Quantum Graphs!

Priyanga Ganesan

Texas A&M University

Quantum Symmetries Student Seminar

Feb 12, 2021

- **1** The quantum analogue of a graph
- 2 Significance of quantum graphs in information theory
- **3** Different approaches to quantum graphs
- 4 Quantum coloring problem

Classical Graphs

G = (Vertex set, Edge set, Adjacency matrix)

Example of a classical graph

•
$$V = \{1, 2, 3\}$$

• $E = \{(1, 2), (1, 3)\}$
• $A_G = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & * & * \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix}$

1

3

$$S_{\mathcal{G}} := \left\{ \begin{bmatrix} 0 & * & * \\ * & 0 & 0 \\ * & 0 & 0 \end{bmatrix} \text{ where } * \in \mathbb{C} \right\} \subseteq M_{3}(\mathbb{C})$$

 S_G is a subspace !

When the graph is reflexive....

$$S_{G} := \left\{ \begin{bmatrix} * & * & * \\ * & * & 0 \\ * & 0 & * \end{bmatrix} \text{ where } * \in \mathbb{C} \right\} \subseteq M_{3}(\mathbb{C})$$

Properties of S_G :

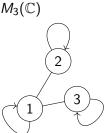
- Linear subspace
- Self-adjointness $(A \in S_G \iff A^* \in S_G)$
- Contains identity
- S_G is an operator system!

Operator System

A subspace
$$S \subseteq B(H)$$
 is called an operator system if

$$I \in S.$$

$$\bullet \ A \in S \implies A^* \in S.$$



Suppose G is a classical graph with vertex set $V = \{1, 2...n\}$.

Non-commutative graph associated with a classical graph The non-commutative graph associated with the classical graph

G = (V, E) is the operator system S_G defined as

$$S_{{m G}}= ext{ span}\{e_{ij}\ :\ (i,j)\in E ext{ or } i=j, \ orall i,j\in V\}\subseteq \mathbb{M}_n$$
 ,

where e_{ij} are matrix units in \mathbb{M}_n .

More generally,

Matrix Quantum Graphs

An operator system in \mathbb{M}_n is called a Matrix quantum graph.

- Matrix quantum graphs generalize the confusability graph of classical channels.
- Confusability graphs -> zero-error classical communication.
- Quantum graphs -> analogous role in zero-error quantum communication.

Classical Channel

 $\Phi \longleftrightarrow$ Probability transition function [P(y|x)].

(Input messages)
$$X \xrightarrow{\Phi} Y$$
 (Output messages)
 $\{x_1, x_2 \dots x_m\} \xrightarrow{\Phi} \{y_1, y_2 \dots y_n\}$

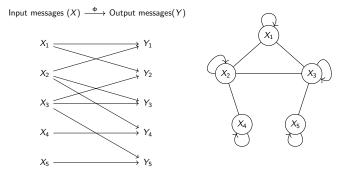
Confusability graph of classical channel

 $(\Phi: X \to Y) \longleftrightarrow$ Probability transition function [P(y|x)].

Confusability graph of Φ

• Vertex set:
$$X = \{x_1, x_2 \dots x_m\}.$$

• Edges: $x_i \sim x_j$ if there exists $y \in Y$ such that $P(y|x_i)P(y|x_j) > 0$.



Quantum communication channel take quantum states to quantum states.

$$\Phi: B(H_A) \stackrel{\text{linear}}{\longrightarrow} B(H_B)$$

- TP : Trace preserving: $Tr(\rho) = Tr(\Phi(\rho))$.
- CP : Completely positive: Φ is positive and all extensions $\Phi \otimes I_E$ are also positive.
 - CPTP maps have several representations :

Kraus form

 $\Phi(\rho) = \sum_{i=1}^{r} K_i \rho K_i^*$, where $K_i \in B(H_A, H_B)$ satisfying $\sum_{i=1}^{r} K_i^* K_i = I_A$.

The Kraus operators are not unique.

Classical embedded in Quantum

Input $A = \{1, 2..., m\} \longrightarrow B = \{1, 2..., n\}$ Output

CLASSICAL	QUANTUM		
Input: $ i\rangle = e_i \in \mathbb{C}^m$	Input: matrix units $e_{ii} \in \mathbb{M}_m$ ($e_{ii} = \ket{i} \langle i \ket{i}$		
Output: $ j\rangle = e_j \in \mathbb{C}^n$	Output: matrix units $e_{jj} \in \mathbb{M}_n$ ($e_{jj} = \ket{j}ra{j}$)		
$\mathbb{C}^m \xrightarrow{\Phi} \mathbb{C}^n$	$\mathbb{M}_m \stackrel{\Phi}{\longrightarrow} \mathbb{M}_n$		
$\Phi(v) = Pv$, where $P = [P(b a)]_{a \in A, b \in B}$	$\Phi(X) = \sum_{a \in A, b \in B} K_{ab}(X) K^*_{ab}$, where Kraus operators $K_{ab} = \sqrt{P(b a)} e_{ba} \in \mathbb{M}_{n imes m}$		
Confusability graph G	$K_{ab}^{*}K_{cd} = \sqrt{P(b a)P(d c)} \delta_{bd} e_{ac}$		
$a\sim c\iff \exists \ b \ { m with} \ P(b a)P(b c) eq 0$	$egin{array}{ll} \mathcal{K}^*_{ab}\mathcal{K}_{cd} eq 0 & \Longleftrightarrow \ b=d ext{ and } P(b a)P(d c) eq 0 \end{array}$		
$S_{\Phi} = \operatorname{span}\{e_{ac}: a \sim c\}$	$S_{\Phi} = \operatorname{span} \{ K^*_{ab} K_{cd} : a, c \in A \text{ and } b, d \in B \}$		

Non-commutative confusability graph [DSW, 2013]

Given a quantum channel $\Phi : \mathbb{M}_m \to \mathbb{M}_n$ with $\Phi(x) = \sum_{i=1}^r K_i x K_i^*$, the confusability graph of Φ is the operator system:

$$S_{\Phi} = \operatorname{span} \{ K_i^* K_j : 1 \le i, j \le r \} \subseteq \mathbb{M}_m.$$

This is independent of the Choi-Kraus representation of Φ .

Every operator system arises from a quantum channel!

Proposition

Let $S \subseteq \mathbb{M}_m$ be an operator system. Then there is $n \in \mathbb{N}$ and a quantum channel $\Psi : \mathbb{M}_m \to \mathbb{M}_n$ such that $S = S_{\Psi}$.

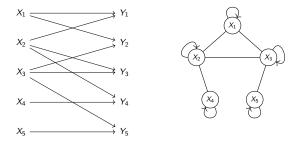
Applications in zero-error communication

Goal

Send messages through a channel without confusion.

Classical: x_i and x_j are not confusable $\iff x_i \not\sim x_j$ in the confusability graph.

Input messages $(X) \xrightarrow{\Phi}$ Output messages(Y)



 One-shot zero error capacity of φ = Independence number of G = maximum number of messages transmitted without confusion.

Zero-error quantum communication

• Quantum states: $\rho, \sigma \in B(H)$ are distinguishable $\iff \langle \rho, \sigma \rangle = 0$.

$$\Phi(\rho) = \sum_{i=1}^r K_i \rho K_i^*, \quad S_{\Phi} := \operatorname{span}\{K_j^* K_i : 1 \le i, j \le r\}.$$

• Encode input message $x \mapsto \rho_x = |x\rangle \langle x| \in B(H)$.

- ρ_x, ρ_y are not confusable $\iff \Phi(\rho_x), \Phi(\rho_y)$ are distinguishable.
- $\langle \Phi(\rho_x), \Phi(\rho_y) \rangle = 0$, with respect to Hilbert-Schmidt inner product.

$$\mathsf{Tr}(\Phi(\rho_y)^*\Phi(\rho_x)) = 0 \iff \sum_{i,j=1}^r |\langle y, \mathcal{K}_i^*\mathcal{K}_j x \rangle|^2 = 0$$

$$\iff \mathsf{Tr}(\ket{x}\bra{y} \mathsf{K}_i^* \mathsf{K}_j) = 0 \iff (\ket{x}\bra{y}) \perp \mathsf{K}_j^* \mathsf{K}_i, \quad \forall i, j.$$

Result

Input messages x, y are not confusable \iff $|x\rangle \langle y| \perp S_{\Phi}$.

Classical graph $G = (V, E, A_G)$

- Quantize confusability graph of classical channels [DSW, 2010]
 - Matrix quantum graphs and Operator systems
 - Projection P_S onto the operator system S
- Quantize edge set $E \subseteq V \times V$ [Weaver, 2010, 2015]
 - Quantum relations
 - Projection P_E from χ_E
- Quantize adjacency matrix [MRV, 2018]
 - Categorical theory of quantum sets and quantum functions
 - Projection P_G using A_G

Unification

Under appropriate identifications, range of these projections is the same operator system!

Quantum set: von-Neumann algebra $\mathcal{M} \subseteq B(H)$

 $\mathcal{M}' := \{A \in B(H) \text{ such that } AM = MA, \ \forall \ M \in \mathcal{M}\}.$

Quantum relation [Weaver, 2010]

A quantum relation on \mathcal{M} is a weak*-closed subspace $S \subseteq B(H)$ that is a bi-module over its commutant \mathcal{M}' , i.e. $\mathcal{M}'S\mathcal{M}' \subseteq S$.

- Independent of the representation $\mathcal{M} \subseteq B(H)$.
- Quantum relations on $I^{\infty}(V) \longleftrightarrow$ subsets of $V \times V \longleftrightarrow$ relations on V.
- S contains operators that "connect adjacent vertices".

Classical graph: $E \subseteq V \times V$ - reflexive, symmetric relation on V.

Quantum Graph [Weaver, 2015]

A quantum graph on ${\mathcal M}$ is a reflexive and symmetric quantum relation on ${\mathcal M}.$

Quantum relation $S \subseteq B(H)$ on \mathcal{M} is:

• Reflexive
$$\iff \mathcal{M}' \subseteq S \ (\implies 1 \in S).$$

• Symmetric
$$\iff S^* = S$$
.

Connection to operator system

Quantum graph S is a weak*-closed operator system that is a bimodule over $\mathcal{M}^{\prime}.$

Projection picture

Motivation from commutative setting:

Classical graph G = (V, E) with vertex set V and edge set $E \subseteq V \times V$:

$$\begin{array}{rcl} \chi_{E} \in \mathcal{C}(\mathcal{V} \times \mathcal{V}) &\cong & \mathcal{C}(\mathcal{V}) \otimes \mathcal{C}(\mathcal{V}) \\ \chi_{E} &\longleftrightarrow & \sum_{x,y \in \mathcal{V}} \delta_{xy} \left(\chi_{x} \otimes \chi_{y} \right) \end{array}$$

where $\delta_{xy} = 1$ if $(x, y) \in E$ and 0 otherwise.

Properties

• Idempotent:
$$\chi_E = \chi_E^* = \chi_E^2$$

Reflexive:
$$m(\chi_E) = 1_V$$

Symmetric:
$$\sigma(\chi_E) = \chi_E$$

where $m: C(V) \otimes C(V) \xrightarrow{\text{multiply}} C(V)$ and $\sigma: C(V) \otimes C(V) \xrightarrow{\text{swap}} C(V) \otimes C(V)$.

Quantum graph as projections

Quantum set: finite dimensional C*-algebra M with fixed tracial state.

Definition

A quantum graph is a quantum set $M \subseteq B(H)$ with a projection $p \in M \otimes M^{op}$ satisfying

$$p = p^* = p^2$$
 $m(p) = 1_M$
 $\sigma(p) = p$

$$p \in M \otimes M^{op} \cong_{\pi} {}_{M'} CB_{M'}(B(H))$$

Connection to operator system

 $S := \operatorname{Range}(\pi(p)) \subseteq B(H)$ is a weak*-closed operator system in B(H) that is a bimodule over M'.

Definition

A quantum graph is a pair (M, A_G) containing

Quantum set M

• Quantum adjacency matrix $A_G: M \xrightarrow{linear} M$ with

- Idempotency: $m(A_G \otimes A_G)m^* = A_G$
- Reflexivity: $m(A_G \otimes I)m^* = I$
- Symmetry: $(\eta^* m \otimes I)(I \otimes A_G \otimes I)(I \otimes m^* \eta) = A_G$

Back to projections: Get $p \in M \otimes M^{op}$ as

$$p := (I \otimes A_G)m^*\eta.$$

Advantage of quantum adjacency matrix

Allows us to define the spectrum of a quantum graph!

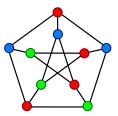
Comparing different notions of quantum graphs

Quantum set *M*: finite dimensional C*-algebra with fixed tracial state ψ .

CLASSICAL GRAPH	MATRIX Q.GRAPH	QUANTUM RELATIONS	PROJECTIONS	ADJACENCY MATRIX
$G = (V, E, A_G)$ $A_G \in \mathbb{M}_n\{0, 1\}$	$S \subseteq \mathbb{M}_n$ is an operator system.	$(M, {}_{M'}S_{M'})$ weak*-closed operator sys in B(H), bimodule over M' .	(M,p) $p \in M \otimes M^{op}$	(M, A_G) $A_G: M \to M$
$\begin{array}{c} \text{Idempotency:} \\ A_G \odot A_G = A_G \end{array}$	$ \begin{array}{c} A_G \odot (\mathbb{M}_n) \\ = S \end{array} $	$M'SM' \subseteq S$	$p = p^* = p^2$	$\begin{array}{rcl} m(A_G \otimes A_G)m^* & = \\ A_G \end{array}$
Reflexivity: 1s on the diagonal	$1\in S$	$M' \subseteq S$	$m(p) = 1_M$	$m(A_G \otimes I)m^* = I$
Undirected: $A_G = A_G^T$	$S = S^*$	$S = S^*$	$\sigma(p) = p$	$(\eta^* m \otimes I)(I \otimes A_G \otimes I)(I \otimes m^* \eta) = A_G$

My research

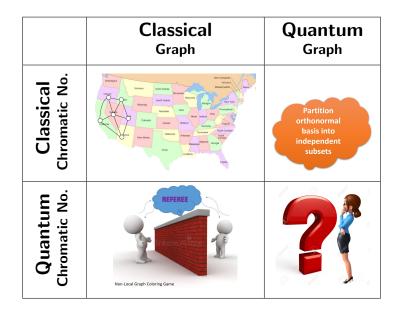
Assign colors to vertices of graph such that no adjacent vertices get same color.



Chromatic number

Least number of colors required to color that graph.

Quantum Coloring Problem



We begin with a classical graph G = (V, E).

The referee sends questions (vertices) to Alice and Bob separately. They respond with answers (colors), without communicating with one another.

Inputs:
$$I_{alice} = I_{bob} = V$$
.

• Outputs:
$$O_{alice} = O_{bob} = \{1, 2, 3 \dots k\}$$

- Rule function $\lambda : I_{alice} \times I_{bob} \times O_{alice} \times O_{bob} \longrightarrow \{0,1\}.$
- Winning condition: $\lambda(v, w, a, b) = 1$
 - Adjacency rule: $(v, w) \in E \implies a \neq b$
 - Same vertex rule: $v = w \implies a = b$

Definition

Let $S \subseteq \mathbb{M}_n$ be an operator system. We say there is a k-coloring of S if there is an orthonormal basis $\{v_1, v_2 \dots v_n\}$ for \mathbb{C}^n and a partition of $\{1, 2 \dots n\}$ into k subsets $S_1, S_2 \dots S_k$ such that

 $|v_i\rangle \langle v_j| \perp S$, for all $v_i, v_j \in S_I$, with $i \neq j$.

Quantum Edge Basis

- **1** Let (S, \mathcal{M}, M_n) be a quantum graph.
- **2** Let K_1, K_2, \ldots, K_m be non-zero subspaces of \mathbb{C}^n with

$$K_1 \oplus K_2 \oplus \ldots K_r = \mathbb{C}^n$$
,

such that \mathcal{M} acts irreducibly on each K_r .

3 Let E_r be the orthogonal projection of \mathbb{C}^n onto K_r , $1 \le r \le m$.

There exists an orthonormal basis \mathcal{F} of S with respect to the unnormalized trace, such that

•
$$\frac{1}{\sqrt{\dim(K_r)}}E_r \in \mathcal{F}$$
 for each $1 \leq r \leq m$;

- \mathcal{F} contains an orthonormal basis for M'; and
- For each $Y \in \mathcal{F}$, there are unique r, s with $E_r Y E_s = Y$.

The quantum-to-classical graph coloring game

- **1** Let (S, \mathcal{M}, M_n) be a quantum graph.
- **2** $K_1 \oplus K_2 \oplus \ldots K_r = \mathbb{C}^n$ and \mathcal{M} acts irreducibly on each K_j .
- **3** $\{v_1, v_2, \ldots v_n\} \subseteq_{\text{basis}} \mathbb{C}^n$ that can be partitioned into bases for $\{K_i\}_i^r$.

Definition (BGH, 2020)

The quantum-to-classical graph coloring game for (S, \mathcal{M}, M_n) , with respect to the basis $\{v_1, ..., v_n\}$ and a quantum edge basis \mathcal{F} for S is:

- Inputs: $\sum_{p,q} y_{\alpha,pq} \ v_p \otimes v_q$, where $Y_{\alpha} := \sum_{p,q} y_{\alpha,pq} \ v_p v_q^* \in \mathcal{F}$.
- *Outputs:* colors $\{1, 2, ..., k\}$.
- Winning Criteria:
 - Adjacency rule: If $Y_{\alpha} \perp \mathcal{M}'$, then respond with different colors.
 - Same vertex rule: If $Y_{\alpha} \in \mathcal{M}'$, then respond with the same color.

Runyao Duan, Simone Severini, and Andreas Winter.

Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number.

IEEE Trans. Inform. Theory, 59(2):1164–1174, 2013.

Benjamin Musto, David Reutter, and Dominic Verdon.A compositional approach to quantum functions.J. Math. Phys., 59(8):081706, 42, 2018.

Nik Weaver.

Quantum graphs as quantum relations, 2017.

Dan Stahlke.

Quantum zero-error source-channel coding and non-commutative graph theory. *IEEE Trans. Inform. Theory*, 62(1):554–577, 2016.

Michael Brannan, Priyanga Ganesan, and Samuel J. Harris. The quantum-to-classical graph homomorphism game, 2020.

THANK YOU FOR YOUR ATTENTION!