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Introduction

Big Statistical Challenge: Researchers want to know how well a
proposed model fits an observed network.

One of the most studied classes of network models are
exponential random graph models, which are defined by
network statistics (sufficient statistics).
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Exponential Random Graph Models

The model:
Pθ(G ) = Z (θ)eθ·T (G), θ ∈ Rd

θ ∈ Rd is the parameter vector.
Z (θ) is the normalizing constant.
T : {Graphs with n vertices} → Zd

≥0 is the sufficient
statistic.

Example to have in mind: Let T (G ) count the number of edges,
2-paths and triangles of the graph G .
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Background and Notation

Adjacency Matrix: Let G = (V ,E ) be a graph with n vertices. Let A
be the adjacency matrix of the graph, i.e.

Aij =

{
1 if (i , j) ∈ E ,

0 otherwise.
(1)

Network Statistics: The sufficient statistics of the edge-2path-triangle
model are:

The number of edges of G : t1 =
∑

i<j Aij .

The number of 2-paths in G : t2 =
∑

i<j(A
2)ij .

The number of triangles in G : t3 = 1
6 trA3.
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Background and Notation

Adjacency Matrix: Let G = (V ,E ) be a graph with n vertices. Let A
be the adjacency matrix of the graph, i.e.

Aij =


xij if i < j ,

0 if i = j ,

xji if i > j .

(2)

Network Statistics: The sufficient statistics of the edge-2path-triangle
model are:

The number of edges of G : t1 =
∑

i<j Aij .

The number of 2-paths in G : t2 =
∑

i<j(A
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The number of triangles in G : t3 = 1
6 trA3.
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Mantra of Algebraic Statistics
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Algebraic Ideal

Definition

k[x1, . . . , xn] is the set of all polynomials in x1, . . . , xn with
coefficients in k where k is a field.

Note: The field k can be Q, R, or C.
Example: x + y − z2 is a polynomial in R[x , y , z ].

Definition

A subset I ⊂ k[x1, . . . , xn] is an ideal if it satisfies:

1 0 ∈ I .

2 If f , g ∈ I , then f + g ∈ I .

3 If f ∈ I and h ∈ k[x1, . . . , xn], then hf ∈ I .
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Algebraic Ideal

Definition

Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Then we set

〈f1, . . . , fs〉 =

{
s∑

i=1

hi fi : h1, . . . , hs ∈ k[x1, . . . , xn]

}
.

Lemma

If f1, . . . , fs ∈ k[x1, . . . , xn], then 〈f1, . . . , fs〉 is an ideal.
We will call 〈f1, . . . , fs〉 the ideal generated by f1, . . . , fs .

Example: I = 〈x + y , x2 − y + z3〉 is an ideal of R[x , y , z ] and it is
generated by x + y and x2 − y + z3.
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Algebraic Variety

Definition

Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Then we set

V(f1, . . . , fs) = {(a1, . . . , an) ∈ kn : fi (a1, . . . , an) = 0 ∀1 ≤ i ≤ s}.

We call V(f1, . . . , fs) the affine variety defined by f1, . . . , fs .

Example:

V(x2 + y2 + z3 − z2) V((y2 +z2−1)2 + (x2 +y2−1)3)

https://homepage.univie.ac.at/herwig.hauser/bildergalerie/gallery.html
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Algebraic Variety

Interpretation: An affine variety V(f1, . . . , fs) ⊂ kn is the set of all
solutions of the system of equations

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0.

Similarly, given a polynomial ideal I = 〈g1, . . . , gs〉 ⊂ k[x1, . . . , xn],
V(I) is an affine variety in kn. It is the set of all solutions of the
system of equations where all the polynomials in I set equal to 0.
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Research Goal

Goal: Given the specific ERGM with edge, 2-paths, and triangle
counts as sufficient statistics, we want to understand the geometry
of the variety of the sufficient statistics by exploring

1 Dimension

2 Irreducibility

3 Singularities
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Review - Background and Notation

Adjacency Matrix: Let G = (V ,E ) be a graph with n vertices. Let A
be the adjacency matrix of the graph, i.e.

Aij =


xij if i < j ,

0 if i = j ,

xji if i > j .

(3)

Network Statistics: The sufficient statistics of the edge-2path-triangle
model are:

The number of edges of G : t1 =
∑

i<j Aij .

The number of 2-paths in G : t2 =
∑

i<j(A
2)ij .

The number of triangles in G : t3 = 1
6 trA3.
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The Variety of Sufficient Statistics

Given a graph G and network statistic t = T (G ) = (t1, t2, t3), the
reference ideal of t is:

It = 〈
∑
i<j

xij − t1,∑
i<j<k

(xijxjk + xijxik + xikxjk)− t2,∑
i<j<k

xijxjkxik − t3〉

⊆ k[xij | 1 ≤ i < j ≤ n].

We will call the variety defined by It the reference variety:

Vt = V (It).
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Example I

Consider the graph G in the figure below.

1 The number of edges of G :
t1 =

∑
i<j Aij = 4.

2 The number of 2-paths in G :
t2 =

∑
i<j(A

2)ij = 5.

3 The number of triangles in G :
t3 = 1

6 tr(A3) = 1.

So, t = T (G ) = (4, 5, 1).

The reference ideal of G is:

It = 〈x12 + x13 + x23 + x14 + x24 + x34 − 4,

x12x13 + x12x23 + x13x23 + x12x14 + x13x14 + x214 + x12x24+

+ x23x24 + x224 + x13x34 + x23x34 + x14x34 + x24x34 + x234 − 5,

x12x13x23 + x12x14x24 + x13x14x34 + x23x24x34 − 1〉.
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Example II

fork	- chair

C4 U	K1

co-4-fan
net

X169

t1 =	(4,	4,	0),	Vt1 contains: t2 =	(6,	9,	1),	Vt2 contains:
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A Gröbner basis for It

Definition

Given an ideal I ⊂ k[x1, . . . , xn]. A finite subset G of I is a
Gröbner basis with respect to the term order ≺ if the initial terms
of the elements in G suffice to generate the initial ideal:

in≺(I ) = 〈in≺(g) : g ∈ G 〉.

Note: There is no minimality requirement for being a Gröbner
basis. Hence, there is infinitely many Gröbner basis for an ideal I .
But a reduced Gröbner basis is unique for every ideal I .
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A Gröbner basis for It

Proposition

The polynomials

g1 = f1,

g2 =

( n∑
i=2

x1i + x2i

)
f1 − f2,

g3 = f3 −
( n∑

i=3

x1ix2i

)
f1 + x23g2

form a reduced Gröbner basis for It . In particular,

In(It) = 〈x12, x213, x323〉.
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Dimension

Theorem

The ideal It has codimension 3.

That is, the dimension of the reference variety Vt is:

dim(Vt) =

(
n

2

)
− 3.
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Irreducibility

Theorem

If n ≥ 4, then It is prime.

In other words, if n ≥ 4, then Vt is irreducible.

Proof.

Fix h1, h2 /∈ It such that h1h2 ∈ It . Based on the Gröbner
basis, h1 and h2 have specific forms.

n = 4: perform the polynomial long division on h1h2 by g2
and g3 in Macaulay2. The result indicates that either h1 = 0
or h2 = 0.

n > 4: by using division algorithm and induction, we show
that the division of h1h2 by g2 and g3 yields a remainder
r 6= 0.
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Singularitites

Definition

Intuitively, a singular point of V(f ) is a point where the tangent
line fails to exist.

Bath Sextic - https://imaginary.org/gallery/oliver-labs
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Singularitites

Edge-triangle Model:
Let G be a graph with n vertices. Let t = T (G ) = (t1, t3). The
Jacobian of Vt at G , denoted Jac(Vt)|G , is an (n2 − n)× 2 matrix
whose rows are indexed by pairs (r , s) with 1 ≤ r , s ≤ n and r 6= s.
The (r , s)th row of Jac(Vt)|G has the following form

[1 # of 2-paths between r and s].
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Singularitites

Edge-triangle Model:

Proposition

A graph G with n vertices is a singular point of a fiber of the
edge-triangle model ⇔ G is a windmill graph or a strongly regular
graph of the form (n, k , k

2−k
n−1 ,

k2−k
n−1 ).
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Singularitites

Remark

Just because a graph is singular in the edge-triangle model, it does
not mean that it is singular in the edge-2path-triangle model.
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Singularitites

Edge-2path-triangle Model:

Definition

Given a graph G = (V ,E ) with
adjacency matrix A and two
vertices r , s ∈ V , let the joint
degree of r and s in G be
jointdegrs := deg r+deg s−2Ars .

The Jacobian of Vt at G , denoted Jac(Vt)|G , is an (n2 − n)× 3
matrix whose rows are indexed by pairs (r , s) with 1 ≤ r , s ≤ n and
r 6= s. The (r , s)th row of Jac(Vt)|G has the following form

[1 jointdegrs # of 2-paths between r and s].
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Singularities

Edge-2path-triangle Model:

Proposition

Let G be a graph. If the automorphism group of G is the full
symmetric group, then rank Jac(Vt)|G = 1.

Proof.

Proof by contradiction: suppose rank Jac(Vt)|G 6= 1.
Case 1: The number of 2-paths between r , s and u, v are different.
Case 2: The joint degrees between r , s and u, v are different.
In both cases, the permutation σ on G is not a graph
automorphism (contradiction). Therefore, Jac(Vt)|G = 1.
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Future Directions

1 Explore the relationship between singularity and degeneracy.

2 Can we use the geometry of the variety to develop a sampling
algorithm for this statistical model?
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