathcal{M} = \ell^{\infty}(X)$.

We define \mathcal{V}_t^X by

$$\begin{split} \mathcal{V}_t^X := \{A \in B(\ell^2(X)) \mid \langle Ae_y, e_x \rangle = 0 \text{ if } d(x,y) > t\} \\ = \text{span}\{V_{xy} \in \mathcal{B}(\ell^2(X)) \mid d(x,y) \leq t\} \text{ where } V_{xy} : g \mapsto \langle g, e_y \rangle e_x \end{split}$$

This gives us a quantum metric space in the sense of K-W.

9. It is sufficiently the continuous contin

Theorem

Conversely, if \mathcal{V}_t is a quantum metric on $\mathcal{M}=\ell^\infty(X)$, then

$$d(x,y) := \inf\{t \mid \exists A \in \mathcal{V}_t \text{ s.t. } \langle Ae_v, e_x \rangle \neq 0\}$$

is a metric on X.

Banica's quantum isometry group

Definition (Banica)

Take a (classical) finite metric space (X, d) with |X| = n and let $D = [d(x, y)]_{x,y \in X}$ be the $n \times n$ distance matrix.

The quantum isometry group (or quantum symmetry group of the metric space) to be

$$G^+(X,d) = C(S_n^+) / \langle UD = DU \rangle$$

i.e. the quotient of $C(S_n^+)$ by the ideal generated by the relations UD = DU.

Goal: capture Banica's definition G^+ using K-W quantum metric spaces

Definition

Consider two q. metric space $(\mathcal{M}_1, \mathcal{V}_t)$ and $(\mathcal{M}_2, \mathcal{W}_t)$ with fixed ONB bases $\{e_j\}$ for \mathcal{M}_1 and $\{f_k\}$ for \mathcal{M}_2 .

We define the quantum isometry group between quantum metric spaces, $G^{\mathcal{V},\mathcal{W}}$, to be the universal c.q.g. generated by $P = [p_{ij}] \in C(G^{\mathcal{V},\mathcal{W}}) \otimes B(\mathcal{H}_1,\mathcal{H}_2)$ giving a unital

*-homomorphism

$$\delta_{\mathcal{V},\mathcal{W}}: \mathcal{M}_1 \to \mathcal{M}_2 \otimes \mathcal{C}(G^{\mathcal{V},\mathcal{W}})$$

$$e_j \mapsto \sum_k f_k \otimes p_{kj}$$

and ensuring the conjugation map given by

$$\alpha_{\mathcal{V},\mathcal{W}}: B(\mathcal{H}_1) \to B(\mathcal{H}_2) \otimes C(G^{\mathcal{V}})$$

$$T \mapsto P(T \otimes 1)P^*$$

leaves V_t invariant, i.e. $\alpha_{V,W}(V_t) \subseteq W_t \otimes C(G^{V,W})$ for all t.

Theorem (E. '20)

Let (X,d) be a (classical) finite metric space, set $\mathcal{M}=\ell^\infty(X)$, and let $\mathcal{H}=\ell^2(X)$. Let \mathcal{V}_t^X be the standard construction of the K-W quantum metric.

Then $G^+(X,d) \cong G^{V,V}$.

troduction to non-local games ne Metric Isometry Game uantum Strategies

Non-local Games

The players, Alice and Bob, know the game they are playing and may agree on a strategy before gameplay begins.

One round of the game will look like:

- ▶ the referee asks questions *v* and *w* to Alice and Bob, respectively
- ▶ without communicating, Alice and Bob reply with a and b
- the referee determines if Alice and Bob win that round

Goal: Win every round of the game

Non-local Games

The synchronous non-local game is given by $G = (I, O, \lambda)$.

The set *I* represents the inputs (questions) that the players Alice and Bob can receive. The set *O* represents the outputs (answers) that Alice and Bob can produce.

The rules of the game are represented by the function

$$\lambda: I \times I \times O \times O \rightarrow \{0,1\}$$

They win the game if $\lambda(v, w, a, b) = 1$ and lose otherwise. Each game must satisfy $\lambda(v, v, a, b) = \delta_{a,b}$.

Game Strategies

A deterministic strategy for a game is a function $h: I \to O$ such that if Alice (or Bob) receives input v, they answer output h(v).

A strategy is called random if during different rounds of the game, Alice and Bob receive inputs v and w and answer different outputs. We may observe the game and get the conditional probabilitiess p(a, b|v, w).

A strategy is perfect if $\lambda(v, w, a, b) = 0 \Rightarrow p(a, b|v, w) = 0$.

The Metric Isometry Game

Let (X, d_X) and (Y, d_Y) be two metric spaces, $X \sqcup Y = I = O$. The rule function satisfies $\lambda(x_A, x_B, y_A, y_B) = 1$ if and only if the following conditions are met:

- \triangleright x_A and y_A belong to different spaces
- x_B and y_B belong to different spaces
- if x_A and x_B are from the same space then $d.(x_A, x_B) = d.(y_A, y_B)$
- ▶ if x_A and x_B are from different spaces then $x_A = y_B$ if and only if $x_B = y_A$

Proposition (E.)

There exists a perfect (classical) strategy $\Leftrightarrow X$ is isometric to Y

Classical Strategy vs Quantum Strategy

A classical strategy for a non-local game is one in which the only resource available to the players is shared randomness (i.e. shared probability space).

In a quantum strategy, the players are allowed to perform local quantum measurements on a shared entangled state.

There are several different mathematical models to describe p(a, b|x, y) For |I| = n, |O| = k let $C_t(n, k)$ be the set of conditional probabilities in model t.

$$C_{classical}(n,k) \subseteq C_{qc}(n,k) \subseteq M_{nk}(\mathbb{C}).$$

qc = quantum commuting

Quantum Strategies

$$C_{classical}(n,k) \subseteq C_{qc}(n,k) \subseteq M_{nk}(\mathbb{C}).$$

► $C_{classical}(n, k)$ is the set of conditional probabilities p(a, b|v, w) which arise from Alice and Bob sharing a probability space (Ω, \mathbf{P}) each having random variables $f_{\omega,A}, g_{\omega,B}: I \to O$ with

$$p(a, b|v, w) = \mathbf{P}(\omega \in \Omega \mid f_{\omega, A}(v) = a, \ g_{\omega, B}(w) = b).$$

in $C_{qc}(n, k)$, there is a Hilbert space H on which Alice and Bob are allowed to make measurements, and a shared state $\psi \in \mathcal{H}$. Alice has orthogonal projections $e_{v,a} \in B(H)$ satisfying $\sum_a e_{v,a} = \mathrm{id}_H$ (Bob has $f_{w,b} \in B(H)$ satisfying $\sum_b f_{w,b} = \mathrm{id}_H$) such that $p(a,b|x,y) = \langle e_{v,a}f_{w,b}\psi,\psi\rangle$

We define the *-algebra of a synchronous game G, $\mathcal{A}(G)$, to be defined as the quotient of the free *-algebra generated by $\{e_{v,a} \mid v \in I, a \in O\}$ subject to the relations

- $ightharpoonup e_{v,a} = e_{v,a}^*$
- $e_{v,a} = e_{v,a}^2$
- $ightharpoonup 1 = \sum_a e_{v,a}$
- $e_{v,a}e_{w,b}=0$ for all v,w,a,b such that $\lambda(v,w,a,b)=0$

Theorem (Helton-Meyer-Paulsen-Satriano, Kim-Paulsen-Schafhauser)

For a synchronous game G,

- ▶ G has a perfect deterministic strategy $\Leftrightarrow G$ has a perfect classical strategy \Leftrightarrow there exists a unital *-homomorphism from $\mathcal{A}(G)$ to \mathbb{C}
- ▶ G has a perfect qc-strategy \Leftrightarrow there exists a unital C^* -algebra $\mathcal C$ with a faithful trace and a unital *-homomorphism $\pi:\mathcal A(G)\to\mathcal C$

ex.

Consider the metric isometry game.

Then the game *-algebra for the metric isometry game, $\mathcal{A}(Isom(X,Y))$, is the *-algebra generated by $\{e_{x,y} \mid x \in X, y \in Y\}$ subject to the relations that $U = [e_{x,y}]$ is a magic unitary matrix with

$$(1 \otimes D_X)U = U(1 \otimes D_Y)$$

Theorem (E.)

For classical metric spaces (X, d_X) and (Y, d_Y) , and their corresponding quantum metric spaces $(\ell^{\infty}(X), \mathcal{V}_t)$ and $(\ell^{\infty}(Y), \mathcal{W}_t)$, we have $C(G^{\mathcal{V},\mathcal{W}}) = \mathcal{A}(Isom(X,Y))$.

Theorem (E.)

Given two classical metric spaces (X, d_X) and (Y, d_Y) , TFAE:

- $ightharpoonup \mathcal{A}(\mathit{Isom}(X,Y)) \neq 0$
- $ightharpoonup \mathcal{A}(Isom(X,Y))$ admits a non-zero C^* -representation
- The metric isometry game has a perfect quantum-commuting (qc)-strategy, $X\cong_{qc}Y$

Thank you!