Exercises

David Jekel

February 20, 2021

Entropy

Definition. Let $(\Omega, \mathcal{F}, \nu)$ be a measure space. If μ is another measure on (Ω, \mathcal{F}) , we define

$$h(\mu \| \nu) := -\int \frac{d\mu}{d\nu} \log \frac{d\mu}{d\nu} \, d\nu$$

if μ is absolutely continuous with respect to ν , and $h(\mu||\nu) = -\infty$ otherwise.

Exercise 1. If μ and ν are probability measures, then $h(\mu||\nu) \leq 0$. Hint: Apply Jensen's inequality $to-t\log t$.

Exercise 2. Let $V: \mathbb{R}^d \to \mathbb{R}$ such that V is bounded below and $\int e^{-V} dx = 1$. Let dx denote Lebesgue measure on \mathbb{R}^d with their respective Borel σ -algebras. If μ is a Borel probability measure, then

$$h(\mu \| e^{-V} dx) = h(\mu \| dx) - \int V d\mu,$$

provided that at least one of the terms on the right-hand side is finite.

Exercise 3. For a Borel probability measure μ on \mathbb{R}^d ,

$$h(\mu \| dx) \le \frac{1}{2} \int x^2 d\mu(x).$$

Definition. Let Ω and Ω' be metric spaces equipped with the Borel σ -algebra. If μ is a probability measure on Ω and $f: \Omega \to \Omega'$ is continuous, we define $f_*\mu$ by

$$f_*\mu(E) = \mu(f^{-1}(E)).$$

Exercise 4. Let f be a diffeomorphism of \mathbb{R}^d and let $V : \mathbb{R}^d \to \mathbb{R}$ be a function such that $\int e^{-V} dx = 1$. Then

$$f_*(e^{-V} dx) = e^{-(V \circ f^{-1} - \log|\det Df^{-1}|)} dx.$$

Exercise 5. Let f be a diffeomorphism of \mathbb{R}^d and μ a Borel probability measure on \mathbb{R}^d . Then

$$h(f_*\mu || dx) = h(\mu || dx) + \int \log |\det Df| d\mu.$$

Upper semicontinuity

Definition. Let Ω be a topological space. A function $f:\Omega\to [-\infty,\infty]$ is said to be *upper semi-continuous* if $f^{-1}([-\infty,t))$ is open for every $t\in\mathbb{R}$.

Exercise 6. A function $f: \Omega \to [-\infty, \infty]$ is upper semi-continuous if and only if, for every net $(x_i)_{i \in I}$ converging to a point x, we have

$$\limsup_{i \in I} f(x_i) \le f(x).$$

Exercise 7. If \mathcal{F} is a family of upper semi-continuous functions $\Omega \to [-\infty, \infty]$, then

$$g(x) := \inf_{f \in \mathcal{F}} f(x)$$

is upper semi-continuous.

Exercise 8. Let $a, b \in [-\infty, \infty]$ with a < b. Let $E \subseteq \Omega$, and let

$$f(x) = \begin{cases} a, & x \in E, \\ b, & x \in \Omega \setminus E. \end{cases}$$

Then f is upper semi-continuous if and only if E is open.

Exercise 9. If $f:\Omega\to [-\infty,\infty]$ is upper semi-continuous and $K\subseteq\Omega$ is compact, then f achieves a maximum on K.