In a previous problem, you found mathematical expressions equalling each of the numbers 1 – 20 using exactly four 4’s and any mathematical symbols you wanted to. Now make 21 – 40 following the same rules.

21 = 4! – √4 – (4 ÷ 4)

22 = 4! – √4 + 4 – 4

23 = 4! – √4 + (4 ÷ 4)

24 = [(4 x 4) + 4] + 4

25 = 4! + √4 – (4 ÷ 4)

26 = 4! + (4 + 4) ÷ 4

27 = 4! + √4 + (4 ÷ 4)

28 = 4! + 4 – 4 + 4

29 = 4! + 4 + (4 ÷ 4)

30 = 4! + √4 + √4 + √4

or (4 + 4 + 4) ÷ .4

31 = [(4! + 4) ÷ 4] +4!

32 = 4! + 4 + √4 + √4

or (4 ÷ .4) + 4! – √4

33 = [4 – .4) ÷ .4] + 4!

34 = 4! + (4 x √4) + √4

35 = [(4 + .4) ÷ .4] + 4!

36 = 4! + 4 + 4 + 4

37 = [(4! + √4) ÷ √4] + 4!

38 = 44 – √4 – 4

39 = 4! + (4 + √4) ÷ .4

40 = 4! + 4! – 4 – 4