Geometry of Exponential Random Graph Models

Ha Khanh Nguyen
The Ohio State University

Elizabeth Gross
University of Hawaii, Manoa

Christopher O'Neill
University of California, Davis

Rodolfo Garcia
San José State University

Introduction

Big Statistical Challenge: Researchers want to know how well a proposed model fits an observed network.

- One of the most studied classes of network models are exponential random graph models, which are defined by network statistics (sufficient statistics).

Exponential Random Graph Models

The model:

$$
P_{\theta}(G)=Z(\theta) e^{\theta \cdot T(G)}, \theta \in \mathbb{R}^{d}
$$

- $\theta \in \mathbb{R}^{d}$ is the parameter vector.
- $Z(\theta)$ is the normalizing constant.
- T : \{Graphs with n vertices $\} \rightarrow \mathbb{Z}_{\geq 0}^{d}$ is the sufficient statistic.

Example to have in mind: Let $T(G)$ count the number of edges, 2-paths and triangles of the graph G.

Background and Notation

Adjacency Matrix: Let $G=(V, E)$ be a graph with n vertices. Let A be the adjacency matrix of the graph, i.e.

$$
A_{i j}= \begin{cases}1 & \text { if }(i, j) \in E, \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

Network Statistics: The sufficient statistics of the edge-2path-triangle model are:

- The number of edges of $G: t_{1}=\sum_{i<j} A_{i j}$.
- The number of 2-paths in $G: t_{2}=\sum_{i<j}\left(A^{2}\right)_{i j}$.
- The number of triangles in $G: t_{3}=\frac{1}{6} \operatorname{tr} A^{3}$.

Background and Notation

Adjacency Matrix: Let $G=(V, E)$ be a graph with n vertices. Let A be the adjacency matrix of the graph, i.e.

$$
A_{i j}= \begin{cases}x_{i j} & \text { if } i<j \tag{2}\\ 0 & \text { if } i=j \\ x_{j i} & \text { if } i>j\end{cases}
$$

Network Statistics: The sufficient statistics of the edge-2path-triangle model are:

- The number of edges of $G: t_{1}=\sum_{i<j} A_{i j}$.
- The number of 2-paths in $G: t_{2}=\sum_{i<j}\left(A^{2}\right)_{i j}$.
- The number of triangles in $G: t_{3}=\frac{1}{6} \operatorname{tr} A^{3}$.

Mantra of Algebraic Statistics

Statistical Models

Algebraic Varieties

Algebraic Ideal

Definition

$k\left[x_{1}, \ldots, x_{n}\right]$ is the set of all polynomials in x_{1}, \ldots, x_{n} with coefficients in k where k is a field.

Note: The field k can be \mathbb{Q}, \mathbb{R}, or \mathbb{C}.
Example: $x+y-z^{2}$ is a polynomial in $\mathbb{R}[x, y, z]$.

Definition

A subset $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal if it satisfies:
(1) $0 \in I$.
(2) If $f, g \in I$, then $f+g \in I$.
(3) If $f \in I$ and $h \in k\left[x_{1}, \ldots, x_{n}\right]$, then $h f \in I$.

Algebraic Ideal

Definition

Let f_{1}, \ldots, f_{s} be polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then we set

$$
\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\{\sum_{i=1}^{s} h_{i} f_{i}: h_{1}, \ldots, h_{s} \in k\left[x_{1}, \ldots, x_{n}\right]\right\} .
$$

Lemma

If $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$, then $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ is an ideal. We will call $\left\langle f_{1}, \ldots, f_{s}\right\rangle$ the ideal generated by f_{1}, \ldots, f_{s}.

Example: $I=\left\langle x+y, x^{2}-y+z^{3}\right\rangle$ is an ideal of $\mathbb{R}[x, y, z]$ and it is generated by $x+y$ and $x^{2}-y+z^{3}$.

Algebraic Variety

Definition

Let f_{1}, \ldots, f_{s} be polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$. Then we set
$\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in k^{n}: f_{i}\left(a_{1}, \ldots, a_{n}\right)=0 \forall 1 \leq i \leq s\right\}$.
We call $\mathbf{V}\left(f_{1}, \ldots, f_{s}\right)$ the affine variety defined by f_{1}, \ldots, f_{s}.
Example:

https://homepage.univie.ac.at/herwig.hauser/bildergalerie/gallery.html

Algebraic Variety

Interpretation: An affine variety $\mathbf{V}\left(f_{1}, \ldots, f_{s}\right) \subset k^{n}$ is the set of all solutions of the system of equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{s}\left(x_{1}, \ldots, x_{n}\right)=0 .
$$

Similarly, given a polynomial ideal $\mathbf{I}=\left\langle g_{1}, \ldots, g_{s}\right\rangle \subset k\left[x_{1}, \ldots, x_{n}\right]$, $\mathbf{V}(\mathbf{I})$ is an affine variety in k^{n}. It is the set of all solutions of the system of equations where all the polynomials in I set equal to 0 .

Research Goal

Goal: Given the specific ERGM with edge, 2-paths, and triangle counts as sufficient statistics, we want to understand the geometry of the variety of the sufficient statistics by exploring
(1) Dimension
(3) Irreducibility

- Singularities

Review - Background and Notation

Adjacency Matrix: Let $G=(V, E)$ be a graph with n vertices. Let A be the adjacency matrix of the graph, i.e.

$$
A_{i j}= \begin{cases}x_{i j} & \text { if } i<j, \tag{3}\\ 0 & \text { if } i=j, \\ x_{j i} & \text { if } i>j\end{cases}
$$

Network Statistics: The sufficient statistics of the edge-2path-triangle model are:

- The number of edges of $G: t_{1}=\sum_{i<j} A_{i j}$.
- The number of 2-paths in $G: t_{2}=\sum_{i<j}\left(A^{2}\right)_{i j}$.
- The number of triangles in $G: t_{3}=\frac{1}{6} \operatorname{tr} A^{3}$.

The Variety of Sufficient Statistics

Given a graph G and network statistic $t=T(G)=\left(t_{1}, t_{2}, t_{3}\right)$, the reference ideal of t is:

$$
\begin{aligned}
I_{t}=\langle & \sum_{i<j} x_{i j}-t_{1} \\
& \sum_{i<j<k}\left(x_{i j} x_{j k}+x_{i j} x_{i k}+x_{i k} x_{j k}\right)-t_{2} \\
& \left.\sum_{i<j<k} x_{i j} x_{j k} x_{i k}-t_{3}\right\rangle \\
& \subseteq k\left[x_{i j} \mid 1 \leq i<j \leq n\right]
\end{aligned}
$$

We will call the variety defined by I_{t} the reference variety:

$$
V_{t}=V\left(I_{t}\right)
$$

Example I

Consider the graph G in the figure below.
(1) The number of edges of G :

$$
t_{1}=\sum_{i<j} A_{i j}=4
$$

(2) The number of 2-paths in G :

$$
t_{2}=\sum_{i<j}\left(A^{2}\right)_{i j}=5
$$

(3) The number of triangles in G :

$$
t_{3}=\frac{1}{6} \operatorname{tr}\left(A^{3}\right)=1 .
$$

So, $t=T(G)=(4,5,1)$.

degree $\left(I_{t}\right)=6$
$\operatorname{dim}\left(V_{t}\right)=3$

The reference ideal of G is:

$$
\begin{aligned}
I_{t}= & \left\langle x_{12}+x_{13}+x_{23}+x_{14}+x_{24}+x_{34}-4\right. \\
& x_{12} x_{13}+x_{12} x_{23}+x_{13} x_{23}+x_{12} x_{14}+x_{13} x_{14}+x_{14}^{2}+x_{12} x_{24}+ \\
& +x_{23} x_{24}+x_{24}^{2}+x_{13} x_{34}+x_{23} x_{34}+x_{14} x_{34}+x_{24} x_{34}+x_{34}^{2}-5, \\
& \left.x_{12} x_{13} x_{23}+x_{12} x_{14} x_{24}+x_{13} x_{14} x_{34}+x_{23} x_{24} x_{34}-1\right\rangle .
\end{aligned}
$$

Example II

$t_{1}=(4,4,0), V_{t 1}$ contains:

fork - chair

$\mathrm{C}_{4} \cup \mathrm{~K}_{1}$
$t_{2}=(6,9,1), V_{t 2}$ contains:

A Gröbner basis for I_{t}

Definition

Given an ideal $I \subset k\left[x_{1}, \ldots, x_{n}\right]$. A finite subset G of I is a
Gröbner basis with respect to the term order \prec if the initial terms of the elements in G suffice to generate the initial ideal:

$$
i n_{\prec}(I)=\left\langle i n_{\prec}(g): g \in G\right\rangle .
$$

Note: There is no minimality requirement for being a Gröbner basis. Hence, there is infinitely many Gröbner basis for an ideal I. But a reduced Gröbner basis is unique for every ideal I.

A Gröbner basis for I_{t}

Proposition

The polynomials

$$
\begin{aligned}
& g_{1}=f_{1} \\
& g_{2}=\left(\sum_{i=2}^{n} x_{1 i}+x_{2 i}\right) f_{1}-f_{2} \\
& g_{3}=f_{3}-\left(\sum_{i=3}^{n} x_{1 i} x_{2 i}\right) f_{1}+x_{23} g_{2}
\end{aligned}
$$

form a reduced Gröbner basis for I_{t}. In particular,

$$
\operatorname{In}\left(I_{t}\right)=\left\langle x_{12}, x_{13}^{2}, x_{23}^{3}\right\rangle .
$$

Dimension

Theorem

The ideal I_{t} has codimension 3.
That is, the dimension of the reference variety V_{t} is:

$$
\operatorname{dim}\left(V_{t}\right)=\binom{n}{2}-3
$$

$$
\begin{aligned}
& t=T(G)=(4,5,1) \\
& \operatorname{dim}\left(V_{t}\right)=\binom{4}{2}-3 \\
& =6-3=3
\end{aligned}
$$

Irreducibility

Theorem

If $n \geq 4$, then I_{t} is prime.
In other words, if $n \geq 4$, then V_{t} is irreducible.

Proof.

- Fix $h_{1}, h_{2} \notin I_{t}$ such that $h_{1} h_{2} \in I_{t}$. Based on the Gröbner basis, h_{1} and h_{2} have specific forms.
- $n=4$: perform the polynomial long division on $h_{1} h_{2}$ by g_{2} and g_{3} in Macaulay2. The result indicates that either $h_{1}=0$ or $h_{2}=0$.
- $n>4$: by using division algorithm and induction, we show that the division of $h_{1} h_{2}$ by g_{2} and g_{3} yields a remainder $r \neq 0$.

Singularitites

Definition

Intuitively, a singular point of $\mathbf{V}(f)$ is a point where the tangent line fails to exist.

Bath Sextic - https://imaginary.org/gallery/oliver-labs

Singularitites

Edge-triangle Model:
Let G be a graph with n vertices. Let $t=T(G)=\left(t_{1}, t_{3}\right)$. The Jacobian of V_{t} at G, denoted $\left.\operatorname{Jac}\left(V_{t}\right)\right|_{G}$, is an $\left(n^{2}-n\right) \times 2$ matrix whose rows are indexed by pairs (r, s) with $1 \leq r, s \leq n$ and $r \neq s$. The (r, s) th row of $\left.\operatorname{Jac}\left(V_{t}\right)\right|_{G}$ has the following form
[1 \# of 2-paths between r and s].

Rank 2 Jacobian

Singularitites

Edge-triangle Model:

Proposition

A graph G with n vertices is a singular point of a fiber of the edge-triangle model $\Leftrightarrow G$ is a windmill graph or a strongly regular graph of the form $\left(n, k, \frac{k^{2}-k}{n-1}, \frac{k^{2}-k}{n-1}\right)$.

$$
n=5
$$

butterfly $=$ hourglass

Singularitites

Remark

Just because a graph is singular in the edge-triangle model, it does not mean that it is singular in the edge-2path-triangle model.

$$
n=7
$$

Edge-triangle Model:
Rank 1
Edge-2path-triangle Model: Rank 3 (full rank)

Singularitites

Edge-2path-triangle Model:

Definition

Given a graph $G=(V, E)$ with adjacency matrix A and two vertices $r, s \in V$, let the joint degree of r and s in G be jointdeg ${ }_{r s}:=\operatorname{deg} r+\operatorname{deg} s-2 A_{r s}$.

joindeg $_{\mathrm{rs}}=4$

The Jacobian of V_{t} at G, denoted $\left.\operatorname{Jac}\left(V_{t}\right)\right|_{G}$, is an $\left(n^{2}-n\right) \times 3$ matrix whose rows are indexed by pairs (r, s) with $1 \leq r, s \leq n$ and $r \neq s$. The (r, s) th row of $\left.\operatorname{Jac}\left(V_{t}\right)\right|_{G}$ has the following form
[1 jointdeg $_{r s} \quad \#$ of 2-paths between r and $\left.s\right]$.

Singularities

Edge-2path-triangle Model:

Proposition

Let G be a graph. If the automorphism group of G is the full symmetric group, then rank $\operatorname{Jac}\left(V_{t}\right)_{\mid G}=1$.

Proof.

Proof by contradiction: suppose rank $\operatorname{Jac}\left(V_{t}\right)_{\mid G} \neq 1$.
Case 1: The number of 2-paths between r, s and u, v are different.
Case 2: The joint degrees between r, s and u, v are different.
In both cases, the permutation σ on G is not a graph automorphism (contradiction). Therefore, $\operatorname{Jac}\left(V_{t}\right)_{\mid G}=1$.

(1) Explore the relationship between singularity and degeneracy.
(2) Can we use the geometry of the variety to develop a sampling algorithm for this statistical model?
(1) M. Newman, Networks: An Introduction, OUP Oxford (2010).
(2) D. Cox, J. Little, and D. O'Shea, Ideals, Varieties, and Algorithms, Springer (2000).
(3) G. Chartrand, L. Lesniak, and P. Zhang, Graphs \& Digraphs, Fifth Edition CRC Press (2010).
(9) D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels, Computations in algebraic geometry with Macaulay 2, Springer (2002).

