How to Combat Buddy & Sour Sap – The Path to QUALITY Syrup (Part 4)

Prevention of sour sap is all about sanitation. Here are a few things to consider when developing a sanitation plan for your maple operation. As soon as the previous season ends, producers using tubing need to clean and sanitize their lines. There are many ways to do this, but the most important thing is to make sure it gets done. As the new season approaches, inspect your lines for sanitation problems, consider replacing not only the spouts but the drops and tees if needed. As the new season begins, producers using high vacuum should consider running your vacuum 24/7 to keep your lines clean, clear, and cool.  During the season, make sure you wash your holding tanks often to prevent microbial scum buildup.

Where sap is held for a long period of time, avoid using plastic tanks for long term sap storage. Plastic is porous and retains bacterial inoculum that will quickly generate bacterial growth. These plastic tanks are often referred to as commercializers, named after the old commercial grade of syrup that nobody wanted. Once a plastic tank becomes contaminated, they are almost impossible to clean and should be replaced.

In the sugarhouse, making quality maple syrup starts with your reverse osmosis (RO) unit. Concentrate must be evaporated as soon as it comes off the RO. Bacteria multiply quickly in concentrated sap. This is the result of a higher percentage of sugar in the concentrate. There is also an increase in the sap temperature as it moves through the RO. It may enter the RO at 40 degrees F or less, but when it comes out, it will be closer to 50 degrees F. High Brix concentrate, elevated sap temperatures, and a warm sugarhouse are the perfect recipe for taking good sap and turning it into a microbial cesspool if not careful. This is one of the reasons many producers are now considering using refrigerated milk bulk tanks to store concentrate. This cools the concentrate and allows more time to manage the boiling process.

Producers often accept the fact that concentrate left on the evaporator overnight will produce a darker grade syrup, at least until fresh sap is introduced.  This does not have to happen if managed properly.  Small evaporators should be drained if possible. Larger evaporators can be equipped with a wash system that allow the entire evaporator to be cleaned and drained. Once the syrup leaves the evaporator, the process of sanitation continues. Syrup should be filtered and placed in a stainless-steel drum after being reheated to at least 180 degrees F. There is an inherent risk when you attempt to drum syrup at lower temperatures. Spoilage happens when barrels are packed at low temperatures. The hot syrup and cold barrel causes condensation (H2O) which combines with the remaining air in the barrel ultimately resulting in mold and fermentation.  It is best practice to place filled barrels in a cool place like a basement or a barn that does not heat up. Another practice worth looking into, is to build a cool room by equipping  a small insulated room with an air conditioner.

When you re-open a barrel of syrup, you should have syrup that is ready to bottle. When you bottle your syrup bring the syrup back up to 185 degrees for packing. Syrup packed below 185 F is subject to spoilage and reduced shelf life. Going above 190 also creates several problems. And if the syrup peaks above 200 F, the syrup will start to foam, and niter will start precipitate. The only solution for this scenario is to filter the syrup again. You will also overheat your jugs causing them to contract and suck in if they are not 100% filled. Plastic jugs should always be filled within a half inch of the top and laid on their side to kill any bacterial that may have found its way in the jug.  If you pack in glass bottles, make sure you put your bottles in the oven at 200 degrees for a few minutes. Hot glass will not condensate moisture and you can eliminate most problems with this simple step. It is always good to pack several times over the course of the year to maintain the highest quality in your syrup.

Many years ago, there was a use for commercial outlet for sub-standard syrup. The majority was sold to the tobacco industry. It was used to sweeten chewing tobacco. That outlet for the most part no longer exists. There are places where substandard syrup could be used but its objectionable flavor drastically lowers its value. For this reason, there is now a movement to prevent this type of syrup from getting into the market. Bulk buyers no longer want to handle sub-standard syrup and if they buy it they are not going to pay very much for the product. In addition, there is a currently an effort by the International Maple Syrup Institute and others to promote educational programing to raise producer awareness about ways to avoid producing this kind of syrup. The reality is that there is very little economic return from sub-standard syrup production. With rising costs of equipment and inputs the production of anything less than top quality saleable syrup in today’s high demand market is foolish.

There you have it – a 4-part series starting with a lesson on phenology and how to track growing degree days, relating growing degree days to tree bud development, appreciating the differences between buddy sap and sour sap, taking sanitation seriously at every single phase, and PRESTO! viola! alakazam (if only it were that easy!!) – you are making QUALITY maple syrup!

Off-Tasting Syrup: Understanding the Culprits (Part 3)

Now that we have talked about tree phenology and maple buds and growing degree days, let’s the talk more about the main prize of every sugarmaker’s dream – QUALITY syrup!  As we get ready to embark on a new maple season, let’s go over some of the things that will help you to improve the quality of your syrup in 2022. We all know that paying attention to detail in the woods will pay off with big rewards; however, the place where paying attention to detail is most important is when the sap or concentrate is on the evaporator. The finishing process can make or break your operation. Maple production is becoming a very competitive business, and the producers making the highest quality syrup will rise to the top.

Here is an oversimplification of what happens during the syrup-making process.  Once bacteria are introduced into the sap, a conversion of sugars takes place. A portion of the maple sap, which is almost 100 percent sucrose, is converted into glucose and fructose. This portion of the sugar content makes up the invert sugars present in syrup. When the sap is heated (The Maillard Reaction – something you can read more about here) the color of the syrup and the flavor of the syrup is formed, largely based on the amount of glucose and fructose sugars and other factors happening at the same time.  Thus, the level of microbial interaction plays a vital role in determining the color, grade, and corresponding flavor profile of the syrup produced. So, as you can see not all microbes are bad, in fact they are essential to everything we love about maple syrup!

Sap flowing from the maple tree is sterile, so where do the microbes come from?

Microbial activity begins as soon as sap is exposed to the outside environment. Early in the season microbial development is slow due to the normally cold temperatures, but once warm weather arrives (above 50 degrees F), more and other strains of microbes begin to multiply in the sap. As the microbes interact with the sap, the syrup produced darkens and develops an increasingly bold and pronounced maple flavor. Microbe colonies continue to expand eventually resulting in very dark and viscous syrup with an unpalatable strong flavor. Because this degradation of the sap is more likely to occur at the end of the season, low quality syrup is often associated with tree budding which happens at approximately the same time.

If you did a taste comparison, you would notice is a definite difference between buddy syrup and sour sap syrup. Buddy syrup has a chocolate flavor akin to what a Tootsie Roll tastes like while sour sap syrup has a bitter sometimes fermented taste that stays in your mouth. If you boil buddy sap, it will produce a pungent unforgettable smell. Sour Sap thickens to the point where it cannot be evaporated and will be difficult to draw off the evaporator. In extreme cases, you can pour a stream out and it will suspend in midair. This is referred to as “ropey syrup”. Sour sap is a result of intense microbial activity that builds anytime during the season when environmental conditions are right for bacterial growth. Buddy syrup comes from sap collected when the buds emerge naturally from the tree. This is a normal physiological growth stage that occurs every year.

Both processes require and progress with seasonal warming. In a normal season, the two tend to occur simultaneously and accelerate at the end of the season. Though the two are correlated, it is important for producers to understand the differences if you want to avoid the problems associated with each.

 

New Article Series Launches Next Monday

This short post will serve as a sort of guidepost, a table of contents or roadmap if you will, for the next month or so worth of content.  We are excited to bring you a 4-article series on maple phenology.  Phenology is a fancy word for describing nature’s calendar.  We’ll discuss one of the most practical and accessible tools for tracking phenology – the growing degree day, or GDD for short.  Second, we’ll seek to understand and document how GDD is related to species-specific patterns in maple bud and bloom timing and why that matters for maple producers.  Then over the course of two installations, Les Ober will break down why an improvement of one’s understanding of maple season timing is particularly important towards the season’s end and how you can minimize and prevent unwanted bouts with “sour” or “buddy” sap.  After all, our main goal is promoting sustainable production of high quality maple syrup!

When the Season Comes to an End

The season has come to an end and now you are faced with the arduous task of cleaning up you maple operation. Where do you start and what do you use? For most equipment, the answer is simple – lots of hot water and elbow grease. A good place to start is with the tanks that hold both sap and syrup. Most are stainless steel and are easy to clean with a pressure washer. We found that a tank washing nozzle that fits your pressure washer is a valuable tool. The specially-designed nozzles enable you to spray to the side and reach areas that a standard spray tip cannot reach. There is no substitute for stainless steel equipment if you can afford it.

Plastic totes and poly tanks have become popular because they are relatively inexpensive but they are harder to clean. Plastic totes, while affordable, may only last about two or three seasons if you get off your cleaning schedule. It does not take long for the plastic to become so contaminated with bacterial spores that you have to discard and replace. However, if you keep poly tanks cleaned they will last for years. Another simple tip is to clean as soon after the season ends as possible. Allowing totes and tanks to sit dormant allows bacteria to build and grow making cleaning more difficult.

Your evaporator needs to be sugared off and flushed out as soon as possible. I often flush the pans with clean water and then refill them with permeate from the RO and let them soak. If permeate is not available, use water. I will drain and refill the pans with clean water and then add the proper amount of pan cleaner following label directions. Once the pan cleaner has done its job, I drain the pans and use a high pressure washer to finish the job. Do the process correctly and your pans will look brand new. Make sure all your float boxes are clean, replace gaskets if needed. Soak your auto draw off temperature probe and your hydrometer in a 5% vinegar solution to remove any residues or films. The thermocouple in the auto draw off probe works best when there is no niter on the probe. Clean your filter press thoroughly and lubricate parts with a food grade lubricant. It is good practice to remove all extra filters from your sugarhouse and store them in your house, somewhere dry and rodent-free. If you use a filter tank, you will need to clean filters and make sure they are completely dry before story to ensure no mold will develop over the off-season. Any filters with problems, even minor, should be discarded, and you should purchase new inventory for the next season.

Reverse osmosis units (RO) should be soap washed and thoroughly rinsed immediately after the last time you use them. Make sure all of the permeate is drained out. Once you break down the RO, return your membranes to the storage vessels with a cup of permeate in each one. Once everything is clean, you should send the membranes in to your dealer for cleaning and testing. There is nothing worse than starting a season with a bad membrane that is passing sugar. Make sure your high pressure pump and your feed pump are free and fully drained. Inspect the membrane housings and get them as dry as possible. Many times with the recirculating motors and pumps on the bottom of the membrane towers, dampness can cause the pump shafts to seize and seals to deteriorate. Because evaporators and ROs require the use of chemicals that are incompatible – phosphoric acid and basic soap – keep them separate and out of reach of children. Be careful when you mix pan cleaner and always follow the directions on the label.

The most controversial portion of a maple system to clean is most certainly the tubing. It seems everyone has his or her own way of dealing with the miles of tubing stretching through the woods. I have cleaned tubing just about every way possible over the years. We have sucked water, pumped water and air, water only, air and tubing cleaner, and just plain did not clean at all. In my experience, using water and air worked well until we tried to pump up too steep of slope and had a blowout that may have had enough force to launch a satellite. Sucking water through the lines left a lot of liquid in the lines that eventually turned to green snot. The method we now use seems to work. We pull taps with the vacuum, nip off each old spout, and immediately use a Stars Company (out of Quebec) line plug to seal the drop line and maintain vacuum on the system. Done properly, the sap in the lateral line will not suck back into the drop line. We then use a paint marker to mark the old tap hole which greatly speeds up next season’s tapping process. Once all of the taps are out, we back flush the mainlines with clean water. Next we close all of the main lines and open the end of each lateral opening long enough to pull air through the lines and keep vacuum on the system. Doing this should remove 80% of the liquid from the lateral and main lines. At this stage, we successively open the ends of each main line and let air in with the vacuum on. Once the vacuum on the entire system drops to zero shut off the pump. At some point before the next season, we then install new spouts on all the drops and let the lines air out completely. This method may seem excessive but it does work. We have a small amount of green sap at the start of the season, but nothing we could not easily filter and could possibly have been avoided by flushing the system again before the season.

A word of caution when it comes to using tubing cleaners. They have to be completely flushed from the lines before the next season. Never use Isopropyl alcohol – it is illegal in the United States. Also be aware that some cleaners attract Mr. Bushy Tail and his friends – never a good thing for tubing operators.

Once your system is cleaned, bring in all releasers and clean and sanitize them thoroughly. They are made of PVC which makes a good home for bacteria. Go over the mechanism and use lubricant provided by the manufacture to lubricate all of moving parts. The last task is to care for your vacuum and transfer pumps. Change the oil or drain out the water on liquid ring pumps. On the new rotary claw pumps change the oil and fog the pump with a pump oil. You need to make sure rust does not build up. The same is true for rotary vane pumps which are more maintenance-free but putting some oil on the vanes never hurts. All gasoline motors should be drained and the gasoline replaced with SeaFoam or a similar product. Never leave gas with ethanol in the tank. Drain the crank case oil and replace it with fresh motor oil and you will be ready to go for next season. Lastly, make sure you transfer pumps are drained and stored somewhere that will not fall below freezing.

Author: Les Ober, Geauga County OSU Extension

Maintaining the Quality of Maple Syrup Through the Proper Handling of Maple Sap

The taste of pure maple syrup is one of nature’s most enjoyable flavors. If it is produced properly, the taste ranges from sweetly delicate to a pronounced robust, uniquely maple flavor. However, maple syrup that is improperly made or handled can be just as unforgettable for other reasons. Maple producers need to be very conscious of how easy it is to destroy the quality of the product they are producing. They need to take every precaution to preserve the integrity of this unique product. How sap is handled during the course of the season will determine the volume of high quality syrup produced.

Maple syrup is made up of 98.5% sugar. The level of sugar is measure in Brix or a percentage of the sugar present in the product. For all practical purposes, we simply say that the product is maple syrup when it reaches 66 Brix or contains 66% sugar. For this reason, maple syrup in Ohio and elsewhere must be finished at 66 Brix.

Simply stating that syrup is all sugar smooths over some of the important details. The primary sugar in maple syrup is Sucrose; however, there are small amounts of Glucose and a trace of Fructose present. Glucose and Fructose sugars are referred to as the invert sugars, and invert sugar levels can determine if a specific batch of maple syrup is usable to make certain value-added maple products. The remaining portion of the syrup is composed of various minerals, amino acids, and organic acids. The most common organic acids are Malic and Fumaric acid, the same found in many fruit juices. The presence of these acids is a relevant fact and has a bearing on how maple syrup is processed.

The quality of maple syrup normally declines as the season progresses. The sap that comes from the tree when the weather is cold and the taps are fresh will most often produce the lightest and the highest quality syrup of the season. The primary reason for this is the relatively low level of bacteria found in the sap. Research done at the University Of Vermont by Dr. Mariafranca Morselli documented the fact that sap inside the maple tree is essentially sterile; however, because sap is normally 1.5 to 2.5% sugar, it becomes an ideal medium for bacterial growth. Once a tree’s sap reaches the taphole, environmental conditions cause bacterial colonies in the sap to flourish. This bacterial growth is responsible for two processes, one inside the tree and another outside. First, bacteria will cause the taphole to dry out and heal thus reducing the flow of sap from that tap. And second, sap containing large concentrations of bacteria will produce darker grades of syrup. A study by Legace, Petri, Jacques and Roy found that:

The presence of microorganisms in the sap has the ability to breakdown the sucrose molecules, the main organic component sap, into glucose and fructose subunits. These subunits react with the heat in the evaporation process to cause the darkening of the syrup and an intense, caramelized flavor.

Morselli & Wahlen also found that if producers can keep sap from being contaminated with bacteria, trees will produce light colored syrup almost to the end of the season. Maple producers can learn much from these studies. Best practices, such as not blowing in the hole to dislodge wood chips, drilling holes straight and clean, properly seating the spout, and regularly replacing or cleaning spouts and drops, all help prevent bacterial growth.

Bacterial growth that starts at the taphole will multiply and flourish as the sap is collected and stored prior to evaporation. This is the reason that sanitation is so important during the collection process. Tubing systems have solved many problems when it comes to collecting sap, but they have also created a few. Sap being collected with a vacuum tubing system moves sap quickly away from the tree to the collection point. It creates a cleaner environment for sap collection unless it is improperly maintained. Unfortunately, poorly maintained tubing presents one of the highest risks for increased bacterial growth. Stagnant sap sitting inside of tubing warms quickly, and research done by Morselli and Wahlen at the University of Vermont, found that bacterial populations sitting inside warm tubing systems double every twenty minutes. Therefore, tubing systems need to be installed properly and maintained with tight lines all sloped toward the collection point.

Changing spouts every season and rotating drop lines on a regular interval enables modern-day producers to achieve a high level of vacuum line sanitation. The invention of the Check Valve Adapter (CVA) by the researchers at Proctor Research Center has totally changed the way we think of taphole sanitation. The research done at Proctor documented that sap actually siphons back into the tree in the absence of vacuum. CVAs prevent that back siphoning from occurring. The other important revelation was that if we can maintain vacuum on the lines even during periods of minimum flow, lines are kept cooler and bacterial growth is minimized. The result is that in many maple operations the only time that vacuum is turned off is when the temperature goes below freezing for a prolonged period of time. We are definitely changing the way we run our vacuum tubing systems and it has not only improved syrup production but also syrup quality.

At the end of the season all collection lines need to be thoroughly cleaned and drained. If possible they should be rinsed again before the start of the next season. Sanitation is no less important in bucket operations. Buckets should be washed before the start of every season. During the season sap needs to gathered often, and buckets should be washed, dried, and stored quickly at season’s end.

Once the sap arrives at the sugarhouse it should be processed quickly. Do not allow sap to sit in open tanks for long periods of time. Collection tanks need to be drained and washed down between runs. To speed up processing, evaporator capacity should be properly matched to the volume of sap coming into the sugarhouse. Producers who struggle to keep ahead of the sap flow and allow large volumes of sap to sit unprocessed for long periods of time often struggle to make top quality syrup.

There are several techniques that can slow bacterial growth and speed up the processing time. Sap can be exposed to ultraviolet (UV) light. Morselli and Wahlen found that sap treated with in-line UV lamps reduced bacteria by 99.4 % early in the season and reduced bacteria 86.2 % later in the season. Evaporation rates can be increased by using pre-heaters or enhanced evaporator units such as the Steam-A-Way or Piggyback. By far the most popular means of cutting down on processing time is by using a reverse osmosis (RO) machine. The invention of the RO has revolutionized the maple syrup industry. Because of the use of modern RO technology, extensive expansion of maple operations is now possible. Modern RO machines can concentrate sap from 2% to over 20% before it ever goes through the evaporator. However, a word of caution, sap that has been run through the RO process is subject to increased bacterial growth, therefore concentrated sap needs to be processed as soon as it comes out of the RO to prevent darkening of the finished product. Of course, the final step in the syrup-making process is proper setup and operation of the evaporator and the maple syrup filtering systems. Once again proper sanitation of all the processing equipment is very important if quality is to be maintained.

The purpose of this post is to get you to thinking about the importance of sanitation and the role sanitation plays in the process of making high quality maple syrup. The beginning of the season is the time to adopt good sanitation practices.

Author: Les Ober, Geauga County OSU Extension

Tips on Using Vacuum and Maintaining Tap Hole Sanitation

Looks like Ohio Maple Producers may be headed into another sugaring season with unusual weather patterns. As of February 5th, 2013, there has already been a significant amount of new syrup made in NE Ohio. The real challenge is setting up your production system so that it can deal with the changes in the weather. You may say that there is nothing we can do about the weather; we have to accept what comes. That is right, however, you can change the way you produce syrup to take advantage of every opportunity that comes our way.  If you take a look at what happened in Ohio over the past several seasons you will notice some definite trends. Yield per tap dropped from .286 gallons of syrup per tap in 2008 to .169 in 2010. Last year, we once again lead the nation in Yield per tap (.244).  One of the main reasons for this was that favorable weather patterns enabled producers on vacuum tubing systems to collect a greater volume of sap on more days over the course of the entire season.  The end result was a huge average yield per tap. How you manage your system during the season is key.

Taphole sanitation has become the buzz word of the industry. Taphole sanitation is all about keeping your drop lines and spouts free of bacterial contamination. The piece of technological equipment that may have started it all is the Check Valve Adapter Spout. The warm weather in Ohio over the last several years has proven to be a good test for the new spout that is designed to prevent a back flow of bacterial-laden sap back into the tree. It works well in warmer climates like Ohio.

Solutions for taphole sanitation are based on research done at Proctor Lab in Vermont and the work done at Cornell University. What it comes down to is that you need to be replacing your spouts every year. Plain and simple. You should be replacing your drops every other year. And if you shut off your vacuum for extended periods of time during the season when it is not frozen, then you should consider using the Check Valve. The newest model goes directly on the line without the stubby adapter and looks very promising. If you run your vacuum continuously then one of the new polycarbonate spouts may be the answer. Check your drops frequently looking for bacterial buildup. Also this is a prime area where squirrel damage occurs so watch for leaks.  At the end of the season, make sure you get all of the sap out of the drops. The best way to do this is to clean under vacuum if you can. This removes the maximum amount of liquid out of the lines.

One question that comes up a lot is whether you should shut down your vacuum pump during extended periods of warm weather or let it run? Many producers are finding out that when you run the vacuum pump continuously, you will continue to collect sap even when the temperatures remain above freezing for several days. In most cases, the sap you collect will produce enough syrup to offset the cost of running the pump. In fact it is better to keep the pumps on and keep something moving through the lines. This cuts down on bacterial growth in the lines and the moving sap will keep the lines cooler. But it takes a good vacuum pump to run under warm conditions. The average vane pump (dairy pump) struggles in this environment. They are not designed to produce high vacuum over long periods of time. They are designed to work comfortably at 16 inches of vacuum. This is the vacuum that you use to milk cows. The best pump choice for extended high vacuum use is a liquid ring pump. They are cooled by water or oil and they hold up well under long periods of continuous use.

The last several years should have convinced everyone that tubing on vacuum pays. The Financial Analysis Guide released in Winter 2012 by The Ohio State University shows that the cost of production can be improved by installing and running a vacuum tubing system. It is clear that technology is and will continue to drive profitably and production in the maple industry regardless of what Mother Nature throws our way.

Author: Les Ober, Geauga County OSU Extension