No approved therapy exists for cancer-associated cachexia. The colon-26 mouse model of cancer cachexia mimics recent late-stage clinical failures of anabolic anti-cachexia therapy and was unresponsive to anabolic doses of diverse androgens, including the selective androgen receptor modulator (SARM) GTx-024. The histone deacetylase inhibitor (HDACi) AR-42 exhibited anti-cachectic activity in this model. We explored combined SARM/AR-42 therapy as an improved anti-cachectic treatment paradigm. A reduced dose of AR-42 provided limited anti-cachectic benefits, but, in combination with GTx-024, significantly improved body weight, hindlimb muscle mass, and grip strength versus controls. AR-42 suppressed the IL-6/GP130/STAT3 signaling axis in muscle without impacting circulating cytokines. GTx-024-mediated β-catenin target gene regulation was apparent in cachectic mice only when combined with AR-42. Our data suggest cachectic signaling in this model involves catabolic signaling insensitive to anabolic GTx-024 therapy and a blockade of GTx-024-mediated anabolic signaling. AR-42 mitigates catabolic gene activation and restores anabolic responsiveness to GTx-024. Combining GTx-024, a clinically established anabolic therapy, with AR-42, a clinically evaluated HDACi, represents a promising approach to improve anabolic response in cachectic patients.
Transcriptionally Active Androgen Receptor Splice Variants Promote Hepatocellular Carcinoma Progression
Owing to the marked sexual dimorphism of hepatocellular carcinoma (HCC), sex hormone receptor signaling has been implicated in numerous aspects of liver cancer pathogenesis. We sought to reconcile the clear contribution of androgen receptor (AR) activity that has been established in preclinical models of HCC with the clinical failure of AR antagonists in patients with advanced HCC by evaluating potential resistance mechanisms to AR-targeted therapy. The AR locus was interrogated for resistance-causing genomic modifications using publicly available primary HCC datasets (1,019 samples). Analysis of HCC tumor and cell line RNA-seq data revealed enriched expression of constitutively active, treatment-refractory AR splice variants (AR-SV). HCC cell lines expressed C-terminal-truncated AR-SV; 28 primary HCC samples abundantly expressed AR-SV. Low molecular weight AR species were nuclear localized and constitutively active. Furthermore, AR/AR-SV signaling promoted AR-mediated HCC cell progression and conferred resistance to AR antagonists. Ligand-dependent and -independent AR signaling mediated HCC epithelial-to-mesenchymal transition by regulating the transcription factor SLUG. These data suggest that AR-SV expression in HCC drives HCC progression and resistance to traditional AR antagonists. Novel therapeutic approaches that successfully target AR-SVs may be therapeutically beneficial for HCC. SIGNIFICANCE: Treatment-refractory, constitutively active androgen receptor splice variants promote hepatocellular carcinoma progression by regulating the epithelial-to-mesenchymal transition pathway.
Population pharmacokinetics of lenalidomide in patients with B-cell malignancies
Aims: Lenalidomide is an immunomodulatory imide drug used broadly in the treatment of multiple myeloma and lymphoma. It continues to be evaluated in chronic lymphocytic leukaemia (CLL) at lower doses due to dose-related toxicities including tumour flare and tumour lysis syndrome. This study aimed to develop a population pharmacokinetic model for lenalidomide in multiple cancers, including CLL, to identify any disease-related differences in disposition.
Methods: Lenalidomide concentrations from 4 clinical trials were collated (1999 samples, 125 subjects), covering 4 cancers (multiple myeloma, CLL, acute myeloid leukaemia and acute lymphoblastic leukaemia) and a large dose range (2.5-75 mg). A population pharmacokinetic model was developed with NONMEM and patient demographics were tested as covariates.
Results: The data were best fitted by a 1-compartment kinetic model with absorption described by 7 transit compartments. Clearance and volume of distribution were allometrically scaled for fat-free mass. The population parameter estimates for apparent clearance, apparent volume of distribution and transit rate constant were 12 L/h (10.8-13.6), 68.8 L (61.8-76.3), and 13.5 h-1 (11.9-36.8) respectively. Patients with impaired renal function (creatinine clearance <30 mL/min) exhibited a 22% reduction in lenalidomide clearance compared to patients with creatinine clearance of 90 mL/min. Cancer type had no discernible effect on lenalidomide disposition.
Conclusions: This is the first report of a lenalidomide population pharmacokinetic model to evaluate lenalidomide pharmacokinetics in patients with CLL and compare its pharmacokinetics with other B-cell malignancies. As no differences in pharmacokinetics were found between the observed cancer-types, the unique toxicities observed in CLL may be due to disease-specific pharmacodynamics.
Pharmacokinetic-Pharmacodynamic Model of Neutropenia in Patients With Myeloma Receiving High-Dose Melphalan for Autologous Stem Cell Transplant
High-dose melphalan (HDM) is part of the conditioning regimen in patients with multiple myeloma (MM) receiving autologous stem cell transplantation (ASCT). However, individual sensitivity to melphalan varies, and many patients experience severe toxicities. Prolonged severe neutropenia is one of the most severe toxicities and contributes to potentially life-threatening infections and failure of ASCT. Granulocyte-colony stimulating factor (G-CSF) is given to stimulate neutrophil proliferation after melphalan administration. The aim of this study was to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model capable of predicting neutrophil kinetics in individual patients with MM undergoing ASCT with high-dose melphalan and G-CSF administration. The extended PK/PD model incorporated several covariates, including G-CSF regimen, stem cell dose, hematocrit, sex, creatinine clearance, p53 fold change, and race. The resulting model explained portions of interindividual variability in melphalan exposure, therapeutic effect, and feedback regulation of G-CSF on neutrophils, thus enabling simulation of various doses and prediction of neutropenia duration.
Cachectic Cancer Patients: Immune to Checkpoint Inhibitor Therapy?
Immune checkpoint inhibition is dramatically improving patient outcomes in diverse cancers, many of which responded poorly to traditional cytotoxic agents. Drivers of heterogeneous response to immune checkpoint therapy are poorly characterized. Cachectic cancer patients exhibit elevated pembrolizumab clearance and poor response, highlighting the immense therapeutic challenge posed by cancer cachexia. See related article by Turner et al., p. 5841.
Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells
Extracellular vesicles (EVs) are under evaluation as therapeutics or as vehicles for drug delivery. Preclinical studies of EVs often use mice or other animal models to assess efficacy and disposition. However, as most EVs under evaluation are derived from human cells, they may elicit immune responses which may contribute to toxicities or enhanced EV clearance. Furthermore, EVs from different cell sources or EVs comprising various cargo may differ with respect to immunogenicity or toxicity. To assess EV-induced immune response and toxicity, we dosed C57BL/6 mice with EVs intravenously and intraperitoneally for 3 weeks. EVs were harvested from wild type or engineered HEK293T cells which were modified to produce EVs loaded with miR-199a-3p and chimeric proteins. Blood was collected to assess hematology, blood chemistry, and immune markers. Spleen cells were immunophenotyped, and tissues were harvested for gross necropsy and histopathological examination. No signs of toxicity were observed, and minimal evidence of changes in immune markers were noted in mice dosed with engineered, but not with wild type EVs. This study provides a framework for assessment of immunogenicity and toxicity that will be required as EVs from varying cell sources are tested within numerous animal models and eventually in humans.