# Vacuum Tubing Systems, An Update

This is an update for an article I wrote on the Ohio Maple Blog way back in 2013. It was entitled “Tubing or Pump: How to Optimize Your Tubing System’s Performance.” A lot of knowledge has been gained since that original article. In fact, a whole new type of gravity tubing system, 3/16″, has been introduced and has been overwhelmingly accepted by maple producers.

When we talk about tubing systems we have two roads to travel. One is a gravity system and the other is a vacuum system. A conventional 5/16″ gravity system is not much different from running sap into a bucket. It does save labor but the yield is much the same. But when we add vacuum to a tubing system, we can increase the sap yield 5 to 7% for every inch of vacuum we place on our system. For example, if we produce 15 inches of vacuum in our lines, we should be able to double our sap yield.

The definition of vacuum is the absence of air. The level of vacuum that is achievable is determined by the barometric pressure for any given day. This means that our vacuum level can never exceed the barometric pressure in the location of our sugar bush. There are factors that have a direct effect on barometric pressure. One is altitude. As the altitude increases the barometric pressure decreases. At sea level, 0 altitude, the average barometric press can be 29 inches and at 2000 feet the average barometric pressure is approximately 28 inches. In addition, barometric pressure changes under different environmental conditions. It can change multiple times during the course of a day. This is most important when we are boiling syrup because it changes the boiling point of water. But if we are running a vacuum pump under a low barometer at an altitude of  2000 feet, we might also struggle to maintain 27 to 28 inches of vacuum even on a very tight, well maintained tubing system. This statement also emphasizes the importance of managing leaks in a vacuum tubing system. Every leak adds additional air to the system making it harder for the vacuum pump to achieve and maintain high vacuum. The amount of air moved out of a system is measured in Cubic Feet per Minute (CFM). It is important to be able to differentiate between Inches of Vacuum and CFM. To successfully raise your vacuum level, you have to be able to remove the air from your tubing system. Once the air is removed, your vacuum level will increase unless you are letting air in through leaks.

Now let’s look at what happens inside a maple tubing line. A conventional vacuum pump is designed to move air not liquid.  This means that a vacuum pump is pulling air out of the system while the trees and the leaks are adding air into the system. A properly sized vacuum pump with a proper CFM rating will be capable of removing air faster that it is introduced. The only thing that will slow that process is line size. If your line diameter is to small, the air movement will be restricted requiring more time for the pump to clear the air from the lines. This is commonly referred to as line loss. The smaller the line, the higher the line loss and the longer it will take to re-establish your peak vacuum level. That is why tubing design and pump size are so important in a conventional vacuum system. It is also very important to note that in a vacuum system, liquid does not need to be present to create a high vacuum. The movement of sap is secondary. As the vacuum level builds it creates a siphon that pulls the sap along with the air. In fact, when we look at the space inside a cross section of tubing we should strive to maintain a ratio of 60% air and 40% liquid. If the liquid level increases or is uneven (wavy), then the air movement will be restricted and the inches of vacuum will drop.

Let’s look at some other alternatives to move sap through a tubing system. One of the more popular alternatives to conventional vacuum is the diaphragm pump. Let’s look at what happens with a diaphragm pump. Diaphragm pumps are water pumps that unlike vacuum pumps are designed to move liquid – not air. Because they move water and not air, their capability of creating CFM is minimal at best. Manufacturers tell us that these pumps are capable of creating 20 plus inches of vacuum. How do you create a vacuum with these pumps when their ability to move air measured in cubic feet per minute is limited? In a sugar bush, your lines are hopefully sloped toward your tank and gravity allows sap to flow toward the pump. Once the pump picks up the sap on the intake side, it then accelerates the flow in the line. The pump simultaneously pushes the sap under pressure through the outlet. Because the pump is pulling hard on the sap and pushing it through the outlet, it creates a solid column of sap. As this column of sap moves down the line, the air and liquid combines thereby creating a negative pressure on the backside of the column. This negative pressure can be measures with a vacuum gauge. This continues until the sap flow slows down. As the sap flow slows the vacuum level begins to drop. Once the flow is terminated, the pump can no longer push sap through the outlet, and the negative pressure will ultimately disappear. If you run the pump without liquid, you risk damaging the pump. The biggest thing to remember is that a \$200.00 diaphragm pump will not remove air from the system by itself. It has to move liquid to create a negative pressure on the backside of a column of sap. I know the above statements will create controversy from those that are using diaphragm pumps successfully. There are ways to tweak a system to create increased vacuum during low flows but the ultimate end is reduced or no vacuum. The other thing to keep in mind, if you want to be successful with a diaphragm pump, is to keep your tubing system free of leaks. Leaks will result in poor pump performance. Also protect you pump from freezing and ice in the lines. Ice can damage diaphragms. Diaphragm pumps are a good choice in small operations where an increased level of vacuum during a good run is better than no vacuum at all. But diaphragm pumps were never intended to a replace a conventional vacuum system and they never will.

Author: Les Ober, Geauga County OSU Extension