Sport Specialization in Youth

Approximately 60 million children and adolescents between the ages of 6 and 18 years participate in some form of organized athletics in the United States (Fig 1).1 Single sport specialization is a growing topic of discussion in youth athletics. The American Medical Society for Sports Medicine (AMSSM) characterizes sport specialization as year round intense training in only one sport at the exclusion of other sports.2 Recent reports found that within a group of 1200 youth athletes, approximately one third participated in a single sport year-round.3,4 

Figure 1. Youth sports participation in the US. Adapted from the National Council of Youth Sports.1

Sports specialization, high intensity training, and participating in competitive events outside of the regular season are byproducts of an increasingly competitive nature of youth sports fueled even further by big business ventures from personal coaches, showcase events, etc.2 For several decades, it has been well documented that developing bones, specifically during puberty or growth, are more prone to injury from tensile, shear, and compressive forces.5-7 Bones more prone to injury, combined with the high intensities or frequencies of training that potentially accompany specialization, may contribute to a possible increase in risk of overuse injuries, albeit not directly.2 Studies have suggested that exceeding 16 hours of intense training per week8-10 (Fig 2)11 may increase injury rates. Year-round participation in sports, defined as playing sports over 4 seasons, may also increase risk of overuse injury among high school athletes.12 Although young athletes can often tolerate stress, there is a limit to the stress a youth athlete should experience and therefore proper time off and rest from sport activity is recommended to reduce risk of injury while maintaining long-term healthy athletic performance.2

Figure 2. Relationship of injury to exposure hours in high school athletes. Adapted from Jayanthi et al.11

Future research in this area should focus on what frequencies and intensities of training may correlate with overuse injuries or risk of injury with sport specialization.2 Such information could allow athletes to follow training programs that minimize injuries and maximize performance. Additionally, long-term studies comparing the effects of sport specialization with participation in multiple sports could prove worthwhile.2 These may allow insight on developmental differences and long-term implications resulting from participation variation.Minimal scientific evidence supporting the notion that earlier single-sport training is beneficial for success currently exists and further research is warranted.13 However, based on research that does exist, sport specialization may have some benefits. There is a general agreement in the sports medicine field that the number of purposeful hours spent in either training or practice is correlated with success.11 Some debate exists as to when intense training or practice should begin.11 It is also recognized that some degree of specialization is necessary to attain elite-level skills.14-18 This becomes more applicable as athletes age for most sports. Peak performance in some individual sports, such as diving or figure skating, may occur before the body matures, making specialization at preadolescent ages common (Figure 3).13 However, it is recommended that intense training in one single sport be delayed until late adolescence if possible in order to optimize success and reduce risk for injury and psychological stress.19-26

Figure 3. Recommendations for stage of specialization and sport. Adapted from Myer et al.13

As mentioned, there may be risks associated with specializing including the potential for increased psychological stress and overuse injuries. Although specialization may be appropriate for some athletes, the type of sport and age of the athlete should be considered. Regardless of whether youth choose to specialize or not, it is important to foster an environment that encourages athleticism and builds positive athletic experiences. Athleticism may be built through a variety of sports and training programs which cater to each child’s needs and interests.  The notion of playing multiple sports should not be the sole focus for injury prevention and performance enhancement considerations, the concept of athleticism and physical literacy are factors that should be strongly encouraged.  Individuals need to be provided various avenues for development and some may partake in a single sport, but need to supplement with cross sport sampling or less intense multi-sport  choices (e.g., playing high level baseball but playing recreational or social basketball) while others may choose to play two high level sports. Most importantly, children should enjoy sports and participating in an activity that builds positive healthy individuals who can grow physically and mentally.

Post Credit: Michael Lantz, Dan Clifton, Dr. James Onate


  1. National Council of Youth Sports. Report on trends and participation in organized youth sports 2008. market-research-report.pdf. 2008. Accessed January 16, 2018.
  2. Difiori JP, Benjamin HJ, Brenner JS, et. al. Overuse injuries and burnout in youth sports: a position statement from the American Medical Society for Sports Medicine. Br J Sports Med. 2014; 48(4), 287-288.
  3. Jayanthi NA, Labella CR, Fischer D, et. al. Sports-specialized intensive training and the risk of injury in young athletes. Am J Sports Med. 2015;43(4):794-801.
  4. Wiersma LD. Risks and benefits of youth sport specialization: perspectives and recommendations. Pediatr Exerc Sci. 2000;12(1):13-22.
  5. Alexander CJ. Effects of growth rate on the strength of the growth plateshaft junction. Skel Radiol. 1976;1:67–76.
  6. Bright RW, Burstein AH, Elmore SM. Epiphyseal-plate cartilage. J Bone Joint Surg Am. 1974;56(4):688-703.
  7. Flachsmann R, Broom ND, Hardy AE,et. al. Why is the adolescent joint particularly susceptible to osteochondral shear fracture? Clin Orthop Relat Res. 2000;381:212-221.
  8. Rose MS, Emery CA, Meeuwisse WH, Sociodemographic predictors of sport injury in adolescents. Med Sci Sports Exerc. 2008;40(3):444-450.
  9. Jayanthi N, Dechert A, Durazo R, et. al. Training and sports specialization risks in junior elite tennis players. J Med Sci Tennis. 2011;16:14-20.
  10. Loud KJ, Gordon CM, Micheli LJ, et. al. Correlates of stress fractures among preadolescent and adolescent girls. Pediatrics. 2005;115:e399-e406.
  11. Jayanthi N, Pinkham C, Dugas L, et. al. Sports specialization in young athletes: evidence based recommendations. Sports Health. 2012;5(3):251-257.
  12. Cuff S, Loud K, Oriordan MA, Overuse injuries in high school athletes. Clin Pediatr. 2010;49(8):731-736.
  13. Myer GD, Jayanthi N, Difiori JP, et al. Sports specialization, part II alternative solutions to early sport specialization in youth athletes. Sports Health. 2016;8(1):65-73.
  14. American Academy of Pediatrics . Committee on Sports Medicine and Fitness. Intense training and sports specialization in young athletes . Pediatrics. 2000; 106: 154-157.
  15. American College of Sports Medicine . The prevention of sport injuries of children and adolescents . Med Sci Sport. 1993; 25(8): 1-7.
  16. FIMS/WHO Ad Hoc Committee on Sports and Children. Sports and children: consensus statement on organized sports for children. Bull World Health Organ. 1998;76(5): 445-447.
  17. Hughson R, Children in competitive sports: a multi-disciplinary approach. Can J Appl Sport Sci. 1986;11(4):162-172
  18. McLeod TCV, Decoster L, Loud KJ, et al. National Athletic Trainers’ Association position statement: prevention of pediatric overuse injuries. J Athl Train. 2011;46(2):206-220.
  19. Baker J , Côté J , Abernethy B . Sport-specific practice and the development of expert decision-making in team ball sports . J Appl Sport Psychol . 2003;15:12-25 .
  20. Barynina II , Vaitsekhovskii SM. The aftermath of early sports specialization for highly qualified swimmers. Fitness Sports Rev Int. 1992;27:132-133.
  21. Carlson R . The socialization of elite tennis players in Sweden: an analysis of the players’ backgrounds and development. Sociol Sport J. 1988;5:241-256 .
  22. Helsen WF , Starkes JL , Hodges NJ. Team sports and the theory of deliberate practice. J Sport Exerc Psychol. 1998; 20:12-34
  23. Hodges NJ, Starkes JL. Wrestling with the nature of expertise: a sport specific test of Ericsson, Krampe, and Tesh-Romer’s (1993) theory of “deliberate practice.” Int J Sport Psychol. 1996;27:400-424.
  24. Hume PA, Hopkins WG, Robinson DM, et. al. Predictors of attainment in rhythmic sportive gymnastics. J Sports Med Phys Fitness. 1994;33(4):367-377.
  25. Law M, Côté J, Ericsson KA. Characteristics of expert development in rhythmic gymnastics: a retrospective study. Int J Exerc Sport Psychol. 2007;5:82-103.
  26. Moesch K, Elbe AM, Hauge ML, et. al. Late specialization: the key to success in centimeters, grams, or seconds (cgs) sports. Scand J Med Sci Sports. 2011;21(6):e282-e290.

Alumni Spotlight: Kristen Looman

The MOvES Lab would like to recognize alumnus Kristen Looman, who graduated with a B.S. in Biology in 2016. In her three undergraduate years spent in the lab, Kristen was involved in various projects with a main focus in prediction and prevention of musculoskeletal injury in collegiate athletes. Currently, Kristen is working full-time as an Anesthesiology Technician at the Ohio State Wexner Medical Center and volunteers Monday evenings with the Physician’s Care Connection. Her future aspirations are to attend a physician assistant program.

During her time in the lab she gained hands-on experience in the field of sports medicine and biomechanics, and learned about the fundamentals of scientific research. Furthermore, she learned how to overcome adversity, approach issues in new ways, and gain new confidence in academic settings.

“As a scientist and young professional, I understand the importance to advance the field of medicine. With sports being a huge part of my life growing up, I felt an interest in sports medicine, and this led me to join Dr. Onate’s team. During my time, I was able to learn about issues that fascinated me with other like-minded individuals. I found a group of mentors who guided me to communicate my own ideas while analyzing and critiquing others’ work. With their help, I gained confidence in myself and overall became a self-sufficient individual. I did the classwork to earn a Bachelor of Science, but it was through this lab that I became scientist.”

We are very proud of Kristen and wish her the best of luck on her future endeavors!



Welcome Dr. Boucher to The MOvES Lab!

The MOvES Lab would like to extend a warm welcome to Laura Boucher, PhD, AT, ATC, in her new role as Associate Lab Director! Dr. Boucher was hired as an Assistant Professor-Clinical in in 2014, with a teaching focus in musculoskeletal and orthopedic anatomy. Her research focuses on our improving anatomical and biomechanical understanding to reduce risk of injury in car crashes and sports.

Dr. Boucher completed her undergraduate studies at Ohio University with a BS in Athletic Training. She then earned her Master’s degree at the University of North Carolina-Chapel Hill in Exercise Science-Athletic Training, where she also served as a Graduate Assistant Athletic Trainer. Her master’s thesis explored the effects of fatigue on core muscle activation during sporting tasks.

Following graduate school, she was hired at Capital University in Bexley, Ohio as an Assistant Athletic Trainer. After two years, she moved into a duel faculty/athletic training position, teaching and advising within the Health and Sport Sciences Department, while continuing to provide athletic training services to Capital University Athletics teams. Her teaching responsibilities spanned from health and nutrition classes, to motor learning and biomechanics, and upper and lower extremity physical exam courses. Dr. Boucher provided Athletic training services to a variety of teams while at Capital University, including Football, Volleyball, Indoor and Outdoor Track and Field, and Women’s Basketball.

Her love of teaching and research continued to grow while working at Capital, which eventually led her to purse a PhD in Anatomy at The Ohio State University. She studied under the direction of Dr. John Bolte IV and completed her research in the Injury Biomechanics Research Center. Her work focused on evaluating pediatric ankle biomechanics, which led to the development a more biofidelic pediatric crash test dummy ankle and leg. Upon finishing her PhD, she was hired by The Ohio State University in the Division of Anatomy in 2014. In 2016 she joined the Athletic Training faculty. Her academic responsibilities include teaching gross anatomy in the Bone and Muscle Disorders Block for the first-year Medical students. She also teaches gross anatomy to the Physical and Occupational Therapy students and team teaches other courses to Biomedical Engineering and Athletic Training undergraduate students. She mentors and advises numerous students and serves as the Associate Block Director for the Bone and Muscles Disorders Block in the College of Medicine.

Dr. Boucher’s research continues to focus on pediatric injury biomechanics and more recently has started to explore the role of using musculoskeletal ultrasound in teaching physical exam skills, exploring how tissue responds to stress, as well as applications to aid in clinical decision making. We are excited to grow our faculty and add Dr. Boucher’s perspective to the MOvES lab.