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Compact Quantum Groups: Intuition

Quantum Groups are used as a term to describe certain classes of
Hopf algebras.

Theorem (Gelfand Duality)

Every commutative unital C*-algebra is isomorphic to C(X) for
some compact Hausdorff space X.

Moreover, every unital x-homomorphism C(X) — C(Y) is of the
form

f= (y = f(o(y)))
for a (unique) continuous map ¢ : Y — X.

Gelfand duality = all information about compact Hausdorff spaces
is captured by the theory of commutative C*-algebras.
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Compact Quantum Groups: Intuition

Quantum Spaces

Function algebras of compact spaces <+ commutative unital
C*-algebras
Function algebras of “quantum spaces” <> non-commutative
C*-algebras

Gelfand duality = structure of a compact group G can be phrased
entirely in terms of extra structure on the commutative unital C*-
algebra of functions C(G).

Compact Quantum Groups

Compact quantum groups <> consider same extra structure on
arbitrary unital C*-algebras
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Compact Quantum Groups: Motivation
G: compact group
A = C(G) with homomorphisms
> A C(G) — C(G x G) = C(G)® C(G)
(A(F)) (g, h) = f(g - h)

satisfies (A ® id) o A = (id ®A) o A.
There is a natural isomorphism

V:C(G)® C(G) — C(G x G)
fi®h— V(hoh)

where (W(f ® £))(g, h) := f(g)f(h).
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Compact Quantum Groups: Motivation

G: compact group
A = C(G) with homomorphisms

> A C(G) = C(G x G)
(A(f)) (g, h) = f(g - h)

satisfies (A ® id) o A = (id @A) o A.

» ¢: C(G) — C such that ¢(f) = f(e). The unit conditions
translate to (e ® id) o A = id = (id ®e€) o A.

» S: C(G) — C(G) such that S(f)(g) = f(g~!). The inverse
conditions translate to
mo(S®id)oA=uoe=mo (id®S) oA where
m: C(G x G) — C(G), m(f)(g) = f(g,h) and
u:C — C(G) is the unit map.
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Compact Quantum Groups: Motivation

Definition
A Hopf x-algbra is a pair (A, A) where
A is a unital *-algebra and we have the homomorphisms
» A A— A® A satisfying (A ® id) o A = (id®A) o A.
» e: A — C satisfies (e ® id) o A = id = (id ®e¢) o A.
» §5: A — Asatisfies mo (S®id)o A =uoe=mo(id®S)o A
where m: C(G x G) — C(G), m(f)(g) = f(g, h) and
u:C — C(G) is the unit map.
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Compact Quantum Groups: Motivation
G: compact group
A = C(G) with unital *-homomorphisms

A C(G) = C(G x G)
(A(f))(g,h) = f(g - h)

Here, the comultiplication operator A captures the operation of
the group. What does this look like in the noncommutative case?
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Compact Quantum Groups: Definition

Definition (Woronowicz)

A compact quantum group (c.q.g.) is a unital C*-algebra A
equipped with a unital *-homomorphsim called comultiplication

A: A— A® A such that
» (A®id) o A = (id®A) o A as homomorphisms
A— A® A® A (called coassociativity)

> the spaces span{(a ® 1)A(b) | a, b € A} and
span{(1 ® a)A(b) | a,b € A} are dense in AR A (called the
cancellation property)
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Compact Quantum Groups

Coassociativity: (A®id)o A =(idRA)cA: A—> ARARA
Cancellation: (A ® 1)A(A) and (1 ® A)A(A) are dense in A® A

Theorem / Example

G: compact group
Then A = C(G) is a c.q.g. with comultiplication given by

A:C(G) = C(G x G) = C(G)® C(G)
(A(f))(g, h) = (g - h)

Theorem / Example

Conversely, every c.q.g. (A, A) with A commutative is of the form
A = C(G) for some compact group G.
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Classical Symmetry

Symmetries of a structure X are viewed as transformations of X
preserving its relevant properties.

metric space

If (X, d) is a metric space then we require that the
transformations do not change the metric, and we get isometries.
The isometry group (symmetry group of a metric space) is the
group of all bijective isometries from X onto itself, with the group
operation being function composition.
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The Compact Quantum Group S

Definition
A magic unitary matrix over a x-algebra A is some n X n matrix
U = [uxy]x,y=1,....n With entries u,, € A that satisfies

gk — 4,2
> Uxy = uxy - uxy

> 23:1 Uy =1=3"0_1 Uxy

Note: A =C < U € M,(C) <> permutation matrix
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The Compact Quantum Group S

Then C(S,) is isomorphic to the universal C* algebra

c* (uxy | U = [uy] is an n x n magic unitary matrix, u,, commute)
S is the symmetry group of a finite set with no extra structure.
Definition

We define the compact quantum group S, by the universal
C*-algebra

C(S5):=cC* (uxy | U = [ux] is an n x n magic unitary matrix)

S," is the quantum symmetry group of a finite set with no extra
structure.
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The Compact Quantum Group S

Definition
We define the compact quantum group S, by the universal
C*-algebra

c(Sf)=c* (uxy | U = [uy] is an n x n magic unitary matrix)

Then C(S;7) becomes a c.q.g. with comultiplication A : C(S,;F) —
C(S,]) ® C(S,]) defined by

n
Auy) =) ui ® g
k=1
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The Compact Quantum Group S

For n=1,2,3, C(S;}) = C(S,).

For n >4, C(S;F) # C(S,)

i.e. C(S;7) is non-commutative in these cases.

Indeed, for any pair of projections p,q € B(H), the following
matrix is a magic unitary:

p 1—p 0 0
1—p p 0 0

0 0 q 1—gq

0 0 1—gq q
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Quantum Symmetries

Quantum Metric Space
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Quantum Metric Space

Let (X, d) be a finite metric space.
Family of relations given by Ry = {(x,y) € X x X | d(x,y) < t}.

dix,y)=0&x=y <+ Ro is the diagonal relation <« I €V
d(x,y) = d(y,x) “ Re=R/ o V=V
d(x,z) < d(x,y)+d(y,z) < RsR: C Rsyt < VsVr € Veit

Definition (Kuperberg-Weaver)

A quantum metric space of a von Neumann algebra M C B(#) is
a one-parameter family of weak* closed operator systems
Ve CB(H), t € [0,00) s.t.

1. VsV C Vsyy forall s,t >0

2. Vi =NestVs forall t >0

3. Vo = M’ where M’ is the commutant of M
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Quantum Metric Space

Quantum metric: 1.VXVX C VX, 2 VX =N VX, 3V = M’

classical case

Let (X, d) be a (classical) finite metric space.
Take the algebra M = ¢°°(X) of bounded multiplication operators
on H = (2(X), where H has standard basis {ex}xex.
i.e., f € M C B(f?(X)) acts as (Mrg)(x) = f(x)g(x).
We define VX by
V¥ = {Ae B(*(X)) | (Aey,ex) = 0if d(x,y) > t}

= span{ V4, € B(3(X)) | d(x,y) < t} where V,, : g — (g, e,)ex

This gives us a quantum metric space in the sense of K-W
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Quantum Metric Space

Quantum metric: LYV C VX, 2V = Nest VI, 3.VE = M/

classical case

Let (X, d) be a (classical) finite metric space.
Take the algebra M = ¢°°(X).
We define VX by

VX = {A € B(*(X)) | (Aey, &) = 0if d(x,y) > t}
= span{ Vi, € B(3(X)) | d(x,y) < t} where V,, : g > (g, e,)ex

This gives us a quantum metric space in the sense of K-W.

8. W) esobddi RV Intbg,algebls. then
RonWesseiJitdéiine MZFor s, o tEhXN) déxVie) < MoV € V.
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Quantum Metric Space

Theorem

Conversely, if V; is a quantum metric on M = ¢°°(X), then

d(x,y) =inf{t| A € V; s.t. (Aey, es) # 0}

is a metric on X.
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Banica's quantum isometry group

Definition (Banica)

Take a (classical) finite metric space (X, d) with |X| = n and let
D = [d(x, y)]x,yex be the n x n distance matrix.

The quantum isometry group (or quantum symmetry group of the
metric space) to be

G(X,d) = C(S}) / (UD = DU)

i.e. the quotient of C(S;") by the ideal generated by the relations
UD = DU.

Goal: capture Banica's definition G using K-W quantum metric
spaces
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Definition
Consider two q. metric space (Mj,V;) and (Mz, W;) with fixed
ONB bases {ej} for M and {f,} for M.
We define the quantum isometry group between quantum metric
spaces, GV, to be the universal c.q.g. generated by
P = [p;] € C(GY") ® B(H1,H2) giving a unital
*-homomorphism

Syw 1 My — My @ C(GVM)

g — Z fi ® Pkj
k

and ensuring the conjugation map given by

ayw : B(H1) = B(Hz2) ® C(GY)
T P(T ©1)P*

leaves V; invariant, i.e. ay (Vi) € Wr ® C(GY'W) for all t.
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Theorem (E. '20)

Let (X, d) be a (classical) finite metric space, set M = £>°(X),
and let # = ¢2(X). Let V¥ be the standard construction of the
K-W quantum metric.

Then G+(X,d) = G¥"V.
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Non-local Games
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Non-local Games
Alice \3‘ ‘k‘ Bob
‘V\ /wr

The players, Alice and Bob, know the game they are playing and
may agree on a strategy before gameplay begins.
One round of the game will look like:

Referee

» the referee asks questions v and w to Alice and Bob,
respectively
» without communicating, Alice and Bob reply with a and b

» the referee determines if Alice and Bob win that round

Goal:  Win every round of the game
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Non-local Games
¥ w el

The synchronous non-local game is given by G = (/, O, ).

The set | represents the inputs (questions) that the players Alice
and Bob can receive. The set O represents the outputs (answers)
that Alice and Bob can produce.

The rules of the game are represented by the function

Al xIx0x0—{0,1}

Referee

They win the game if A(v, w, a, b) = 1 and lose otherwise.
Each game must satisfy A(v, v, a, b) = d, .
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Game Strategies

A deterministic strategy for a game is a function h : | — O such
that if Alice (or Bob) receives input v, they answer output h(v).

A strategy is called random if during different rounds of the game,
Alice and Bob receive inputs v and w and answer different out-
puts. We may observe the game and get the conditional probabili-
tiess p(a, b|v, w).

A strategy is perfect if A(v,w,a, b) =0 = p(a, b|v,w) =0.
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The Metric Isometry Game

Let (X, dx) and (Y, dy) be two metric spaces, X UY =/ = 0.
The rule function satisfies A\(xa, xg, ya,yg) = 1 if and only if the
following conditions are met:

v

xa and ya belong to different spaces
» xg and yg belong to different spaces
» if x4 and xg are from the same space then
d.(xa; xg) = d.(ya, yB)
» if x4 and xg are from different spaces then x4 = yp if and
only if xg = ya
Proposition (E.)

There exists a perfect (classical) strategy < X is isometric to Y
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Classical Strategy vs Quantum Strategy

A classical strategy for a non-local game is one in which the only
resource available to the players is shared randomness (i.e. shared
probability space).

In a quantum strategy, the players are allowed to perform local
quantum measurements on a shared entangled state.

There are several different mathematical models to describe p(a, b|x, y)
For |I| = n, |O| = k let Ci(n, k) be the set of conditional probabil-
ities in model t.

Cclassical(na k) c ch(”» k) C Mnk((c)-

gc = quantum commuting
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Quantum Strategies

Cclassical(na k) - ch(”» k) - Mnk((c)-

> Celassical(n, k) is the set of conditional probabilities
p(a, b|v, w) which arise from Alice and Bob sharing a
probability space (€2, P) each having random variables
f:,JVA,gwyB : | — O with

P(a, b|V, W) = P(w € Q ‘ fw,A(V) = 4, gw,B(W) = b) :

> in Cgc(n, k), there is a Hilbert space H on which Alice and
Bob are allowed to make measurements, and a shared state
1 € H. Alice has orthogonal projections e, , € B(H)
satisfying >, e, » = idy (Bob has f,, , € B(H) satisfying
> p fw.p = idy) such that
p(a7 b|Xa y) = <ev,afw,bw’ d}>

31/35



Introduction to non-local games
The Metric Isometry Game
Non-local Games Quantum Strategies

The Game x-algebra

We define the x-algebra of a synchronous game G, A(G), to be
defined as the quotient of the free x-algebra generated by {e, , |
v € I,a € O} subject to the relations

— *
> Eya=§€

v,a
_ A2

> eV,a - ev,a

> 1 = Za ev7a

v

ev,aew,» = 0 for all v, w, a, b such that A(v,w, a, b) =0
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The Game x-algebra

Theorem (Helton-Meyer-Paulsen-Satriano, Kim-Paulsen-Schafhauser)

For a synchronous game G,

» G has a perfect deterministic strategy < G has a perfect
classical strategy <> there exists a unital *-homomorphism
from A(G) to C

> G has a perfect qc-strategy < there exists a unital
C*-algebra C with a faithful trace and a unital
«-homomorphism 7 : A(G) — C
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The Game *-algebra

€X.

Consider the metric isometry game.

Then the game x-algebra for the metric isometry game,
A(lsom(X,Y)), is the x-algebra generated by

{exy | x € X,y € Y} subject to the relations that U = [e,] is a
magic unitary matrix with

(1® Dx)U = U(1 ® Dy)

Theorem (E.)

For classical metric spaces (X, dx) and (Y, dy), and their
corresponding quantum metric spaces (£>°(X),V;) and
(£>°(Y), W), we have C(GY"W) = A(lsom(X, Y)).
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The Game x-algebra

Theorem (E.)

Given two classical metric spaces (X, dx) and (Y, dy), TFAE:
» A(lsom(X,Y)) #0
» A(lsom(X,Y)) admits a non-zero C*-representation

» The metric isometry game has a perfect quantum-commuting
(qc)-strategy, X =4 Y

Thank you!
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