DRAFT - Sample Typology of Count Models

Initial or "Standard" Regression Model for Counts

- 1. Poisson Regression:
 - Assumes the count data follow a Poisson distribution.
 - Assumes mean and variance are equal.
 - Does not account for overdispersion (i.e., when variance exceeds the mean).

Accommodating Underdispersion (or overdispersion)

- 2. Generalized Poisson Regression:
 - Generalizes the Poisson distribution to allow for extra dispersion.
 - Accounts for overdispersion by introducing an additional parameter.
 - Provides more flexibility in modeling the relationship between predictors and count outcomes.

Accommodating Overdispersion

- 3. Quasi-Poisson Regression:
 - Accounts for overdispersion without specifying the exact distribution.
 - Estimates the dispersion parameter without assuming a specific distribution.
 - Not preferred choice for modeling count data when the mean and variance differ.
- 4. Negative Binomial Regression (NB2, NB1):
 - Assumes the count data follow a negative binomial distribution.
 - Allows for overdispersion by introducing an additional dispersion parameter.
 - Can handle cases where variance exceeds the mean.
 - Has two forms: NB2 (variance is a quadratic function of the mean) and NB1 (variance is a linear function of the mean). NB2 is more commonly used.
- 5. Poisson Inverse Gaussian
 - Like NB, this is a mixture of two distributions: Poisson and Inverse Gaussian
 - Hilbe (2014) notes that the PIG model is better than NB when the data are highly overdispersed with data massed at counts for 1 and 2
 - Available in R (gamlss) and in Stata, not in other commercial software
- 6. Conway-Maxwell Poisson Regression:
 - Generalizes the Poisson distribution to account for both underdispersion and overdispersion.
 - Introduces a second dispersion parameter, the Conway-Maxwell parameter.
 - Provides flexibility in capturing various patterns of dispersion in count data.

Intentional Treatment of Zeros Through Zero-Inflation Models

- 7. Zero-Inflated Poisson Regression:
 - Accounts for excessive zeros in count data by modeling a separate process for generating zeros.
 - Consists of two components: a Poisson component and a zero-inflation component.
 - Assumes that excess zeros are generated by a separate process rather than being a result of the count process.

- 8. Zero-Inflated Negative Binomial Regression:
 - Combines the zero-inflation concept with the negative binomial distribution.
 - Models both the excess zeros and the count part of the data.
 - Suitable for count data with excessive zeros and overdispersion.

Models involving Truncation

- 9. Hurdle Regression:
 - Similar to zero-inflated models, but models the hurdle or the decision to have zero counts separately from the count part.
 - Consists of two components: a binary hurdle component and a truncated count component.
 - Zeros could be more or fewer than expected based on count component
 - Appropriate when there is a two-step process involved in generating zero counts and non-zero counts.
 - Typical Hurdle models are Hurdle-Poisson, and Hurdle-NB
- 10. Double Hurdle Model:
 - Dependent variables may take on the endpoints of an interval with positive probability and that are continuously distributed over the interior of the interval.
 - Involves a combination of truncated models, i.e., between two hurdle points, and then for the 2nd hurdle to the largest count.

Additional Complexities for Modeling Counts

- 11. Generalized Additive Models
 - Flexible extension of the generalized linear model (GLM) that allows for nonlinear relationships between predictors and the response variable
 - Smooth functions are used to model the non-linear relationship between predictors and the response variable.
 - Splines are commonly used to represent the smooth functions.
 - The smooth functions are flexible and can capture complex patterns, such as curves, bends, and interactions.
- 12. Tobit Model:
 - The Tobit model assumes that there is an underlying continuous variable, but it is only partially observed due to censoring.
 - The censored observations are known to fall below or above certain thresholds, while the uncensored observations are fully observed.
 - Censoring can occur from below (left-censoring) or from above (right-censoring), or both.
 - The Tobit model assumes an unobserved continuous latent variable that follows a linear regression structure.
- 13. Random Effects (Mixed Effects) Models:
 - Incorporates random effects to account for clustering or nested structures in the count data.
 - Models the within-group correlations and allows for estimating group-level variation.
 - Can be combined with Poisson, negative binomial, or other count models to handle clustered count data.
 - Nearly all models described in this Typology have a Mixed-effects counterpart