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Outline of my talk

1 The quantum analogue of a graph

2 Significance of quantum graphs in information theory

3 Different approaches to quantum graphs

4 Quantum coloring problem
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Classical Graphs

G = (Vertex set, Edge set, Adjacency matrix)

Example of a classical graph

V = {1, 2, 3}

E = {(1, 2), (1, 3)}

AG =

0 1 1
1 0 0
1 0 0

 0 ∗ ∗
∗ 0 0
∗ 0 0

 1

2

3

SG :=


0 ∗ ∗
∗ 0 0
∗ 0 0

 where ∗ ∈ C

 ⊆ M3(C)

SG is a subspace !
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When the graph is reflexive....

SG :=


∗ ∗ ∗∗ ∗ 0
∗ 0 ∗

 where ∗ ∈ C

 ⊆ M3(C)

1

2

3

Properties of SG :

Linear subspace

Self-adjointness (A ∈ SG ⇐⇒ A∗ ∈ SG )

Contains identity

SG is an operator system!

Operator System

A subspace S ⊆ B(H) is called an operator system if

I ∈ S .

A ∈ S =⇒ A∗ ∈ S .
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Quantum Graphs

Suppose G is a classical graph with vertex set V = {1, 2 . . . n}.

Non-commutative graph associated with a classical graph

The non-commutative graph associated with the classical graph
G = (V ,E ) is the operator system SG defined as

SG = span{eij : (i , j) ∈ E or i = j , ∀i , j ∈ V } ⊆Mn ,

where eij are matrix units in Mn.

More generally,

Matrix Quantum Graphs

An operator system in Mn is called a Matrix quantum graph.
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Motivation from Information theory

Matrix quantum graphs generalize the confusability graph of classical
channels.

Confusability graphs − > zero-error classical communication.

Quantum graphs − > analogous role in zero-error quantum
communication.

Classical Channel

Φ←→ Probability transition function [P(y |x)].

(Input messages) X
Φ−→ Y (Output messages)

{x1, x2 . . . xm}
Φ−→ {y1, y2 . . . yn}
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Confusability graph of classical channel

(Φ : X → Y )←→ Probability transition function [P(y |x)].

Confusability graph of Φ

Vertex set: X = {x1, x2 . . . xm}.
Edges: xi ∼ xj if there exists y ∈ Y such that P(y |xi )P(y |xj) > 0.

Input messages (X ) Output messages(Y )

X1 Y1

X2 Y2

X3 Y3

X4 Y4

X5 Y5

Φ

X1

X2

X4 X5

X3

Priyanga Ganesan Quantum Graphs



Quantum Channels

Quantum communication channel take quantum states to quantum
states.

Φ : B(HA)
linear−→ B(HB)

TP : Trace preserving: Tr(ρ) = Tr(Φ(ρ)).

CP : Completely positive: Φ is positive and all extensions Φ⊗ IE are also
positive.

CPTP maps have several representations :

Kraus form

Φ(ρ) =
∑r

i=1 KiρK
∗
i , where Ki ∈ B(HA,HB) satisfying

∑r
i=1 K

∗
i Ki = IA.

The Kraus operators are not unique.
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Classical embedded in Quantum

Input A = {1, 2 . . .m} −→ B = {1, 2 . . . n} Output

CLASSICAL QUANTUM

Input: |i〉 = ei ∈ Cm Input: matrix units eii ∈Mm ( eii = |i〉 〈i |)

Output: |j〉 = ej ∈ Cn Output: matrix units ejj ∈Mn ( ejj = |j〉 〈j |)

Cm Φ−→ Cn Mm
Φ−→Mn

Φ(v) = Pv , where
P = [P(b|a)]a∈A,b∈B

Φ(X ) =
∑

a∈A,b∈B
Kab(X )K ∗ab, where

Kraus operators Kab =
√
P(b|a) eba ∈Mn×m

Confusability graph G K ∗abKcd =
√

P(b|a)P(d |c) δbdeac

a ∼ c ⇐⇒ ∃ b with
P(b|a)P(b|c) 6= 0

K ∗abKcd 6= 0 ⇐⇒
b = d and P(b|a)P(d |c) 6= 0

SΦ = span{eac : a ∼ c} SΦ = span{K ∗abKcd : a, c ∈ A and b, d ∈ B}
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Quantum Graphs

Non-commutative confusability graph [DSW, 2013]

Given a quantum channel Φ : Mm →Mn with Φ(x) =
∑r

i=1 KixK
∗
i , the

confusability graph of Φ is the operator system:

SΦ = span{K ∗i Kj : 1 ≤ i , j ≤ r} ⊆Mm.

This is independent of the Choi-Kraus representation of Φ.

Every operator system arises from a quantum channel!

Proposition

Let S ⊆Mm be an operator system. Then there is n ∈ N and a quantum
channel Ψ : Mm →Mn such that S = SΨ.
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Applications in zero-error communication

Goal

Send messages through a channel without confusion.

Classical: xi and xj are not confusable ⇐⇒ xi 6∼ xj in the
confusability graph.

Input messages (X ) Output messages(Y )

X1 Y1

X2 Y2

X3 Y3

X4 Y4

X5 Y5

Φ

X1

X2

X4 X5

X3

One-shot zero error capacity of φ = Independence number of G
= maximum number of messages transmitted without confusion.
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Zero-error quantum communication

Quantum states: ρ, σ ∈ B(H) are distinguishable ⇐⇒ 〈ρ, σ〉 = 0.

Φ(ρ) =
r∑

i=1

KiρK
∗
i , SΦ := span{K ∗j Ki : 1 ≤ i , j ≤ r}.

Encode input message x 7→ ρx = |x〉 〈x | ∈ B(H).

ρx , ρy are not confusable ⇐⇒ Φ(ρx),Φ(ρy ) are distinguishable.

〈Φ(ρx),Φ(ρy )〉 = 0, with respect to Hilbert-Schmidt inner product.

Tr(Φ(ρy )∗Φ(ρx)) = 0 ⇐⇒
r∑

i ,j=1

|〈y ,K ∗i Kjx〉|2 = 0

⇐⇒ Tr(|x〉 〈y |K ∗i Kj) = 0 ⇐⇒ (|x〉 〈y |) ⊥ K ∗j Ki , ∀i , j .

Result

Input messages x , y are not confusable ⇐⇒ |x〉 〈y | ⊥ SΦ.



Other approaches to quantum graphs

Classical graph G = (V ,E ,AG )

Quantize confusability graph of classical channels [DSW, 2010]

Matrix quantum graphs and Operator systems
Projection PS onto the operator system S

Quantize edge set E ⊆ V × V [Weaver, 2010, 2015]

Quantum relations
Projection PE from χE

Quantize adjacency matrix [MRV, 2018]

Categorical theory of quantum sets and quantum functions
Projection PG using AG

Unification

Under appropriate identifications, range of these projections is the same
operator system!
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Quantum Relations

Quantum set: von-Neumann algebra M⊆ B(H)

M′ := {A ∈ B(H) such that AM = MA, ∀ M ∈M}.

Quantum relation [Weaver, 2010]

A quantum relation on M is a weak*-closed subspace S ⊆ B(H) that is a
bi-module over its commutant M′, i.e. M′SM′ ⊆ S .

Independent of the representation M⊆ B(H).

Quantum relations on l∞(V )←→ subsets of V × V ←→ relations on
V .

S contains operators that ”connect adjacent vertices”.

Priyanga Ganesan Quantum Graphs



Quantum graphs as quantum relations

Classical graph: E ⊆ V × V - reflexive, symmetric relation on V .

Quantum Graph [Weaver, 2015]

A quantum graph on M is a reflexive and symmetric quantum relation on
M.

Quantum relation S ⊆ B(H) on M is:

Reflexive ⇐⇒ M′ ⊆ S ( =⇒ 1 ∈ S).

Symmetric ⇐⇒ S∗ = S .

Connection to operator system

Quantum graph S is a weak*-closed operator system that is a bimodule
over M′.

Priyanga Ganesan Quantum Graphs



Projection picture

Motivation from commutative setting:
Classical graph G = (V ,E ) with vertex set V and edge set E ⊆ V × V :

χE ∈ C (V × V ) ∼= C (V )⊗ C (V )

χE ←→
∑

x ,y∈V
δxy (χx ⊗ χy )

where δxy = 1 if (x , y) ∈ E and 0 otherwise.

Properties

Idempotent: χE = χ∗E = χ2
E

Reflexive: m(χE ) = 1V

Symmetric: σ(χE ) = χE

where m : C (V )⊗ C (V )
multiply−→ C (V ) and σ : C (V )⊗ C (V )

swap−→ C (V )⊗ C (V ).
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Quantum graph as projections

Quantum set: finite dimensional C*-algebra M with fixed tracial state.

Definition

A quantum graph is a quantum set M ⊆ B(H) with a projection
p ∈ M ⊗Mop satisfying

p = p∗ = p2

m(p) = 1M

σ(p) = p

p ∈ M ⊗Mop ∼=
π

M′CBM′
(
B(H)

)
Connection to operator system

S := Range(π(p)) ⊆ B(H) is a weak*-closed operator system in B(H)
that is a bimodule over M ′.
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Quantizing adjacency matrix...

Definition

A quantum graph is a pair (M,AG ) containing

Quantum set M

Quantum adjacency matrix AG : M
linear−→ M with

Idempotency: m(AG ⊗ AG )m∗ = AG

Reflexivity: m(AG ⊗ I )m∗ = I
Symmetry: (η∗m ⊗ I )(I ⊗ AG ⊗ I )(I ⊗m∗η) = AG

Back to projections: Get p ∈ M ⊗Mop as

p := (I ⊗ AG )m∗η.

Advantage of quantum adjacency matrix

Allows us to define the spectrum of a quantum graph!
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Comparing different notions of quantum graphs

Quantum set M: finite dimensional C*-algebra with fixed tracial state ψ.

CLASSICAL
GRAPH

MATRIX
Q.GRAPH

QUANTUM
RELATIONS

PROJECTIONS ADJACENCY
MATRIX

G = (V ,E ,AG )

AG ∈ Mn{0, 1}

S ⊆ Mn is
an operator
system.

(M,M′SM′ )

weak*-closed
operator sys in
B(H), bimodule
over M′.

(M, p)

p ∈ M ⊗Mop

(M,AG )

AG : M → M

Idempotency:
AG � AG = AG

AG � (Mn)
= S

M′SM′ ⊆ S p = p∗ = p2 m(AG ⊗ AG )m∗ =
AG

Reflexivity: 1s
on the diagonal

1 ∈ S M′ ⊆ S m(p) = 1M m(AG ⊗ I )m∗ = I

Undirected:
AG = AT

G

S = S∗ S = S∗ σ(p) = p (η∗m ⊗ I )(I ⊗ AG ⊗
I )(I ⊗m∗η) = AG
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Graph coloring

My research

Assign colors to vertices of
graph such that no adjacent
vertices get same color.

Chromatic number

Least number of colors
required to color that graph.
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Quantum Coloring Problem

Classical
Graph

Quantum
Graph

C
la
ss
ic
a
l

C
h
ro
m
a
ti
c
N
o
.

Q
u
a
n
tu
m

C
h
ro
m
a
ti
c
N
o
.
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Non-local graph coloring game

We begin with a classical graph G = (V ,E ).

The referee sends questions (vertices) to Alice and Bob separately. They
respond with answers (colors), without communicating with one another.

Inputs: Ialice = Ibob = V .

Outputs: Oalice = Obob = {1, 2, 3 . . . k}
Rule function λ : Ialice × Ibob × Oalice × Obob −→ {0, 1}.
Winning condition: λ(v ,w , a, b) = 1

Adjacency rule: (v ,w) ∈ E =⇒ a 6= b
Same vertex rule: v = w =⇒ a = b
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Classical Coloring of a Matrix Quantum Graph

Definition

Let S ⊆Mn be an operator system. We say there is a k-coloring of S if
there is an orthonormal basis {v1, v2 . . . vn} for Cn and a partition of
{1, 2 . . . n} into k subsets S1, S2 . . . Sk such that

|vi 〉 〈vj | ⊥ S , for all vi , vj ∈ Sl , with i 6= j .
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Quantum Edge Basis

1 Let (S ,M,Mn) be a quantum graph.

2 Let K1,K2, . . .Km be non-zero subspaces of Cn with

K1 ⊕ K2 ⊕ . . .Kr = Cn,

such that M acts irreducibly on each Kr .

3 Let Er be the orthogonal projection of Cn onto Kr , 1 ≤ r ≤ m.

There exists an orthonormal basis F of S with respect to the unnormalized
trace, such that

1√
dim(Kr )

Er ∈ F for each 1 ≤ r ≤ m;

F contains an orthonormal basis for M ′; and

For each Y ∈ F , there are unique r , s with ErYEs = Y .
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The quantum-to-classical graph coloring game

1 Let (S ,M,Mn) be a quantum graph.

2 K1 ⊕ K2 ⊕ . . .Kr = Cn and M acts irreducibly on each Kj .

3 {v1, v2, . . . vn} ⊆
basis

Cn that can be partitioned into bases for {Ki}ri .

Definition (BGH, 2020)

The quantum-to-classical graph coloring game for (S ,M,Mn), with
respect to the basis {v1, ..., vn} and a quantum edge basis F for S is:

Inputs:
∑
p,q

yα,pq vp ⊗ vq, where Yα :=
∑
p,q

yα,pq vpv
∗
q ∈ F .

Outputs: colors {1, 2, . . . k}.
Winning Criteria:

Adjacency rule: If Yα ⊥M′, then respond with different colors.
Same vertex rule: If Yα ∈M′, then respond with the same color.
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THANK YOU FOR YOUR ATTENTION!
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